5 research outputs found

    Output privacy in secure multiparty computation

    Get PDF
    Abstract. In secure multiparty computation, a set of mutually mistrusting players engage in a protocol to compute an arbitrary, publicly known polynomial-sized function of the party’s private inputs, in a way that does not reveal (to an adversary controlling some of the players) any knowledge about the remaining inputs, beyond what can be deduced from the obtained output(s). Since its introduction by Yao [39], and Goldreich, Micali and Wigderson [29], this powerful paradigm has received a lot of attention. All throughout, however, very little attention has been given to the privacy of the players ’ outputs. Yet, disclosure of (part of) the output(s) may have serious consequences for the overall security of the application e.g., when the computed output is a secret key; or when the evaluation of the function is part of a larger computation, so that the function’s output(s) will be used as input(s) in the next phase. In this work, we define the notion of private-output multiparty computation. This newly revised notion encompasses (as a particular case) the classical definition and allows a set of players to jointly compute the output of a common function in such a way that the execution of the protocol reveals no information (to an adversary controlling some of the players) about (some part of) the outputs (other than what follows from the description of the function itself). Next, we formall

    Enhancing Self-Security in Wireless Adhoc Networks Using Multi-hop Authentication

    Get PDF
    Department of Computer Scienc

    Perfomance Analysis and Resource Optimisation of Critical Systems Modelled by Petri Nets

    Get PDF
    Un sistema crítico debe cumplir con su misión a pesar de la presencia de problemas de seguridad. Este tipo de sistemas se suele desplegar en entornos heterogéneos, donde pueden ser objeto de intentos de intrusión, robo de información confidencial u otro tipo de ataques. Los sistemas, en general, tienen que ser rediseñados después de que ocurra un incidente de seguridad, lo que puede conducir a consecuencias graves, como el enorme costo de reimplementar o reprogramar todo el sistema, así como las posibles pérdidas económicas. Así, la seguridad ha de ser concebida como una parte integral del desarrollo de sistemas y como una necesidad singular de lo que el sistema debe realizar (es decir, un requisito no funcional del sistema). Así pues, al diseñar sistemas críticos es fundamental estudiar los ataques que se pueden producir y planificar cómo reaccionar frente a ellos, con el fin de mantener el cumplimiento de requerimientos funcionales y no funcionales del sistema. A pesar de que los problemas de seguridad se consideren, también es necesario tener en cuenta los costes incurridos para garantizar un determinado nivel de seguridad en sistemas críticos. De hecho, los costes de seguridad puede ser un factor muy relevante ya que puede abarcar diferentes dimensiones, como el presupuesto, el rendimiento y la fiabilidad. Muchos de estos sistemas críticos que incorporan técnicas de tolerancia a fallos (sistemas FT) para hacer frente a las cuestiones de seguridad son sistemas complejos, que utilizan recursos que pueden estar comprometidos (es decir, pueden fallar) por la activación de los fallos y/o errores provocados por posibles ataques. Estos sistemas pueden ser modelados como sistemas de eventos discretos donde los recursos son compartidos, también llamados sistemas de asignación de recursos. Esta tesis se centra en los sistemas FT con recursos compartidos modelados mediante redes de Petri (Petri nets, PN). Estos sistemas son generalmente tan grandes que el cálculo exacto de su rendimiento se convierte en una tarea de cálculo muy compleja, debido al problema de la explosión del espacio de estados. Como resultado de ello, una tarea que requiere una exploración exhaustiva en el espacio de estados es incomputable (en un plazo prudencial) para sistemas grandes. Las principales aportaciones de esta tesis son tres. Primero, se ofrecen diferentes modelos, usando el Lenguaje Unificado de Modelado (Unified Modelling Language, UML) y las redes de Petri, que ayudan a incorporar las cuestiones de seguridad y tolerancia a fallos en primer plano durante la fase de diseño de los sistemas, permitiendo así, por ejemplo, el análisis del compromiso entre seguridad y rendimiento. En segundo lugar, se proporcionan varios algoritmos para calcular el rendimiento (también bajo condiciones de fallo) mediante el cálculo de cotas de rendimiento superiores, evitando así el problema de la explosión del espacio de estados. Por último, se proporcionan algoritmos para calcular cómo compensar la degradación de rendimiento que se produce ante una situación inesperada en un sistema con tolerancia a fallos

    Maintaining Authenticated Communication in the Presence of Break-ins

    No full text
    We study the problem of maintaining authenticated communication over untrusted communication channels, in a scenario where the communicating parties may be occasionally and repeatedly broken into for transient periods of time. Once a party is broken into, its cryptographic keys are exposed and perhaps modified. Yet, we want parties whose security is thus compromised to regain their ability to communicate in an authenticated way aided by other parties. In this work we present a mathematical model for this highly adversarial setting, exhibiting salient properties and parameters, and then describe a practically-appealing protocol for the task of maintaining authenticated communication in this model. A key element in our solution is devising proactive distributed signature (PDS) schemes in our model. Although PDS schemes are known in the literature, they are all designed for a model where authenticated communication and broadcast primitives are available. We therefore show how t..
    corecore