3 research outputs found

    Machine-type communications as part of LTE-advanced technology in beyond-4G networks

    Get PDF
    Machine-Type Communications is an important part of the infrastructure of LTE. This technology connects with all the other new technologies in mobile communications. In this paper, we describe Machine-Type Communications and its relation with other technologies, e.g. heterogeneous networks and device-to-device communications. We will show a simple model of Machine Type Communications in the LTE-A network (random access procedure) and discuss M2M technology. First we describe the concept of heterogeneous networks and device-to-device communications. After that we consider the Machine-Type Communications and power consumption problem

    Design Exploration of mm-Wave Integrated Transceivers for Short-Range Mobile Communications Towards 5G

    Get PDF
    This paper presents a design exploration, at both system and circuit levels, of integrated transceivers for the upcoming fifth generation (5G) of wireless communications. First, a system level model for 5G communications is carried out to derive transceiver design specifications. Being 5G still in pre-standardization phase, a few currently used standards (ECMA-387, IEEE 802.15.3c, and LTE-A) are taken into account as the reference for the signal format. Following a top-down flow, this work presents the design in 65nm CMOS SOI and bulk technologies of the key blocks of a fully integrated transceiver: low noise amplifier (LNA), power amplifier (PA) and on-chip antenna. Different circuit topologies are presented and compared allowing for different trade-offs between gain, power consumption, noise figure, output power, linearity, integration cost and link performance. The best configuration of antenna and LNA co-design results in a peak gain higher than 27dB, a noise figure below 5dB and a power consumption of 35mW. A linear PA design is presented to face the high Peak to Average Power Ratio (PAPR) of multi-carrier transmissions envisaged for 5G, featuring a 1dB compression point output power (OP1dB) of 8.2dBm. The delivered output power in the linear region can be increased up to 13.2dBm by combining four basic PA blocks through a Wilkinson power combiner/divider circuit. The proposed circuits are shown to enable future 5G connections, operating in a mm-wave spectrum range (spanning 9GHz, from 57GHz to 66GHz), with a data-rate of several Gb/s in a short-range scenario, spanning from few centimeters to tens of meters

    Utilization of wireless networks in energy production systems of critical infrastructure

    Get PDF
    Langaton tiedonsiirtoteknologia on eri muodoissaan olennainen osa nykyaikaista yhteiskuntaa. Langattomuuden tarjoamat edut ovat tuoneet nämä teknologiat myös osaksi teollisuusympäristöä esimerkiksi erilaisten langattomien anturiverkkojen (WSN, wireless sensor network) muodossa. Anturiverkkojen lisäksi langatonta tiedonsiirtoa voi olla mahdollista hyödyntää tarjoamaan helppo pääsy kentältä teollisuuslaitosta ohjaaviin järjestelmiin käyttäen WLAN (Wireless Local Area Network)-tekniikkaa. Tässä työssä on tavoitteena selvittää, kuinka langatonta tiedonsiirtoa voitaisiin hyödyntää huoltovarmuuskriittisessä voimalaitosympäristössä ja minkälaisia vaatimuksia kyseinen ympäristö asettaa tekniikalle. Oleellisimmat vaatimukset liittyvät tiedonsiirron tekniseen toimivuuteen, langattomien järjestelmien tietoturvallisuuteen sekä käytettävyyteen. Työssä perehdytään ensin hieman IEEE 802.11- ja IEEE 802.15.4-standardeihin pohjautuvien verkkojen toimintaan ja selvitetään mitä mahdollisia etuja ja ongelmia langattomat verkot voivat tuoda voimalaitoskäyttöön. Lisäksi esitellään muutamia mahdollisia sovelluksia langattomille verkoille perustuen edellä mainittuihin standardeihin. Työn puitteissa tehdään myös mittauksia voimalaitosympäristössä käyttäen WLAN-laitteita. Näillä mittauksilla on tarkoitus selvittää tiedonsiirron toimivuus haastavassa ympäristössä sekä 2,4GHz- että 5GHz-taajuusalueilla. Mittausten perusteella pyritään selvittämään, onko langaton tiedonsiirto ylipäätään teknisesti hyödynnettävissä voimalaitoksella.Different types of wireless networks are an integral part of life in a modern society. The potential benefits of wireless communication have brought these technologies to the industrial environment for example in the form of wireless sensor networks (WSNs). A WLAN (Wireless Local Area Network)-connection could also be used to provide a wireless connection to industrial control systems from the field. The goal of this thesis is to identify possible uses for wireless networks in a power plant that is part of the nation’s critical infrastructure. The aim is also to identify any special requirements that this environment might pose for the utilization of wireless networks, technical or otherwise. The most important requirements are associated with the technical reliability of wireless data transfer, security and usability. This thesis takes a look at the IEEE 802.11 and IEEE 802.15.4 standards and the possible benefits and problems associated with utilization of wireless networks. Also some possible applications for wireless networks based on these standards are presented. Measurements in the field are also conducted using WLAN-devices on the 2,4GHz and 5GHz-bands. The aim of these measurements is test the functioning of wireless data transfer in a challenging environment and to determine overall feasibility of using wireless networks in a power plant environment
    corecore