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ABSTRACT 
Community Question Answering (CQA) portals provide rich 
sources of information on a variety of topics. However, the au-
thenticity and quality of questions and answers (Q&As) has prov-
en hard to control. In a troubling direction, the widespread growth 
of crowdsourcing websites has created a large-scale, potentially 
difficult-to-detect workforce to manipulate malicious contents in 
CQA. The crowd workers who join the same crowdsourcing task 
about promotion campaigns in CQA collusively manipulate de-
ceptive Q&As for promoting a target (product or service). The 
collusive spamming group can fully control the sentiment of the 
target. How to utilize the structure and the attributes for detecting 
manipulated Q&As? How to detect the collusive group and lever-
age the group information for the detection task? 
   To shed light on these research questions, we propose a unified 
framework to tackle the challenge of detecting collusive spam-
ming activities of CQA. First, we interpret the questions and an-
swers in CQA as two independent networks. Second, we detect 
collusive question groups and answer groups from these two net-
works respectively by measuring the similarity of the contents 
posted within a short duration. Third, using attributes (individual-
level and group-level) and correlations (user-based and content-
based), we proposed a combined factor graph model to detect 
deceptive Q&As simultaneously by combining two independent 
factor graphs. With a large-scale practical data set, we find that 
the proposed framework can detect deceptive contents at early 
stage, and outperforms a number of competitive baselines.  

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval—Information filtering 

Keywords 
Community Question Answering; Crowdsourcing Manipulation; 
Spam Detection; Factor Graph. 

1.   INTRODUCTION 
Community question answering (CQA) portals, such as Yahoo! 

Answers, have become a popular platform for people to share 
their knowledge and learn from each other [30]. These Web sites 
have attracted a great number of users, and have accumulated a 
large amount of user-generated contents (i.e., questions and an-
swers or Q&As). To seek advice or enrich knowledge, Internet 
users can find answers provided for previously asked questions in 
response to new queries. Because CQA has great influence on 
users’ cognitions and judgments [24], tremendous malicious users 

try to manipulate contents to mislead common users, which makes 
the CQA environment less credible. Several previous research 
works focus on evaluating the quality of answers or question-
answer (QA) pairs [1, 2, 14, 24], or identifying and removing 
manipulated contents from the archived Q&A resources [5, 15].  

Nowadays, with the wide usage of crowdsourcing systems, 
massive organized manipulated contents pollute the CQA plat-
forms. As shown in Figure 1, to gain economic benefits, malicious 
commercial campaign owners release tasks on crowd-sourcing 
platforms (e.g., Amazon Mechanical Turk). As we can see in one 
of real-world CQA promotion campaigns, the CQA crowd-
sourcing promotion task includes detailed descriptions and guide-
lines that the crowd workers (CWers) need to follow. The task 
requester only approves those submissions that meet the task de-
scription. Almost all these tasks provide task templates for work-
ers to refer to, which contain keywords (marked in red color) such 
as product name and domain-specific word.  

             

 
Figure 1: Collusive Spamming Activities on CQA Platforms. 

After accepting those promotion campaign crowd-sourcing 
tasks, the crowd workers then accomplish those campaigns 
through posting malicious questions and using deceptive answers 
to respond the questions collaboratively. In this scenario, both 
questions and answers are polluted systematically. To avoid being 
identified, a CWer may create multiple accounts to make sure that 
one account will not answer his/her own question, and he/she 
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reorganizes Q&As to make them superficially dissimilar. These 
collusive manipulated contents exert full control over the opinions 
of the commercial campaigns, which may be more detrimental 
than the common deceptive Q&As.   

In this paper, we aim to detect the above-described collusive 
spamming activities in CQA in a very early stage. Rather than 
blocking certain spamming accounts, we focus on effectively 
detecting deceptive Q&As in a timely fashion. This is due to the 
fact that on average a crowd worker creates about 90 CQA ac-
counts to manipulate Q&As (see the statistical analysis in Sec.3.2) 
and the spammers can be only detected after they post many spam 
contents [10]. 

Compared to prior works, many challenges arise regarding this 
problem: (1) (Annotation Difficulty) Considering the fact that 
CQA spamming is usually a collaborative activity, it is difficult to 
ascertain which contents are deceptive and which ones are legiti-
mate; (2) (Asymmetric Q&A Attributes) In CQA, the questions 
and answers are asymmetric with different attributes and linguistic 
structures, which are different from deceptive product reviews [9, 
10, 23] or promotional microblog posts [13] that can be analyzed 
uniformly; (3) (Unclear Group Base) Previous works group the 
spamming activities that review multiple common products in the  
review platforms [19, 28, 29] and post common URLs or contents 
in the microblog environments [4]. However, in CQA, there are 
not any clear existing connections that can group Q&As, because 
CWers can generate unlimited distinct questions, and the decep-
tive answers can respond to any of them. This makes deceptive 
contents in CQA more flexible; (4) (Obscure Signals) Compared 
to traditional spam bots that leave identifiable attributes [11, 12], 
these human-powered deceptive contents in CQA are inherently 
distinct and lack any easily identifiable signals [7]; (5) (Early 
Detection) Detecting the fast-growing crowd-sourcing deceptive 
contents at an early phase can reduce the damage of them, but it is 
challenging due to the very limited information in the timely de-
tection tasks. 

To tackle these issues, we propose to exploit the crowdsourcing 
tasks (promotion campaigns) to form the ground truth dataset. We 
regard questions and answers as two heterogeneous and independ-
ent networks while the asymmetric Q&A attributes therefore can 
be analyzed and utilized respectively. The submitted Q&As for a 
task are collusively posted to achieve a promotion campaign. 
Since they share the common theme (i.e., same keywords and 
domain information as shown at the bottom half of Figure 1), we 
consider the questions and answers extracted from the submis-
sions of a task as the ground truth collusive (deceptive) question 
group and collusive answer group respectively (as top half of 
Figure 1 shows).  

We then detect cooperative groups from two graphs (question 
and answer) that are built based on the common theme of their 
contents. Distinctive attributes (group-level) are extracted from 
the detected groups of the graphs. By integrating individual-level 
attributes and correlations (content-based and user-based), we 
construct question and answer factor graphs respectively. Finally, 
a combined factor graph model is proposed by combining the two 
factor graphs to detect collusive Q&As. Through extensive exper-
imental comparisons with competitive baselines, we empirically 
show that our framework is robust, effective and capable of de-
tecting collusive contents early.  

This work is the first to analyze the group spamming activities 
in CQA, and apply group attributes to detect deceptive Q&As. 

