2 research outputs found

    MCPNS: A Macropixel Collocated Position and Its Neighbors Search for Plenoptic 2.0 Video Coding

    Full text link
    Recently, it was demonstrated that a newly focused plenoptic 2.0 camera can capture much higher spatial resolution owing to its effective light field sampling, as compared to a traditional unfocused plenoptic 1.0 camera. However, due to the nature difference of the optical structure between the plenoptic 1.0 and 2.0 cameras, the existing fast motion estimation (ME) method for plenoptic 1.0 videos is expected to be sub-optimal for encoding plenoptic 2.0 videos. In this paper, we point out the main motion characteristic differences between plenoptic 1.0 and 2.0 videos and then propose a new fast ME, called macropixel collocated position and its neighbors search (MCPNS) for plenoptic 2.0 videos. In detail, we propose to reduce the number of macropixel collocated position (MCP) search candidates based on the new observation of center-biased motion vector distribution at macropixel resolution. After that, due to large motion deviation behavior around each MCP location in plenoptic 2.0 videos, we propose to select a certain number of key MCP locations with the lowest matching cost to perform the neighbors MCP search to improve the motion search accuracy. Different from existing methods, our method can achieve better performance without requiring prior knowledge of microlens array orientations. Our simulation results confirmed the effectiveness of the proposed algorithm in terms of both bitrate savings and computational costs compared to existing methods.Comment: Under revie

    Novi algoritam za kompresiju seizmičkih podataka velike amplitudske rezolucije

    Get PDF
    Renewable sources cannot meet energy demand of a growing global market. Therefore, it is expected that oil & gas will remain a substantial sources of energy in a coming years. To find a new oil & gas deposits that would satisfy growing global energy demands, significant efforts are constantly involved in finding ways to increase efficiency of a seismic surveys. It is commonly considered that, in an initial phase of exploration and production of a new fields, high-resolution and high-quality images of the subsurface are of the great importance. As one part in the seismic data processing chain, efficient managing and delivering of a large data sets, that are vastly produced by the industry during seismic surveys, becomes extremely important in order to facilitate further seismic data processing and interpretation. In this respect, efficiency to a large extent relies on the efficiency of the compression scheme, which is often required to enable faster transfer and access to data, as well as efficient data storage. Motivated by the superior performance of High Efficiency Video Coding (HEVC), and driven by the rapid growth in data volume produced by seismic surveys, this work explores a 32 bits per pixel (b/p) extension of the HEVC codec for compression of seismic data. It is proposed to reassemble seismic slices in a format that corresponds to video signal and benefit from the coding gain achieved by HEVC inter mode, besides the possible advantages of the (still image) HEVC intra mode. To this end, this work modifies almost all components of the original HEVC codec to cater for high bit-depth coding of seismic data: Lagrange multiplier used in optimization of the coding parameters has been adapted to the new data statistics, core transform and quantization have been reimplemented to handle the increased bit-depth range, and modified adaptive binary arithmetic coder has been employed for efficient entropy coding. In addition, optimized block selection, reduced intra prediction modes, and flexible motion estimation are tested to adapt to the structure of seismic data. Even though the new codec after implementation of the proposed modifications goes beyond the standardized HEVC, it still maintains a generic HEVC structure, and it is developed under the general HEVC framework. There is no similar work in the field of the seismic data compression that uses the HEVC as a base codec setting. Thus, a specific codec design has been tailored which, when compared to the JPEG-XR and commercial wavelet-based codec, significantly improves the peak-signal-tonoise- ratio (PSNR) vs. compression ratio performance for 32 b/p seismic data. Depending on a proposed configurations, PSNR gain goes from 3.39 dB up to 9.48 dB. Also, relying on the specific characteristics of seismic data, an optimized encoder is proposed in this work. It reduces encoding time by 67.17% for All-I configuration on trace image dataset, and 67.39% for All-I, 97.96% for P2-configuration and 98.64% for B-configuration on 3D wavefield dataset, with negligible coding performance losses. As a side contribution of this work, HEVC is analyzed within all of its functional units, so that the presented work itself can serve as a specific overview of methods incorporated into the standard
    corecore