7,444 research outputs found

    Surveillance centric coding

    Get PDF
    PhDThe research work presented in this thesis focuses on the development of techniques specific to surveillance videos for efficient video compression with higher processing speed. The Scalable Video Coding (SVC) techniques are explored to achieve higher compression efficiency. The framework of SVC is modified to support Surveillance Centric Coding (SCC). Motion estimation techniques specific to surveillance videos are proposed in order to speed up the compression process of the SCC. The main contributions of the research work presented in this thesis are divided into two groups (i) Efficient Compression and (ii) Efficient Motion Estimation. The paradigm of Surveillance Centric Coding (SCC) is introduced, in which coding aims to achieve bit-rate optimisation and adaptation of surveillance videos for storing and transmission purposes. In the proposed approach the SCC encoder communicates with the Video Content Analysis (VCA) module that detects events of interest in video captured by the CCTV. Bit-rate optimisation and adaptation are achieved by exploiting the scalability properties of the employed codec. Time segments containing events relevant to surveillance application are encoded using high spatiotemporal resolution and quality while the irrelevant portions from the surveillance standpoint are encoded at low spatio-temporal resolution and / or quality. Thanks to the scalability of the resulting compressed bit-stream, additional bit-rate adaptation is possible; for instance for the transmission purposes. Experimental evaluation showed that significant reduction in bit-rate can be achieved by the proposed approach without loss of information relevant to surveillance applications. In addition to more optimal compression strategy, novel approaches to performing efficient motion estimation specific to surveillance videos are proposed and implemented with experimental results. A real-time background subtractor is used to detect the presence of any motion activity in the sequence. Different approaches for selective motion estimation, GOP based, Frame based and Block based, are implemented. In the former, motion estimation is performed for the whole group of pictures (GOP) only when a moving object is detected for any frame of the GOP. iii While for the Frame based approach; each frame is tested for the motion activity and consequently for selective motion estimation. The selective motion estimation approach is further explored at a lower level as Block based selective motion estimation. Experimental evaluation showed that significant reduction in computational complexity can be achieved by applying the proposed strategy. In addition to selective motion estimation, a tracker based motion estimation and fast full search using multiple reference frames has been proposed for the surveillance videos. Extensive testing on different surveillance videos shows benefits of application of proposed approaches to achieve the goals of the SCC

    Low-Complexity Saliency Detection Algorithm for Fast Perceptual Video Coding

    Get PDF
    A low-complexity saliency detection algorithm for perceptual video coding is proposed; low-level encoding information is adopted as the characteristics of visual perception analysis. Firstly, this algorithm employs motion vector (MV) to extract temporal saliency region through fast MV noise filtering and translational MV checking procedure. Secondly, spatial saliency region is detected based on optimal prediction mode distributions in I-frame and P-frame. Then, it combines the spatiotemporal saliency detection results to define the video region of interest (VROI). The simulation results validate that the proposed algorithm can avoid a large amount of computation work in the visual perception characteristics analysis processing compared with other existing algorithms; it also has better performance in saliency detection for videos and can realize fast saliency detection. It can be used as a part of the video standard codec at medium-to-low bit-rates or combined with other algorithms in fast video coding

    FAST PROTECTION OF H.264/AVC BY SELECTIVE ENCRYPTION

    Full text link
    International audienceThis paper presents a novel method for the protection of copyrighted multimedia content. The problem of selective encryption (SE) has been addressed alongwith compression for the state of the art video codec H.264/AVC. SE is performed in the context-based adaptive binary arithmetic coding (CABAC) module of video codec. For this purpose, CABAC is converted to an encryption cipher. It has been achieved through scrambling of equal length binarized code words. In our scheme, CABAC engine serves the purpose of encryption cipher without affecting the coding efficiency of H.264/AVC by keeping exactly the same bitrate and by generating completely compliant bitstream, and requires insignificant computational cost. Nine different benchmark video sequences containing different combinations of motion, texture and objects are used for experimental evaluation of the proposed algorithm

    Study on Segmentation and Global Motion Estimation in Object Tracking Based on Compressed Domain

    Get PDF
    Object tracking is an interesting and needed procedure for many real time applications. But it is a challenging one, because of the presence of challenging sequences with abrupt motion occlusion, cluttered background and also the camera shake. In many video processing systems, the presence of moving objects limits the accuracy of Global Motion Estimation (GME). On the other hand, the inaccuracy of global motion parameter estimates affects the performance of motion segmentation. In the proposed method, we introduce a procedure for simultaneous object segmentation and GME from block-based motion vector (MV) field, motion vector is refined firstly by spatial and temporal correlation of motion and initial segmentation is produced by using the motion vector difference after global motion estimation

    Application and Theory of Multimedia Signal Processing Using Machine Learning or Advanced Methods

    Get PDF
    This Special Issue is a book composed by collecting documents published through peer review on the research of various advanced technologies related to applications and theories of signal processing for multimedia systems using ML or advanced methods. Multimedia signals include image, video, audio, character recognition and optimization of communication channels for networks. The specific contents included in this book are data hiding, encryption, object detection, image classification, and character recognition. Academics and colleagues who are interested in these topics will find it interesting to read

    Communication Technologies Support to Railway Infrastructure and Operations

    Get PDF
    corecore