Our contributions are four-folds: 

l   Through locating CQA commercial tasks in crowdsourcing 
platforms, we create a CQA collusive spamming data set that 

contains deceptive Q&As and collusive group information, 
which is publicly available.1  

l   We provide comprehensive analysis of deceptive and normal 
Q&As in CQA on both their individual and group attributes.  

l   We propose a group detection framework that can facilitate 
extracting identifiable collusive (group-level) attributes.   

l   We propose a novel detection framework that can effectively 
detect deceptive contents at the early stage. 

2.   RELATED WORK 
Prior work on social spam detection can be categorized into two 

groups: individual spam detection and collusive spam detection.  
Individual spam detection. The problem of opinion spam (i.e., 

deceptive review) detection has been extensively studied on the 
individual level. For example, Jindal and Liu [9] first study the 
opinion spam problem by analyzing Amazon data and detecting 
individual fake reviews. They identify three types of spam, and 
detect them by using supervised learning with manually labeled 
training examples. Feng et al. [8] regard the opinion spam as a 
distributional anomaly. They find a connection between distribu-
tional anomalies and the time windows when spam reviews are 
posted. In [22], the authors create a gold-standard fake review 
dataset through Amazon Mechanical Turk and use n-gram and 
POS tag features to train a classifier to detect them. Besides spam 
review detection, the problem of review spammer detection has 
also been widely studied in [28, 16, 23].  These research studies 
identify several features related to rating behaviors and model 
these features so as to detect the spam reviewers. However, those 
works can be only applied in the review systems. 

With respect to spam detection approaches on CQA platforms, 
most of the previous works focus on estimating the quality of 
answers or QA pairs. The authors of [24] present a study to evalu-
ate and predict the quality of an answer in a CQA setting based on 
logistic regression model using extracted features from questions, 
answers, and the users who posted them. In [14], the authors esti-
mate question quality with a mutual reinforcement-based label 
propagation algorithm. Besides, Chen et al. [5] study the phenom-
enon of malicious commercial campaigns by analyzing more con-
text information rather than textual similarities only. They devel-
op a system that automatically analyzes the hidden patterns of 
commercial spam and raises alarms instantaneously to end users 
whenever a potential commercial campaign is detected. Li et al. 
[15] focus on promotion channels (URLs, telephone numbers and 
and social media accounts) which are relied by spammers to con-
nect users to achieve promotion goals. A propagation algorithm is 
proposed to detect possible spamming activities at individual level.  

Collusive spam detection. Compared to individual detection 
problem, collusive detection receives less attention. Mukherjee et 
al. [19] are among the first to study group level spammers in re-
view communities and propose a novel relation-based approach to 
detect spammer groups. Although many group behavior indicators 
are extracted and analyzed, they only aim to detect spam groups 
but not individual spammer or review content. Xu et al. [28] focus 
on collusive review spammer detection by combining individual 
and collusive indicators to detect colluders. In [7], the authors use 
a Conditional Random Field model to cluster reviewers. They 
embed the results of this probabilistic model into a classification 
framework directly for detecting crowd-manipulated reviews ra-
ther than extracting attributes from detected groups. Besides, col-
lusive activities are also common in the Microblogging environ-

                                                                    
1 http://www.thuir.cn/group/~YQLiu/ 



ment. Cao et al. [4] find that embedding individual-based behav-
ioral signals in URL posting activities can uncover groups whose 
members engage in similar behaviors while group-level behavior-
al signals can distinguish between organic and organized user 
groups.  

Most of the collusive spam detection efforts focus on the 
spamming activities in product review sites based on the clear 
review-product relations. As mentioned, collusive spamming ac-
tivities on CQA platforms might be more flexible and more chal-
lenging to be detected. In addition, although prior work exists on 
detecting individual or group spamming activities in product re-
view sites and uncovering commercial campaigns (deceptive 
questions or answers) at individual level, little is known about 
how colluders disseminate deceptive Q&As and how to effective-
ly detect the crowdsourcing manipulated contents on CQA plat-
forms. Therefore, in this work, we focus on studying the more 
challenging CQA collusive spam detection problem and incorpo-
rate the group attributes to simultaneously detect deceptive ques-
tions and answers. 

3.   DATA COLLECTION AND ANALYSIS 
In this section, we focus on collecting and analyzing deceptive 

contents in CQA. We aim to collect the data in order to generate a 
publicly available test set that can enable us to provide insights 
and evaluate our algorithms. 

3.1 Data Collection 
    Our collected data consists of two parts: the collusive spam-
ming dataset and the ordinary dataset. 

3.1.1   Collusive Spamming Dataset 
In several popular crowdsourcing platforms, such as Zhuba-

jie.com and RapidWorkers.com, the crowd workers who partici-
pate in a CQA promotion task are required to submit the promo-
tion CQA URLs to indicate that they have accomplished the task. 
This provides a chance for us to acquire ground truth of deceptive 
Q&As. To collect this data, we first locate the CQA promotion 
tasks in the crowdsourcing platforms using manual searching and 
filtering (using the key words such as CQA and promotion) of the 
search results. All the product or service names that the tasks aim 
to promote are manually extracted, which are clearly mentioned in 
the requirement descriptions (see Fig.1). Through this way, we 
obtain 2,625 tasks that contain about 40K promotion CQA URLs.  

Based on these URLs, we crawl all the Q&As in the corre-
sponding pages in CQA, and obtain 40K gold deceptive questions 
(+Qs). Usually, to increase the visibility of the promotion answers, 
the tasks require asker to adopt the promotion answer as the best 
answer. Therefore we deem the best answer of a malicious ques-
tion as a deceptive answer (+A) because this is adopted by a de-
ceptive user for collusive spamming purpose. In addition to the 
best answers, about 24K other answers are also collected. Since 
normal users may also answer the deceptive questions, we consid-
er these non-best answers as candidate deceptive answers (+A*s) 
rather than simply treating them as deceptive ones. A normal an-
swer is unlikely to mention a promoted product name because 
most of these products are not popular and of low quality, there-
fore we label a candidate answer as deceptive, if it contains any 
promoted product names. By this means, we obtain another 21K 
deceptive answers. This result shows that only a few normal an-
swers (3K, 12.5%) respond to deceptive questions. 

