8,582 research outputs found

    Analysis of the Application of Artificial Intelligence in Computer Network Technology

    Get PDF
    The application of artificial intelligence (AI) technology in computer network technology is becoming increasingly extensive and in-depth. This paper analyzes the application of artificial intelligence in network security, network management, Internet of Things, edge computing and network services in detail. In network management, AI technology realizes network traffic optimization, automatic configuration and fault prediction, and improves the efficiency of network management. In the field of Internet of Things, AI technology helps manage and analyze a large amount of device data, supporting the development of smart homes and smart cities. In edge computing, AI technology enhances the data processing capabilities of edge nodes and reduces latency. In network services, artificial intelligence technology optimizes routing, voice recognition and personalized recommendation services. However, the application of artificial intelligence in network technology also faces challenges such as data privacy, computing resources and laws and regulations. This paper aims to provide a comprehensive reference for industry insiders to promote the application and development of artificial intelligence technology in computer networks

    SUTMS - Unified Threat Management Framework for Home Networks

    Get PDF
    Home networks were initially designed for web browsing and non-business critical applications. As infrastructure improved, internet broadband costs decreased, and home internet usage transferred to e-commerce and business-critical applications. Today’s home computers host personnel identifiable information and financial data and act as a bridge to corporate networks via remote access technologies like VPN. The expansion of remote work and the transition to cloud computing have broadened the attack surface for potential threats. Home networks have become the extension of critical networks and services, hackers can get access to corporate data by compromising devices attacked to broad- band routers. All these challenges depict the importance of home-based Unified Threat Management (UTM) systems. There is a need of unified threat management framework that is developed specifically for home and small networks to address emerging security challenges. In this research, the proposed Smart Unified Threat Management (SUTMS) framework serves as a comprehensive solution for implementing home network security, incorporating firewall, anti-bot, intrusion detection, and anomaly detection engines into a unified system. SUTMS is able to provide 99.99% accuracy with 56.83% memory improvements. IPS stands out as the most resource-intensive UTM service, SUTMS successfully reduces the performance overhead of IDS by integrating it with the flow detection mod- ule. The artifact employs flow analysis to identify network anomalies and categorizes encrypted traffic according to its abnormalities. SUTMS can be scaled by introducing optional functions, i.e., routing and smart logging (utilizing Apriori algorithms). The research also tackles one of the limitations identified by SUTMS through the introduction of a second artifact called Secure Centralized Management System (SCMS). SCMS is a lightweight asset management platform with built-in security intelligence that can seamlessly integrate with a cloud for real-time updates

    A Survey of Using Machine Learning in IoT Security and the Challenges Faced by Researchers

    Get PDF
    The Internet of Things (IoT) has become more popular in the last 15 years as it has significantly improved and gained control in multiple fields. We are nowadays surrounded by billions of IoT devices that directly integrate with our lives, some of them are at the center of our homes, and others control sensitive data such as military fields, healthcare, and datacenters, among others. This popularity makes factories and companies compete to produce and develop many types of those devices without caring about how secure they are. On the other hand, IoT is considered a good insecure environment for cyber thefts. Machine Learning (ML) and Deep Learning (DL) also gained more importance in the last 15 years; they achieved success in the networking security field too. IoT has some similar security requirements such as traditional networks, but with some differences according to its characteristics, some specific security features, and environmental limitations, some differences are made such as low energy resources, limited computational capability, and small memory. These limitations inspire some researchers to search for the perfect and lightweight security ways which strike a balance between performance and security. This survey provides a comprehensive discussion about using machine learning and deep learning in IoT devices within the last five years. It also lists the challenges faced by each model and algorithm. In addition, this survey shows some of the current solutions and other future directions and suggestions. It also focuses on the research that took the IoT environment limitations into consideration
    corecore