2 research outputs found

    Machine Intelligence for Advanced Medical Data Analysis: Manifold Learning Approach

    Get PDF
    In the current work, linear and non-linear manifold learning techniques, specifically Principle Component Analysis (PCA) and Laplacian Eigenmaps, are studied in detail. Their applications in medical image and shape analysis are investigated. In the first contribution, a manifold learning-based multi-modal image registration technique is developed, which results in a unified intensity system through intensity transformation between the reference and sensed images. The transformation eliminates intensity variations in multi-modal medical scans and hence facilitates employing well-studied mono-modal registration techniques. The method can be used for registering multi-modal images with full and partial data. Next, a manifold learning-based scale invariant global shape descriptor is introduced. The proposed descriptor benefits from the capability of Laplacian Eigenmap in dealing with high dimensional data by introducing an exponential weighting scheme. It eliminates the limitations tied to the well-known cotangent weighting scheme, namely dependency on triangular mesh representation and high intra-class quality of 3D models. In the end, a novel descriptive model for diagnostic classification of pulmonary nodules is presented. The descriptive model benefits from structural differences between benign and malignant nodules for automatic and accurate prediction of a candidate nodule. It extracts concise and discriminative features automatically from the 3D surface structure of a nodule using spectral features studied in the previous work combined with a point cloud-based deep learning network. Extensive experiments have been conducted and have shown that the proposed algorithms based on manifold learning outperform several state-of-the-art methods. Advanced computational techniques with a combination of manifold learning and deep networks can play a vital role in effective healthcare delivery by providing a framework for several fundamental tasks in image and shape processing, namely, registration, classification, and detection of features of interest

    A Spatial Risk Prediction Model for Drug Overdose

    Get PDF
    Drug overdose is a leading cause of unintentional death in the United States and has contributed significantly to a decline in life expectancy from 2015 to 2018. Overdose deaths, especially from opioids, have also been recognized in recent years as a significant public health issue. To address this public health problem, this study sought to identify neighborhood-level (e.g., block group) factors associated with drug overdose and develop a spatial model using machine learning (ML) algorithms to predict the likelihood or risk of drug overdoses across South Carolina. This study included block group level socio-demographic factors and drug use variables which may influence the incidence of drug overdose. In particular, this study developed a new index of access to measure spatial access to treatment facilities and incorporated these variables to assess the relationship between drug overdose and accessibility to the treatment centers. We explored different ML algorithms (e.g., XGBoost, Random Forest) to identify optimum predictors in each category. The categories were combined into a final ensemble predictive model that addressed spatial dependency. An evaluation was conducted to validate that the final model generalized well across the different datasets and geographical areas. Results of the study identified strong neighborhood-level predictors of a drug overdose, pinpointing the most critical neighborhood-level factor(s) that place a community at risk and protect communities from developing such problems. These factors included proportion of households receiving food stamps, households with income less than $35,000, high opioid prescription rates, smoking accessories expenditures, and low accessibility to opioid treatment programs and hospitals. The generalized error of spatial models did not increase considerably in spatial cross-validation compared to the error estimated from normal cross-validation. Our model also outperformed the geographic weighted regression method. Our Results show that variables regarding socio-demographic factors, drug use variables, and protective resources can assist in spatial drug overdose prediction. Our finding highlights several specific pathways toward community-level intervention targeted to a vulnerable population facing potentially high burdens of drug abuse and overdose
    corecore