As mentioned in related work, spam activities can be investi-
gated at different levels. It is relatively easier to define individual 
abnormal activities than collusive activities. In the review plat-
forms, the products can be used to connect reviewers or reviews to 

help cluster groups [19]. Such connection may not exist in CQA, 
because the Q&As are not organized according to specific targets 
(i.e., no product items in practical CQA). However, the submitted 
Q&As of the same crowdsourcing task share the common theme 
[7] and they are collusively posted to achieve a promotion cam-
paign (mentioned above). Therefore, since the promotion tasks are 
definite in our collected dataset, the deceptive questions (+Qs) and 
deceptive answers (+As) can be clustered into the corresponding 
groups (two types) clearly according to the crowd-sourcing tasks 
(i.e. the promotion campaign) they belong to. So besides decep-
tive Q&As, the spamming dataset also contains the ground-truth 
deceptive question groups (+QGs) and deceptive answer groups 
(+AGs).  

3.1.2   Ordinary Dataset 
For comparison, we construct an ordinary Q&A dataset by ran-

domly collecting Q&As from the CQA platforms. Using the 
method of manual annotation to sample normal Q&As is not ap-
plicable due to the fact: (i) it is difficult for judges to ascertain 
which contents are deceptive and which ones are legitimate with-
out any preliminary knowledge (e.g. the promotion campaign 
information from the crowdsourcing sites); and (ii) for compre-
hensive analysis, a large number (tens of thousands) of Q&As 
need to be labeled which is time consuming and labor intensive.  

In CQA platforms, such as Yahoo! Answers or Baidu Zhidao, 
each question has a hashed unique numeric ID (i.e., qid) according 
to the posted time (the number of digits in qid is different in differ-
ent periods) and the URL of the corresponding question page is 
bonded with the ID. Inspired by this fact, the ordinary dataset is 
collected through: (i) we obtain the unlabeled qid set Uq = {qid 	  ∈ 
N+|Cqi – 5 ≤ qid ≤ Cqi +5, qid ≠ Cqi, Cqi ∈Cq}, where Cq repre-
sents the set of +Qs’ ID. (ii) we crawl all the questions whose IDs 
are in the set Uq but not in Cq and all their answers which are not 
in +As. 

The ordinary dataset is collected in this way because: (i) we 
want to ensure that the unlabeled questions are selected relatively 
randomly. Since a +Q can be posted at any time, the correspond-
ing ordinary Q&As can be considered randomly selected; (ii) we 
want most of the unlabeled questions ordinary. Most the contents 
in CQA are ordinary [15], so few of the randomly crawled Q&As 
are malicious; (iii) we want to try our best to simulate a practical 
CQA spam detection task scenario, in which the algorithm has to 
separate spams from normal contents that are generated within a 
same time period. Since the IDs are generated according to the 
time stamps (not in chronological order due to they are hashed), 
we can ensure that the contents in the ordinary dataset are gener-
ated within the similar time periods as the deceptive ones. 

To verify that most contents in the ordinary dataset are not re-
lated with spamming activities, we randomly select 500 questions 
with their 896 answers for manual verification. With the instruc-
tion of sampled deceptive Q&As (i.e., preliminary knowledge), 
assessors can better annotate Q&As. After annotation, five out of 
the 896 answers (less than 0.6%) are labeled by a group of three 
assessors as deceptive, and no question is labeled as deceptive. 
This result shows that the ordinary dataset can be treated as nor-
mal Q&As, and the negligible promotion ones in them have min-
imal impact on the experimental results. 

3.2   Statistics of Collusive Activities  
Table 1 shows the statistics of combined two datasets as de-

scribed above. There are 66K users in collusive spamming dataset 
and 470K users in ordinary dataset. Besides, according to the 
number of crowdsourcing tasks (i.e. 2.6K promotion campaigns), 
we obtain the same number of +QG and +AG. The number of the 



ordinary questions is nearly 10 times as many as the deceptive 
ones, which is reasonable because we believe that most contents 
on CQA are legitimate ones.  

In Table 2, we provide detailed statistics with respect to the col-
lusive spamming crowd-sourced workers. CWer / Group means 
the average number of crowd worker (CWer) in a group (i.e. pro-
motion campaign). As Content / CWer and User / CWer show, on 
average, each CWer creates about 90 CQA accounts and posts 55 
questions in CQA. A crowd worker can create up to 11K CQA 
accounts to pollute the CQA platforms. This means that CWers 
cause severe damage to CQA and detecting spam accounts direct-
ly is not effective, because even if we block them, the CWer can 
continue registering new accounts. As CWer×Group shows, each 
CWer joins in about 10 tasks (promotion campaigns) on average. 
This implies that to gain more profits a CWer may post many 
spam contents to promote commercial targets in different tasks. 

3.3   Individual Attributes Analysis  
Based on the collected dataset, we can make comparative anal-

ysis on individual attributes between deceptive and ordinary 
Q&As. Table 3 depicts the comparisons between the proportions 
of deceptive and normal Q&As containing the corresponding 
attributes. As we can observe, fewer (about 18%) deceptive con-
tents (+Qs and +As) are posted by the anonymous users than the 
normal ones (about 30%). Deceptive questions are more inclined 
to be responded by deceptive answers. In fact, more than half of 
+Qs have only one answer and most of them are solved (i.e., have 
best answer), while the corresponding percentages of -Qs are 
lower. Compared to the normal questions, fewer +Qs give awards 
for answers and fewer of them have descriptions (detailed infor-
mation for the question title), but more of them are posted with 
tags. Compared to -As, more deceptive answers are alone (i.e., no 
other answers for the same question) and more of them are select-
ed as the best answers. Besides, more +As are the first answer of 
their questions and almost no +As receive comments. A small 
fraction of +As are also posted by masters (high-level answerers 
identified by CQA platforms).   

We hypothesize that the sentiment between deceptive contents 
and normal contents are different. To verify that, given a question 
or an answer, we calculate its scores distributions on 7 different 
sentiments such as “dislike”, “like” and “neutral”, the higher the 
score, the stronger the corresponding sentiment [21]. We present 
the sentiments that with the highest score (Top1) and the second-
highest score (Top2) from each content. As table 4 shows, the 
largest proportion of Top1 sentiment is “like” in +Q (36%) and 
+A (50%), but in -Q and -A, they are “dislike” (23%) and “like” 
(29%) respectively. For Top2 sentiments, although all types of 
contents present “neutral” sentiment, the proportions show differ-
ences. These results show that most deceptive questions tend to 
disclose “like” sentiment other than “dislike”, and more +As pre-
fer “like” sentiment than -As.  

