175 research outputs found

    The paradigm-shift of social spambots: Evidence, theories, and tools for the arms race

    Full text link
    Recent studies in social media spam and automation provide anecdotal argumentation of the rise of a new generation of spambots, so-called social spambots. Here, for the first time, we extensively study this novel phenomenon on Twitter and we provide quantitative evidence that a paradigm-shift exists in spambot design. First, we measure current Twitter's capabilities of detecting the new social spambots. Later, we assess the human performance in discriminating between genuine accounts, social spambots, and traditional spambots. Then, we benchmark several state-of-the-art techniques proposed by the academic literature. Results show that neither Twitter, nor humans, nor cutting-edge applications are currently capable of accurately detecting the new social spambots. Our results call for new approaches capable of turning the tide in the fight against this raising phenomenon. We conclude by reviewing the latest literature on spambots detection and we highlight an emerging common research trend based on the analysis of collective behaviors. Insights derived from both our extensive experimental campaign and survey shed light on the most promising directions of research and lay the foundations for the arms race against the novel social spambots. Finally, to foster research on this novel phenomenon, we make publicly available to the scientific community all the datasets used in this study.Comment: To appear in Proc. 26th WWW, 2017, Companion Volume (Web Science Track, Perth, Australia, 3-7 April, 2017

    Search Rank Fraud De-Anonymization in Online Systems

    Full text link
    We introduce the fraud de-anonymization problem, that goes beyond fraud detection, to unmask the human masterminds responsible for posting search rank fraud in online systems. We collect and study search rank fraud data from Upwork, and survey the capabilities and behaviors of 58 search rank fraudsters recruited from 6 crowdsourcing sites. We propose Dolos, a fraud de-anonymization system that leverages traits and behaviors extracted from these studies, to attribute detected fraud to crowdsourcing site fraudsters, thus to real identities and bank accounts. We introduce MCDense, a min-cut dense component detection algorithm to uncover groups of user accounts controlled by different fraudsters, and leverage stylometry and deep learning to attribute them to crowdsourcing site profiles. Dolos correctly identified the owners of 95% of fraudster-controlled communities, and uncovered fraudsters who promoted as many as 97.5% of fraud apps we collected from Google Play. When evaluated on 13,087 apps (820,760 reviews), which we monitored over more than 6 months, Dolos identified 1,056 apps with suspicious reviewer groups. We report orthogonal evidence of their fraud, including fraud duplicates and fraud re-posts.Comment: The 29Th ACM Conference on Hypertext and Social Media, July 201

    Detecting collusive spamming activities in community question answering

    Get PDF
    Community Question Answering (CQA) portals provide rich sources of information on a variety of topics. However, the authenticity and quality of questions and answers (Q&As) has proven hard to control. In a troubling direction, the widespread growth of crowdsourcing websites has created a large-scale, potentially difficult-to-detect workforce to manipulate malicious contents in CQA. The crowd workers who join the same crowdsourcing task about promotion campaigns in CQA collusively manipulate deceptive Q&As for promoting a target (product or service). The collusive spamming group can fully control the sentiment of the target. How to utilize the structure and the attributes for detecting manipulated Q&As? How to detect the collusive group and leverage the group information for the detection task? To shed light on these research questions, we propose a unified framework to tackle the challenge of detecting collusive spamming activities of CQA. First, we interpret the questions and answers in CQA as two independent networks. Second, we detect collusive question groups and answer groups from these two networks respectively by measuring the similarity of the contents posted within a short duration. Third, using attributes (individual-level and group-level) and correlations (user-based and content-based), we proposed a combined factor graph model to detect deceptive Q&As simultaneously by combining two independent factor graphs. With a large-scale practical data set, we find that the proposed framework can detect deceptive contents at early stage, and outperforms a number of competitive baselines

