550 research outputs found

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Skipping-based handover algorithm for video distribution over ultra-dense VANET

    Get PDF
    Next-generation networks will pave the way for video distribution over vehicular Networks (VANETs), which will be composed of ultra-dense heterogeneous radio networks by considering existing communication infrastructures to achieve higher spectral efficiency and spectrum reuse rates. However, the increased number of cells makes mobility management schemes a challenging task for 5G VANET, since vehicles frequently switch among different networks, leading to unnecessary handovers, higher overhead, and ping-pong effect. In this sense, an inefficient handover algorithm delivers videos with poor Quality of Experience (QoE), caused by frequent and ping-pong handover that leads to high packets/video frames losses. In this article, we introduce a multi-criteria skipping-based handover algorithm for video distribution over ultra-dense 5G VANET, called Skip-HoVe. It considers a skipping mechanism coupled with mobility prediction, Quality of Service (QoS)- and QoE-aware decision, meaning the handovers are made more reliable and less frequently. Simulation results show the efficiency of Skip-HoVe to deliver videos with Mean Opinion Score (MOS) 30% better compared to state-of-the-art algorithms while maintaining a ping-pong rate around 2%.publishe

    Survey on QoE/QoS Correlation Models for Video Streaming over Vehicular Ad-hoc Networks

    Get PDF
    Vehicular Ad-hoc Networks (VANETs) are a new emerging technology which has attracted enormous interest over the last few years. It enables vehicles to communicate with each other and with roadside infrastructures for many applications. One of the promising applications is multimedia services for traffic safety or infotainment. The video service requires a good quality to satisfy the end-user known as the Quality of Experience (QoE). Several models have been suggested in the literature to measure or predict this metric. In this paper, we present an overview of interesting researches, which propose QoE models for video streaming over VANETs. The limits and deficiencies of these models are identified, which shed light on the challenges and real problems to overcome in the future
    corecore