Figure 2 further shows the comparisons of individual-level at-
tributes between deceptive contents and normal ones, in terms of 
title length, content length and QA time interval (time interval 

between a answer and its question). As Figure 2(a) indicates, 
about 50% of +Qs’ title length is in the range of 10 to 20, but 40% 
in -Qs. From Figure 2(b), we observe that deceptive answers’ 
length tends to shorter than the normal answers. Besides, +As’ QA 
time intervals are usually longer than that of -As (shown in Figure 
2(c)), due to the QA time interval request in task description.  

From the above analysis, it is clear that the types and ranges of 
individual attributes between Qs and As are asymmetric (different). 
Besides, we can find that there are certain differences between 
deceptive contents and normal ones. Based on solely these indi-
vidual attributes, we construct our combined factor graph model 
to detect deceptive questions and answers. However, this model 
does not perform well empirically (as shown in Table 9, Sec.6). 
This indicates that the individual-level attributes are not sufficient 
for collusive spamming activities detection, since each human-
generated deceptive content is inherently distinct and collusive 
activities is more deceptive. Generally, collusive manipulated 
Q&As may share identifiable synergic attributes inevitably, such 
as the common theme (promotion campaign) and the same key-
words. Therefore, capturing and inferring collusive (group-level) 
attributes might be important, which can be achieved by detecting 
group distributions in Q&As (Sec.4).  

4.   GROUP DETECTION AND ANALYSIS 
To analyze the collusive spamming activities in CQA, the first 

major step is proposing an effective group detection method. In 
this section, we describe a group detection method (GDM) to fa-
cilitate clustering questions and answers respectively. Through 
detected groups, we want to analyze the collusive spamming ac-
tivities and extract identifiable attributes from them. For simplici-
ty, if more than half of the questions in a question group detected 
by GDM are deceptive, we consider it a detected deceptive ques-
tion group (+DQG). If not, we regard it as a detected normal ques-

Table 1: Statistics of the datasets. The prefix of plus sign (+) 
means deceptive, and the minus sign (-) means normal. 

+User -User CWer +Q -Q +A -A +QG +AG 
66K 470K 725 40K 397K 61K 689K 2.6K 2.6K 

Table 2: Statistics about crowd worker.  

 Max Mean Min 
CWer / Group 19 2.7 2 

Question / CWer 7,381 55.5 1 
User / CWer 11,303 90.5 2 

CWer × Group 650 9.8 1 

Table 3: Comparisons of individual-level attributes. 

Question Attributes +Q -Q Answer Attributes +A -A 
Anonymous 0.18 0.29 Anonymous 0.19 0.25 

Only one answer 0.54 0.29 Alone  0.36 0.05 
No answers 0.02 0.21 Master posted 0.12 0.35 

Solved 0.91 0.32 Best  0.58 0.20 
With tags 0.56 0.05 First posted 0.41 0.16 

Has awards 0.03 0.29 Has comment 0.07 0.22 
Has descriptions 0.08 0.41 - - - 

Table 4: Statistics about the sentiment of Q&As. 

 +Q -Q +A -A 
Top1 0.36 (like)  0.23 (disgust) 0.50 (like) 0.29 (like) 
Top2  0.8 (neutral) 0.57 (neutral)  0.79 (neutral)  0.78 (neutral) 
 

 
(a)                           (b)                               (c) 

Figure 2: Comparisons of individual attribute distributions. 



tion group (-DQG). Similarly, the detected deceptive answer 
group (+DAG) and the detected normal answer group (-DAG) can 
be obtained.  

4.1   Group Detection Method 
As described above, both question and answer groups need to 

be detected, so we build two independent undirected graphs: ques-
tion graph GQ = (VQ, EQ) and answer graph GA = (VA, EA), where 
VQ is a set of |VQ| = M questions and VA is a set of |VA| = N answers, 
EQ and EA are edge sets of question-question and answer-answer 
relationships. The major difficulty in constructing the graph is 
how to determine the edges between any two vertexes (i.e., two 
question in GQ or two answers in GA), because there are massive 
number of contents and any two of them are relative independent. 
To tackle this, we create a criterion for determining the edges, 
using question graph GQ construction as an example, the neighbor 
set N(Qi) of question Qi in GQ is obtained as follows: 

 

The Q j belongs to a question set W(Qi) in which all the ques-
tions are posted in a time window after the post time of Qi. The 
task (promotion campaign) in the crowdsourcing platforms has 
deadline for submissions (as shown in Figure 1). Because we want 
the deceptive contents of a task to be allocated into a group, the 
time restriction need to be take into account. If the time span be-
tween two questions is too long, then it is not necessary to calcu-
late their relationship because they are less likely to belong to the 
same task. The time window conforms to the time restriction, and 
it simplifies the calculation because for a question Qi, we only 
need to estimate the edges between Qi and others in W(Qi).  

To estimate the connection strength, we use the topic probabili-
ties calculated by the topic model LDA [3] to represent the theme 
distributions of each question. After trying several parameter set-
tings, we found that using 20 topics is a reasonable setting consid-
ering both efficiency and effectiveness. Therefore, each content is 
represented by a vector set in 20-dimensional space. The question 
topic vectors V(Qi) and V(Qj) represent the topic distributions of 
question Qi and Qj. Besides, to promote a commercial target, the 
deceptive questions in a task are very likely to contain the same 
words (the keywords). To catch this, we calculate the tf-idf value 
of each word in a question at first. Then, we loop through each 
word in Qi one by one and obtain the common words which is 
also contained in Qj. Finally, we sum the corresponding tf-idf 
values of the common words. I(Qi) and I(Qj) denotes the sum of 
all the common words’ tf-idf values in Qi and Qj respectively. L(Qi) 
and L(Qj) is the length of Qi and Qj in terms of word count. The 
parameters α and β denote the weight of theme similarity and 
word similarity respectively and α +β = 1.  

Similarly, we can estimate the edges between answers and build 
answer graph GA. After getting these two graphs, we use a high-
quality smart local moving (SLM) algorithm for large-scale 
modularity-based community detection [26] to detect QG and AG 
respectively, which has been proved effective and efficient in a 
diverse set of graphs even for very large networks. A popular 
approach to community detection is based on the idea of optimiz-
ing a modularity function which is an NP-hard problem. Many 
different heuristic algorithms have been proposed for modularity 
optimization [32]. SLM algorithm relies on a well-known local 
moving heuristic in a more sophisticated way, and it therefore 
produces more accurate results.  

Communities detected by the algorithm are clusters of closely 
connected nodes within a network. Please be noted that not all 
groups are deceptive ones since normal users may also ask similar 
questions simply due to common interests. 

