
IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 3. MARCH 1993 363

Reducing Branch Delay to Zero in Pipelined Processors

Antonio M. Gonzalez and Jose M. Llaberia

Abstract-A mechanism to reduce the cost of branches in pipelined
processors is described and evaluated. It is based on the use of multiple
prefetch, early computation of the target address, delayed branch, and
parallel execution of branches. The implementation of this mechanism
using a Branch Target Instruction Memory is described. An analytical
model of the performance of this implementation is presented, which
allows us to measure the efficiency of the mechanism with a very low
computational cost. The model is used to determine the size of cache lines
that maximizes the processor performance, to compare the performance
of the mechanism with other schemes, and to analyze the performance of
the mechanism with two alternative cache organizations.

Index Terms-Branch instructions, branch target instruction memory,
computer architecture, instruction cache memory, instruction dependen-
cies, performance evaluation, pipelined processors.

I. INTRODUCTION
Pipelining is a technique frequently used in the design of processors

in order to increase their performance by executing several instruc-
tions simultaneously. However, the efficiency brought by pipelining
may be significantly reduced by hazards caused by instruction depen-
dencies. Those due to branches, also known as control dependencies,
may have a severe impact on the processor performance since these
instructions account for a high percentage of executed instructions.

The present work focuses on the design and evaluation of mech-
anisms for reducing the negative effect due to hazards produced by
branch instructions in pipelined processors. We present and evaluate a
mechanism called COBRA (Cost Optimization of BRAnches) which
eliminates most of the hazards caused by branches and allows the
processor to execute branches in parallel with the rest of instructions.
In this way, the cost of most branches can be reduced to zero. To
evaluate the performance of this mechanism, a mathematical model
of COBRA is developed and used to tune the design.

The rest of this paper is organized as follows. Section I1 is a
review of previous work on reducing the cost of branches. Section 111
describes the COBRA mechanism. A mathematical model of COBRA
is presented in Section IV. Section V discusses the performance of
COBRA and compares it with other schemes.

11. REDUCING THE COST OF BRANCHES
Several mechanisms have been proposed in the literature in order

to reduce the cost of branches [14], [15]. They make use of either
one or several of the five techniques described briefly below.

u) Deluyed brunch. A delayed branch with length equal to n is
a branch instruction that takes effect after the execution of the n
instructions below it. The compiler is responsible for benefiting from
this mechanism because it is in charge of finding the instructions that
must be scheduled in the n delay slots. Among others, the mechanism
is used by the MIPS R3000 [16].

If the processor is provided with the possibility of nullifying the
execution of the instructions in the delay slots, the number of delay

Manuscript received June 15, 1990; revised March 15, 1992. This work was
supported in part by the Comision Interministerial de Ciencia y Technologia
(CICYT) under grant TIC89/0300.

The authors are with the Department of Computer Architecture, Universitat
PolitCcnica de Catalunya, Barcelona, Spain.

IEEE Log Number 9202843.

slots that can be profitably used increases. This mechanism is called
delayed brunch with squashing. This is the case of the SPARC [4].

b) Early execution of branches. Hazards caused by a branch can be
reduced by executing some of its operations in advance. For example,
the Motorola 68040 [3] has an additional adder to compute the target
address as soon as a branch is fetched.

c) Brunch prediction. Another way of advancing the possible result
of a branch is to predict it. As an example we could mention the
Intel 8096CLNext Generation [ll]. In this processor, each branch
instruction includes a bit that is used by the compiler to predict the
most likely result of the branch.

d) Multiple prefetch. It is based on prefetching after each branch
some of the instructions at the beginning of each possible path. In
this way, when the result of the branch is known, the fetch stage has
been already performed, regardless of the taken path. This technique
is implemented in the Intel i486 [2].

e) Parallel execution of brunches. The preceding techniques try to
reduce the negative effect caused by control dependencies. A greater
increase in performance can be achieved if the execution of branches
is completely overlapped with the execution of the rest of instructions.
This is the case of the IBM RS/6000 [9].

In many processors we find that several techniques from those types
listed above are combined in order to build a particular mechanism
to reduce the cost of branches. This is the case of the COBRA
mechanism.

111. COBRA MECHANISM
In this section we present the COBRA mechanism. It was devised

for pipelined processors with any number of stages and with condition
codes. A preliminary study of the COBRA mechanism was presented
in [7], [8], and [6].

The COBRA mechanism combines several techniques to allow the
processor to execute branches in parallel with the rest of instructions.
These techniques are: Early computation of the target address, mul-
tiple prefetch, delayed branch and parallel execution of branches. At
the time COBRA was f i s t proposed [7], what was novel about it in
relation to other mechanisms was the approach used to implement the
parallel execution of branches, which is based on early computation of
the target address and prefetching the two paths of branches. Besides,
it was the first mechanism (as far as we know) that combined all
these four types of techniques in order to reduce the branch cost to
zero. After that, a few recent commercial processor such as the IBM
RS/6000 [9], implement also a mechanism based on the combination
of these four types of techniques The same concept has different
implementations that lead to different performance levels, so, the
other contribution of COBRA is the way it is implemented. COBRA
can be implemented using either a conventional instruction cache or
a branch target instruction memory (both terms are defined later). We
show in this paper that the implementation using the latter memory
organization has a better performance in terms of cost-effectiveness.

