6 research outputs found

    Reducing branch delay to zero in pipelined processors

    Get PDF
    A mechanism to reduce the cost of branches in pipelined processors is described and evaluated. It is based on the use of multiple prefetch, early computation of the target address, delayed branch, and parallel execution of branches. The implementation of this mechanism using a branch target instruction memory is described. An analytical model of the performance of this implementation makes it possible to measure the efficiency of the mechanism with a very low computational cost. The model is used to determine the size of cache lines that maximizes the processor performance, to compare the performance of the mechanism with that of other schemes, and to analyze the performance of the mechanism with two alternative cache organizations.Peer ReviewedPostprint (published version

    Machine organization of the IBM RISC System/6000 processor

    No full text

    Fault tolerance issues in nanoelectronics

    Get PDF
    The astonishing success story of microelectronics cannot go on indefinitely. In fact, once devices reach the few-atom scale (nanoelectronics), transient quantum effects are expected to impair their behaviour. Fault tolerant techniques will then be required. The aim of this thesis is to investigate the problem of transient errors in nanoelectronic devices. Transient error rates for a selection of nanoelectronic gates, based upon quantum cellular automata and single electron devices, in which the electrostatic interaction between electrons is used to create Boolean circuits, are estimated. On the bases of such results, various fault tolerant solutions are proposed, for both logic and memory nanochips. As for logic chips, traditional techniques are found to be unsuitable. A new technique, in which the voting approach of triple modular redundancy (TMR) is extended by cascading TMR units composed of nanogate clusters, is proposed and generalised to other voting approaches. For memory chips, an error correcting code approach is found to be suitable. Various codes are considered and a lookup table approach is proposed for encoding and decoding. We are then able to give estimations for the redundancy level to be provided on nanochips, so as to make their mean time between failures acceptable. It is found that, for logic chips, space redundancies up to a few tens are required, if mean times between failures have to be of the order of a few years. Space redundancy can also be traded for time redundancy. As for memory chips, mean times between failures of the order of a few years are found to imply both space and time redundancies of the order of ten

    An automated OpenCL FPGA compilation framework targeting a configurable, VLIW chip multiprocessor

    Get PDF
    Modern system-on-chips augment their baseline CPU with coprocessors and accelerators to increase overall computational capacity and power efficiency, and thus have evolved into heterogeneous systems. Several languages have been developed to enable this paradigm shift, including CUDA and OpenCL. This thesis discusses a unified compilation environment to enable heterogeneous system design through the use of OpenCL and a customised VLIW chip multiprocessor (CMP) architecture, known as the LE1. An LLVM compilation framework was researched and a prototype developed to enable the execution of OpenCL applications on the LE1 CPU. The framework fully automates the compilation flow and supports work-item coalescing to better utilise the CPU cores and alleviate the effects of thread divergence. This thesis discusses in detail both the software stack and target hardware architecture and evaluates the scalability of the proposed framework on a highly precise cycle-accurate simulator. This is achieved through the execution of 12 benchmarks across 240 different machine configurations, as well as further results utilising an incomplete development branch of the compiler. It is shown that the problems generally scale well with the LE1 architecture, up to eight cores, when the memory system becomes a serious bottleneck. Results demonstrate superlinear performance on certain benchmarks (x9 for the bitonic sort benchmark with 8 dual-issue cores) with further improvements from compiler optimisations (x14 for bitonic with the same configuration

    QProf--a scalable profiler for the Q back end

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.Includes bibliographical references (leaves 129-130).by Greg McLaren.M.Eng
    corecore