4.2   Group Detection Performance 
In the following section, we analyze the relative importance of 

the theme similarity and word similarity by corresponding results. 
We also evaluate another method for answer group detection, 
which does not need to construct GA, but cluster answers accord-
ing to their corresponding questions’ group information.  

By comparing the ground truth group distributions and decep-
tive contents’ detected group distributions, we can quantitatively 
evaluate GDM. We use Rand Index (RI), a well-known metric for 
evaluating the quality of clustering when the ground truth is 
known, which has a value between 0 and 1, with 0 indicating that 
the two data clusters do not agree on any pair of points and 1 indi-
cating that the data clusters are exactly the same. Due to the lack 
of normal contents’ ground truth group information, we cannot 
evaluate GDM’s performance for detecting normal groups directly. 
If the proposed GDM perform well on deceptive group detection, 
then to a certain degree, it shows acceptable ability on CQA con-
tents clustering.  
    We perform GDM many times by giving θ different values and 
find that the group detection performance is the best when θ = 
0.48. Table 5 presents the RI results of GDM with θ = 0.48 and 
different α values. In general, our algorithm performs well 
(RI >0.9). When α is 1, namely, only using theme similarity to 
estimate edges, the results are the worst. As α grows, the value of 
RI increases firstly and then decreases. When α = 0.4 for +Qs’ 
group detection and α = 0.2 for +As’, the detected group distribu-

N Qi( )= Qj α
V Qi( )⋅V Qj( )
V Qi( ) ⋅ V Qj( ) +β

I Qi( )+ I Qj( )
L Qi( )+L Qj( ) >θ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Table 5: Rand Index results of our group detection approach.  
α +Q +A +A# 

0.8 0.959 0.957 0.951 
0.6 0.970 0.961 0.964 
0.4 0.981 0.973 0.970 
0.2 0.978 0.989 0.963 
0 0.972 0.976 0.956 

Table 6: Statistics of detected group. 

DQG DAG +DQG +DAG 
120K 91K 2.2K 1.6K 

Table 7: Analysis about ground truth deceptive groups and 
detected deceptive groups. 

 +QG +DQG +AG +DAG 
Max Mean Min Max Mean Min Max Mean Min Max Mean Min 

User 316 11.5 1 131 12.4 1 397 20.2 1 466 22.7 1 
Con 471 15.4 1 199 15.6 2 491 24.6 2 498 26.0 1 
Time 92 3.2 1.5 110 4.5 1.1 104 3.4 0.1 153 4.6 0.9 

Table 8: Group-level attributes comparisons. 

 +QG +DQG -DQG +AG +DAG -DAG 
# +C / Group 1.00 0.97 0.04 1.00 0.97 0.07 
# -C / Group 0.00 0.03 0.96 0.00 0.03 0.93 
# +U / Group 1.00 0.98 0.24 1.00 0.97 0.22 
# -U / Group 0.00 0.02 0.76 0.00 0.03 0.78 

# QAer / Group 0.008 0.006 0.15 0.007 0.003 0.10 
# QA-Time 0.51 0.44 0.12 0.47 0.47 0.11 

# Best / Group 0.91 0.89 0.33 0.66 0.70 0.25 
 

 

(1) 



tions of +Qs and +As are most consistent with the ground truth 
+QG and +AG. This indicates that both theme and word similarity 
are useful for estimating the edges, and the weight of word simi-
larity is higher. Overall, using GDM to obtain the answers’ group 
information is better than the method that follows question group 
detection results to cluster answers directly (as shown in +A#). 
This is because that, the question’s length is usually shorter than 
answer’s (as Figure 2(a) and 2(b) show), therefore, the similarity 
between questions are harder to be measured than answers. If a 
question is clustered to a wrong group, all its answers will also be 
wrongly allocated. 

As the RI results show, we select α = 0.4 (i.e., β = 0.6) and α = 
0.2 to facilitate question graph and answer graph constructing 
respectively. Performing GDM on the graphs, we obtain 120K 
detected question groups (DQG) and 91K answer groups (DAG) 
in total. If a group contains more deceptive contents than normal 
ones, we deem it as deceptive group. Through this way, we obtain 
2.2K detected deceptive question group (+DQG) and 1.4K detect-
ed deceptive answer group (+DAG), which is shown in Table 6. 

Table 7 presents the statistical analysis about the ground-truth 
deceptive groups and the detected deceptive groups. As it shows, 
each +QG contains about 12 users on average, which is close to 
that of +DQG. The average number of users in +AG and +DAG 
are both about 20. The maximum of users in deceptive answer 
group is about 400. In +QG and +DQG, the number of contents 
(Con) in per group is about 15, which is less than the correspond-
ing number in +AG and +DAG. There is no limit to the size of a 
group of GDM, therefore the minimum size (i.e., content count) is 
1. The mean time spans (Time) of +QG and +AG are both 3 days. 
Therefore, in GDM mentioned above, we set the time window to 
be 3 days to conform the time restriction. In detected group 
+DQG and +DAG, the mean time span is longer. This is because 
two contents with relatively long time interval may be connected 
through intermediate contents. The statistics information between 
ground truth groups and corresponding detected groups are similar, 
which further illustrates that the detected deceptive contents’ 
group distributions are reasonable.  

4.3   Group Attributes Analysis 
As mentioned, it is important to extract distinctive attributes for 

identifying deceptive contents from CQA. We start with a com-
parison analysis on group-level attributes. In Table 8, we can see 
that in question and answer group comparisons, all the attributes 
between ground truth groups (+QG and +AG) and detected decep-
tive groups (+DQG and +DAG) are similar, which means that the 
attributes extracted from detected deceptive groups are consistent 
to the ground truth groups. On the other hand, the differences of 
group-level attributes between the detected normal groups (-DQG 
and -DAG) and deceptive ones are significantly different. This 
implies that we can use the detected groups to extract identifiable 
attributes to help detecting deceptive contents.  

If a CQA user posts any deceptive contents (Q&As), we deem 
it as a deceptive user (+U); on the other hand, it is a normal user 
(-U). Similarly, +C denotes deceptive content and -C is the oppo-
site. Besides, if a user is related to two questions in a QG, that is, 
posts one and answers another one, we call it a QAer. And if a 
user gives an answer in a AG, meanwhile, posts another answer’s 
question, it is a QAer too. The QA-Time means a group’s similari-
ty degree on the time interval between a question and its answer. 
For Qs, the Best means solved questions (i.e., has the best answer), 
and for As, it denotes the best answers. 
    As we can see in Table 8, in deceptive groups, on average, the 
ratios of +C and +U are close to 1, and the corresponding ratios of 

-C and -U are near to 0. However, for normal question and an-
swer groups, the corresponding ratios are completely reversed. 
Because all the contents in ground truth groups are deceptive, the 
positive user and content ratios are 1. The mean ratios of QAer in 
the normal groups are higher than the positive groups, to evade 
being detected, a CWer avoids repeating an account in a task (i.e., 
rarely post both Q and A in a task).  