    Minimizing efforts in validating crowd answers

    Get PDF
    In recent years, crowdsourcing has become essential in a wide range of Web applications. One of the biggest challenges of crowdsourcing is the quality of crowd answers as workers have wide-ranging levels of expertise and the worker community may contain faulty workers. Although various techniques for quality control have been proposed, a post-processing phase in which crowd answers are validated is still required. Validation is typically conducted by experts, whose availability is limited and who incur high costs. Therefore, we develop a probabilistic model that helps to identify the most beneficial validation questions in terms of both, improvement of result correctness and detection of faulty workers. Our approach allows us to guide the experts work by collecting input on the most problematic cases, thereby achieving a set of high quality answers even if the expert does not validate the complete answer set. Our comprehensive evaluation using both real-world and synthetic datasets demonstrates that our techniques save up to 50% of expert efforts compared to baseline methods when striving for perfect result correctness. In absolute terms, for most cases, we achieve close to perfect correctness after expert input has been sought for only 20% of the questions

    The Dark Side of Micro-Task Marketplaces: Characterizing Fiverr and Automatically Detecting Crowdturfing

    Full text link
    As human computation on crowdsourcing systems has become popular and powerful for performing tasks, malicious users have started misusing these systems by posting malicious tasks, propagating manipulated contents, and targeting popular web services such as online social networks and search engines. Recently, these malicious users moved to Fiverr, a fast-growing micro-task marketplace, where workers can post crowdturfing tasks (i.e., astroturfing campaigns run by crowd workers) and malicious customers can purchase those tasks for only $5. In this paper, we present a comprehensive analysis of Fiverr. First, we identify the most popular types of crowdturfing tasks found in this marketplace and conduct case studies for these crowdturfing tasks. Then, we build crowdturfing task detection classifiers to filter these tasks and prevent them from becoming active in the marketplace. Our experimental results show that the proposed classification approach effectively detects crowdturfing tasks, achieving 97.35% accuracy. Finally, we analyze the real world impact of crowdturfing tasks by purchasing active Fiverr tasks and quantifying their impact on a target site. As part of this analysis, we show that current security systems inadequately detect crowdsourced manipulation, which confirms the necessity of our proposed crowdturfing task detection approach

    Empirical Methodology for Crowdsourcing Ground Truth

    Full text link
    The process of gathering ground truth data through human annotation is a major bottleneck in the use of information extraction methods for populating the Semantic Web. Crowdsourcing-based approaches are gaining popularity in the attempt to solve the issues related to volume of data and lack of annotators. Typically these practices use inter-annotator agreement as a measure of quality. However, in many domains, such as event detection, there is ambiguity in the data, as well as a multitude of perspectives of the information examples. We present an empirically derived methodology for efficiently gathering of ground truth data in a diverse set of use cases covering a variety of domains and annotation tasks. Central to our approach is the use of CrowdTruth metrics that capture inter-annotator disagreement. We show that measuring disagreement is essential for acquiring a high quality ground truth. We achieve this by comparing the quality of the data aggregated with CrowdTruth metrics with majority vote, over a set of diverse crowdsourcing tasks: Medical Relation Extraction, Twitter Event Identification, News Event Extraction and Sound Interpretation. We also show that an increased number of crowd workers leads to growth and stabilization in the quality of annotations, going against the usual practice of employing a small number of annotators.Comment: in publication at the Semantic Web Journa

    Crowdsourcing with Sparsely Interacting Workers

    Full text link
    We consider estimation of worker skills from worker-task interaction data (with unknown labels) for the single-coin crowd-sourcing binary classification model in symmetric noise. We define the (worker) interaction graph whose nodes are workers and an edge between two nodes indicates whether or not the two workers participated in a common task. We show that skills are asymptotically identifiable if and only if an appropriate limiting version of the interaction graph is irreducible and has odd-cycles. We then formulate a weighted rank-one optimization problem to estimate skills based on observations on an irreducible, aperiodic interaction graph. We propose a gradient descent scheme and show that for such interaction graphs estimates converge asymptotically to the global minimum. We characterize noise robustness of the gradient scheme in terms of spectral properties of signless Laplacians of the interaction graph. We then demonstrate that a plug-in estimator based on the estimated skills achieves state-of-art performance on a number of real-world datasets. Our results have implications for rank-one matrix completion problem in that gradient descent can provably recover W×WW \times W rank-one matrices based on W+1W+1 off-diagonal observations of a connected graph with a single odd-cycle
    corecore