Given a content (Q or A), we can obtain its QA time interval 
according the posted time of its corresponding A or Q. Therefore, 
each group can calculate a QA-Time by ))1(×(×2 -CCt numnumnum , 
where tnum represents the number of similar intervals that the dif-
ference between two contents’ QA time intervals is less than 2 
hours, and Cnum is a group’s size. The deceptive groups have high-
er QA-Time than the normal ones, because the deceptive contents 
in a group are organized and regular. As mentioned in Sec.3.2.1, 
most of +Qs select a +A as the best answer. Therefore deceptive 
groups have higher ratios of “Best” contents.  

If a task’s submissions are clustered into the same group by our 
proposed GDM algorithm, but the group also contains many nor-
mal contents, the identifiable attributes may not be extracted due 
to the mix of different types of contents. The comparison analysis 
of attributes in Table 8 shows that GDM can aggregate deceptive 
contents corresponding to the ground truth groups, and also sepa-
rate normal ones from them to a large degree. As our statistics 
demonstrate, almost 79% +Qs and 67% +As are in +DQG and 
+DAG, which means that most of deceptive contents are clustered 
together while few normal ones are included, i.e., deceptive con-
tents and normal ones are separated. It is important to exploit 
them as crucial group attributes for detecting deceptive contents. 
As shown empirically in Sec.6, incorporating detected group at-
tributes can dramatically improve the deceptive Q&A detection. 

5.   DECEPTIVE Q&A DETECTION 
In this section, we propose a framework of deceptive Q&A de-

tection, exploiting the individual (Sec.3.3) and the detected group 
(Sec.4.3) Q&A attributes. The target of our framework is to dis-
tinguish deceptive and normal Q&As, which means that we want 
to infer the label set YQ for VQ and the label set YA for VA. There 
are two options to build our model: 1) regarding GQ and GA as two 
independent graphs, and proposing two independent factor graph 
models FGMQ and FGMA for YQ and YA inferring respectively; 2) 
utilizing the naturally existing interactions between two graphs to 
integrate them as a unified graph G = (V, E), where V represents 
all the Q&As and E is a set of EQ, EA and question-answer edges. 
Based on the integrated graph G, we can propose a combined 
factor graph model CFGM to uniformly infer the entire label set Y 
for V. The combined model CFGM is able to incorporate different 
attributes and correlations. For any models, we first sample a part 
of nodes as training set and the remaining as test set, then the 
corresponding model infers each of the remaining node’s proba-
bility distributions of being deceptive or normal. Our goal is to 
train a supervised classification model. 

5.1   Independent Factor Graph 
Take FGMQ for example, which only uses the attributes and 

correlations in graph GQ. Figure 3 shows the graphical representa-
tion. The set of question nodes VQ ={Q1, Q2, . . . , QM} in GQ is 
mapped to a factor node set YQ = { Qy1 , Qy2 , . . . , Q

My } in question 
factor graph FGQ. Using the known factor set in training set, 
FGMQ infers whether an unknown node is spam or non-spam.  

For each question’s label node Q
iy , we combine the individual-

level attributes into attributes vector Q
is and Q

ig for group-level 
attributes vector. In addition to attributes, we define the correla-



tions (structural factor) in GQ to bridge the factor node in FGQ. 
Corresponding to the attributes and correlations, we define the 
following three factors:  

l   Individual-level attribute factor: )|( Q
i

Q
is yf s is the probability 

of generating the individual-level attribute vector Q
is in GQ  

given the label of factor node Q
iy . 

l   Group-level attribute factor: given the factor node Q
iy , 

)|( Q
i

Q
ig yf g represents the probability of generating the group-

level attributes that are extracted from the question group 
which the question Qi belongs.  

l   Correlation factor: g(yi
Q,C(yi

Q ))  denotes the correlations be-
tween Qs, where )( Q

iyC  is the set of correlated Qs to Q
iy . 

For confirming the correlated questions set, we have two basic 
intuitions. First, any two questions in the same group may have a 
correlation. As analyzed in Sec.4.2, two questions in a group are 
likely have the same label. Second, the questions posted by the 
same user may have a correlation. The spammers and spam con-
tents have strong connections, since the spammers tend to perform 
spamming activities [27]. Therefore, if a question Qj in the same 
QG or posted by the same user with Qi, we add Qj into )( Q

iyC . 
Given question network GQ, the objective of our model is to 

maximize the formation probability of the questions in the net-
work, i.e., 𝑃 𝑌+ 𝐺+  which is factorized as: 

 
Given answer graph GA, the FGMA model can also be repre-

sented like Figure 3. Similarly, we can define the joint distribution 
P(YA|GA) over the answer factor node set YA, which is also factor-
ized into two types of attributes factors (individual-level and 
group-level) and correlation factors to bridge the answers.  

5.2   Combined Factor Graph Model 
Given the probability of P(YQ|GQ) and P(YA|GA), the conditional 

distribution over the combined graph G is factorized as: 

                    

                    

where Y represents the set of factor nodes that mapped from all 
the Q&As in G. The attributes of questions and answers can both 
be divided into two levels: individual and group. However, the 
graph GQ and GA are asymmetric as analyzed in Sec.3, therefore 
the type and number of feature factors are different between the 

two graphs. In the combined factor graph model CFGM, all the 
factor nodes can be treated uniformly [6].  

There exist many naturally relations between GQ and GA, which 
can be used by the combined model CFGM. Besides the correla-
tions in GQ and GA mentioned above, we consider other two corre-
lations between QA based on the following intuitions. First, the 
deceptive questions are usually answered by deceptive answers as 
described in Sec.3. Second, spammers tend to post spam questions 
and answers. Therefore, if yi represents a question Qi in G, the 
answers of Qi and other answers posted by the same user who 
submit Qi will be added into C(yi). 

5.3   Model Learning and Inference 
The learning and inferring process of different models are the 

same due to they are all based on the factor graph model. In this 
section, we take CFGM for example to describe how to learn and 
infer our model. The factors in Eq. (3) can be instantiated in dif-
ferent ways. In this work, we use exponential-linear functions. 
Thus, the attribute factors of CFGM can be defined as 

 

 

where χ and δ is a weighting vector, Φ and Θ is a vector of feature 
functions. Similarly, we define the correlation factor as 

 

where Ψ can be defined as a vector of indicator functions. 
The parameters to be estimated are θ = (χ, δ, λ). We learn the 

parameters through maximizing the logarithm of the likelihood 
function P(Y |G, θ). For presentation simplicity, we concatenate all 
factor functions in Eqs. (4), (5), and (6) for a content node yi  as  

. 

The joint probability defined in Eq. 3 can be rewritten as 

               

 

where 𝑍 = 𝑍/𝑍0𝑍1 is a normalization factor, h is the aggregation 
of factor functions over all Q&A nodes. Based on this equation, 
the log-likelihood objective function can be written as: 

 

To solve the log-likelihood function, we adopt a gradient de-
scent algorithm (or Newton-Raphson algorithm) [25]. The gradi-
ents for each θ are derived as: 
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Figure 3: Graphical representation of the FGMQ model. 
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where the first term is the expectation of factor function h given 
the known data distribution of the combined network (YL repre-
sents the sampled labeled Q&As), and the second term represents 
the expectation of factor function under the distribution Pθ (Y |G) 
learned by the model. 

It is intractable to directly calculate the marginal probability in 
the second term of Eq. (10). In this work, we use loopy belief 
propagation (LBP) [20] to approximate the gradients based on the 
following process. First, perform LBP to calculate corresponding 
marginal distributions. Second, update each parameter to maxim-
ize the objective function. The learning process performs the LBP 
algorithm twice in each iteration, one is for estimating the mar-
ginal distribution of unknown variables and the other for marginal 
distribution over all cliques [25]. Finally, each parameter is updat-
ed with the learning rate h: 

 
After we obtain the learned parameters θ = (χ, δ, λ), we infer 

the factor node labels YT in test set. All the nodes in test set are 
assigned with labels that can maximize the marginal probabilities 
with the estimated parameters: 

 
We again utilize the LBP algorithm to compute the marginal 
probability of each content node P(yi|YL, G) and then predict the 
type of a node as the label with largest marginal probability. The 
marginal probability is then taken as the prediction confidence. 

6.   EXPERIMENTS 
In this section, we present the experiments to evaluate the ef-

fectiveness of our proposed approach using our collected test set.  

6.1   Experimental Setup 
Seven types of group-level attributes and ten types of individu-

al-level attributes are considered as the feature factors in our mod-
el. All of the attributes are described in Sec.3 and Sec.4. In addi-
tion, we categorize all the correlations mentioned above into two 
types: 1) content-based: two contents in the same group or having 
the QA relations (i.e., one answer responds another question) will 
be connected; 2) user-based: if two contents are posted by the 
same user, then they should be correlated.  

We randomly select 10% of deceptive Q&As (i.e., only about 
4K +Qs and 6K +As) as the training set for +Q and +A detection 
and the remaining as test set. In experiments, we evaluate the 
performance of deceptive question and answer detection respec-
tively, rather than treating detected deceptive questions’ corre-
sponding answers as deceptive. We cannot regard +Qs’ answers 
as positive directly. As our datasets show, not all the candidate 
deceptive answers are deceptive, because +Qs may attract normal 
users to answer them (as Sec.3.1 describes). By treating +Q and 
+A as two separate detection tasks, we can evaluate the proposed 
model comprehensively and also show its scalability. 

6.2   Baseline Approaches 
We compare our proposed approach with the following meth-

ods for detecting deceptive contents in CQA:  
Baseline1 (B1) [21]: We adapt the content-based features de-

scribed in the approach that utilizes lexical patterns and part-of-
speech patterns to effectively identify deceptive messages in the 
Microblogs environment by Bayes classifier. We think this ap-
proach can also be applied in the CQA platforms, due to the de-
tected contents are both deceptive. 

Baseline2 (B2) [15]: It proposes a propagation algorithm to dif-
fuse promotion intents on an “answerer-channel” bipartite graph 
and detect possible spamming activities in CQA. Most of the 
promotion channels such as URLs, telephone numbers and social 
media accounts have been disabled in CQA. Therefore, we only 
take the idea of label propagation algorithm to build a “content-
user” bipartite graph based on the common assumption that spam 
users tend to post spam contents [27, 17]. In the “content-user” 
bipartite, the questions and answer are treated uniformly and there 
is an unweighted edge between a content (question or answer) and 
its poster (asker or answerer). The sampled deceptive contents are 
used as the labeled seed to drive the algorithm. 

Baseline3 (B3) [14]: To distinguish high-quality questions from 
low-quality ones, it uses the question-related and asker-related 
features to construct graphs and train the classifiers. Question-
related features are extracted from question text including subject 
and content; asker-related features come from askers’ profiles. We 
deem the low-quality questions as deceptive questions. 

Baseline4 (B4) [5]: To detect commercial answers in CQA, it 
applies logistic regression as the learning method by integrating 
semantic analysis, posters’ track records, and the special features 
of CQA websites .  

Baseline5 (B5) [24]: It extracts several features from the ques-
tions, the answers, and the users who provided them to address the 
challenge of evaluating answer quality. Based on the extracted 
QA features, logistic regression model is used for predicting the 
quality of an answer. We hypothesize the extracted features can 
also facilitate the deceptive answer detection. 

CFGM-G: Comparing to CFGM, it only removes the group-
level attributes, which is constructed to illustrates the necessity of 
group detection. 

CFGM-GS: It uses the proposed combined factor graph model, 
but the group-level attributes and individual sentiments attributes 
are not integrated in it. Through this method, we want to analyze t 
whether there is difference between legitimate Q&As and decep-
tive ones. 

CFGM-U: To show whether user-based correlations is useful 
for our model, the user-based correlations (mentioned in Sec.6.1) 
are not used in this approach compared to CFGM. 

θnew =θold +η ⋅
Ο θ( )
θ

Y * = argmax
Y YL
P Y G( )

   
(a)                                 (b)                               (c) 

Figure 4: Evaluation of CFGM (AUC) with respect to different 
training set sizes, detection deadline and time periods. 

Table 9: Comparisons between our methods and baselines. 

 Question Detection  Answer Detection 
Method Pre Rec F-m AUC Method Pre Rec F-m AUC 

CFGM-GS 0.76 0.84 0.80 0.83 CFGM-GS 0.71 0.86 0.78 0.80 
CFGM-G 0.76 0.86 0.81 0.85 CFGM-G 0.73 0.86 0.79 0.84 
CFGM-U 0.81 0.90 0.85 0.91 CFGM-U 0.76 0.91 0.83 0.89 

FGMQ 0.79 0.87 0.83 0.84 FGMA 0.74 0.86 0.80 0.85 
CFGM 0.85 0.91 0.88 0.95 CFGM 0.78 0.92 0.84 0.90 

B1 0.63 0.60 0.61 0.65 B1 0.68 0.65 0.67 0.69 
B2 0.76 0.85 0.80 0.87 B2 0.74 0.75 0.74 0.81 
B3 0.78 0.85 0.81 0.79 B4 0.70 0.71 0.70 0.73 
- - - - - B5 0.79 0.82 0.80 0.86 

 

(11) 

 (12) 



The approaches of B1 and B2 can either detect deceptive ques-
tions or deceptive answers. The B3 are compared with the perfor-
mance of our model’s deceptive question detection, and B4 and 
B5 are used for deceptive answer detection. All the methods men-
tioned in this paper use the same training and test set. 

6.3   Experimental Results 
6.3.1   Classification Performance 

Table 9 shows the performance of deceptive question and an-
swer detection with different methods on four metrics: Precision 
(Pre), Recall (Rec), F-measure (F-m) and AUC. 

As we can see, the B1 baseline achieves the worst performance, 
which means that using content-based features only is not effec-
tive in deceptive content detection. Baseline B2 uses the mutual 
reinforcement-based relations between spammers and spam con-
tents, and obtains relatively good results (better than B1) both on 
+Q and +A detection. This indicates that the assumption of “spam 
users tend to post spam contents” is reasonable. However, due to 
the insufficient information (only user-content relations are used), 
it cannot achieve better performance than the methods that with 
more representative attributes, such as B3 and B5. Although B4 
baseline aims at detecting deceptive answers in CQA (same with 
our goal), it does not perform well. This may be because it is un-
suitable to detect the collusive spamming contents. Besides, the 
performance of B3 and B5 are not as well as our method. That 
implies that evaluating CQA content’s quality cannot be applied 
in deceptive content detection directly.  

Besides, comparing CFGM-GS and CFGM-G, we can find that 
the individual sentiment attributes are helpful but the performance 
difference is marginal. As the comparisons of CFGM-G and 
CFGM demonstrate, the performance improvements given the 
exploitation of group-level attributes are noteworthy both on +Q 
and +A detection. By comparing CFGM-U and CFGM, we find 
that removing user-based correlations will decrease the perfor-
mance to some extent. The combined model CFGM performs 
better than the independent models FGMQ and FGMA, because it 
integrates more sufficient correlations such as the QA relations 
and the relations between the Qs and As that are posted by the 
same user.  

As the above results indicate, our independent models can ef-
fectively detect +Q and +A respectively, which means that the 
proposed model has strong applicability. To further evaluate the 
sensitivity of our framework to the training data, we vary the size 
of the training set from 2% deceptive contents to 20%, and track 
the corresponding classification results (AUC). As Figure 4(a) 
shows, not surprisingly, as the size of training set increases, the 
detection performance tends to rise in the beginning, but then 
stabilize at around 14%. This indicates that CFGM is effective in 
deceptive content detection and even only hundreds of training 
data can aid the algorithm to gain promising performance. 

6.3.2   Early Detection 
As mentioned, detecting deceptive contents at the very early 

phase is crucial to ensure the user experience of CQA. We con-
duct two types of early detection evaluation: 1) Early deceptive 
question detection, according to the average time span of QA in 
our dataset, we make ten deadlines in chronological order. Given 
a detection deadline, all the information after the deadline is invis-
ible during the test stage [31]. We select the contents that in the 10% 
training set and before the deadline as the new training set, and all 
the others are treated as test set. 2) We aim to utilize the early 
known deceptive contents (Q&As) to detect the subsequent un-
known deceptive contents (+Qs and +As). In some cases, there are 
only some relatively old labeled data. We aim to validate whether 

our method can predict new coming contents’ labels based on the 
old training set. To do this, we set another ten deadlines according 
to the timeline of all our dataset. Each deadline has a digital 
marker, the smaller of the marker, the earlier of it. We regard the 
Q&As after a deadline as new unknown contents, and the others 
are old ones. Given a deadline, we select 10% of the contents that 
before it as the training set. 
    Figure 4(b) presents different methods’ results of first type of 
early detection, the earlier of the deadline, the less information are 
used. It exhibits that with deadline delaying, the performances on 
+Q detection gets better, even at the earliest deadline the AUC 
value is acceptable (e.g. AUC of 0.8 within 12 hours). Besides, 
our method outperforms other baselines at any early stage. Figure 
4(c) shows our method’s performance on the second type of early 
detection. As it exhibits, in the first half of the figure, with the 
deadline time node growing, the AUC of both +Q and +A detec-
tion increases in a fast manner. In the other half, the growth slows 
a bit and tends to stabilize. Our method also performs better than 
other baselines whose results have been omitted; due to the lack 
of space, the small figure cannot exhibits them well. All these 
results demonstrate that our proposed approach can achieve early 
detection effectively. 

7.   CONCLUSIONS 
In this paper, we study the problem of the crowdsourcing ma-

nipulated content (i.e., collusive deceptive content) detection. To 
tackle this problem, we define the group in CQA platforms ac-
cording to the crowdsourcing tasks (promotion campaigns). The 
question and answer graphs are built respectively according to 
contents’ theme similarity and word similarity. Based on the two 
graphs, we detect question and answer groups respectively, and 
find that our proposed group detection method can effectively 
detect groups and extract corresponding group attributes. 

Given various extracted attributes (individual-level and group-
level) and correlations (content-based and user-based), we pro-
pose a combined factor graph model (CFGM) to learn to infer 
whether a question or an answer is deceptive. An efficient algo-
rithm is proposed to learn model parameters and to infer the labels 
of unknown contents. Experimental results on a real-world dataset 
validate the effectiveness of the proposed model. The CFGM can 
achieve reasonable performance of detecting deceptive contents, 
even with very small size of training set. Besides, the proposed 
model performs effectively on two levels of early detection, which 
can inhibit the broadcast of deceptive information timely. 

Detecting the collusive deceptive contents facilitates CQA to be 
more credible and effective, and represents a new research direc-
tion in CQA spam content detection. As future work, it is interest-
ing to study how to define another concept of collusive groups 
and study the collusive behaviors on the other level. Besides, it is 
also interesting to apply our model on the other platforms such as 
Microblogs and online review websites, which have also been 
polluted by the malicious crowd workers. 
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