To explain the functioning of COBRA, we distinguish two main
units in the processor: the Instruction Unit (IU), which is respon-
sible for fetching and sequencing instructions, and the Execution
Unit (EU), which executes only data manipulation instructions (all
instructions except control transfer instructions). The target address
is computed in advance by the use of prefetching techniques. When
the IU finds a branch (usually some cycles before it must take
effect), it computes its target address and prefetches some of the first
instructions of the two possible paths (multiple prefetch). When the

0018-9340/93$03.00 0 1993 IEEE

364 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 3, MARCH 1993

r) m e next branch Instruction is fetched
(") instrucliom from both taken and not taken path are fetched r) Cmdition codes are computed and depending on their due , al the end of

the cycle the processor chooses between the two possible paihs. bem t
and ntheir respeclive first instructions.

I F Instruction etch
0: Decode
O F operandsfetch
ALU: ALU opwatkn
WR: WMe result inlo destination register

Fig. 1. Execution of a branch instruction using the COBRA mechanism.

result of the branch condition is known, one of the two prefetched
flows of instructions is chosen. In this way, the delay introduced
by branches is decreased by one unit (in general, it is decreased by
the same amount of units as a fetch operation takes). The remaining
delay slots are utilized by means of the delayed branch technique.
All the operations required by branch instructions are performed by
the IU in parallel with the EU activity, that is, with the execution
of instructions different from branches. In this way, the time cost of
many branches can be reduced to zero.

The scheme proposed by Katevenis in [13] is used to codify the
target address of PC-relative branches. The basic idea of this approach
is that the instruction contains the least-significant bits of the target
address, rather than its offset. This scheme allows the IU to perform
the prefetch in cache memory of the instructions at the target address
in the cycle next to the fetch of the branch instruction, in parallel
with the computation of the most-significant bits of the target address.
In this way, the delay cycle cause by the addition operation in the
conventional scheme is avoided.

Fig. 1 shows a possible execution of a branch using the COBRA
mechanism for a sample pipeline. In this example the IU finds a
branch in cycle n. After that, it continues fetching instructions that
follow in sequence and also some instructions from the taken path.
When the instruction that sets the condition codes finishes its ALU
stage (cycle n + 3) the IU decides which path must be selected and
sends the corresponding first instruction to the EU. From then on,
the IU fetches instructions from the selected path until a new branch
is found. The delay introduced by computing the condition codes
(two cycles in this example) is used by means of the delayed branch
technique [lo]. If the ALU is the Nth stage of the pipeline, with this
scheme each branch will have N - 2 delay slots.

A. Memory Organization

' h o different cache memory organizations have been considered
for the implementation of COBRA. We call these organizations
conventional instruction cache memory and branch target instructions
memory (BTIM).

In a conventional instruction cache memory the mapping unit
is a fixed size block. For a branch target instruction memory, the
mapping unit consists of the instructions between two consecutive
taken branches (including the latter branch). In this case, the mapping
unit has a variable size and is defined at execution time. This unit
will be called sequence.

To reduce the complexity that the management of information units
with a variable size implies, a usual approach to implement a BTIM

consists in limiting to a fixed amount the number of instructions of
a sequence that are stored in cache memory. If a sequence is greater
than this size, the remaining instructions are obtained from the next
level of the memory hierarchy. If it is smaller, the line is filled up
with the instructions that follow in sequence. An implementation like
this is used in the Am29000 processor [12].

Each entry of the cache memory will be called a line. A line stores
a block in the case of a conventional cache or part of a sequence in
the case of a BTIM.

To access the next level of memory, a burst-mode protocol is
used. With this protocol, transactions are not fixed in length. After
sending the instructions corresponding to a given line, the memory
can continue sending the instructions of the following lines, one
instruction per cycle, without any delay until the processor or memory
decides to terminate the transaction. In this way, the latency of the
external memory is experienced just once as long as the requested
instructions are at consecutive addresses.

Each time a cache miss occurs, an entire new line is loaded into
cache memory. The instructions of the line arrive at the rate of one
per cycle, in the order they are stored in the line. As soon as the
instruction that caused the miss is available, it is passed to the IU
and begins execution. If a new cache memory access is required while
a line is being loaded (for instance, when the line contains a taken
branch), the former line must be completely loaded before beginning
the new cache access.

B. Design of the Instruction Unit
The main components of the instruction unit that implements the

COBRA mechanism are shown in Figs. 2 and 3. The IU is composed
of a BTIM and the hardware necessary for selecting the instruction
that must feed the EU in each cycle, detecting branch instructions in
advance and eliminating them from the flow of instructions sent to
the EU. The implementation using a conventional instruction cache
can be found in [8].

The IU uses the BTIM to prefetch the first line from the taken path
of branches. Since the BTIM provides a complete line just in one
cycle, the prefetch of the taken line can be postponed until the same
cycle in which the condition codes for the branch are set. Accessing
the BTIM earlier does not provide any additional benefit except for
the case when the requested line is not in the BTIM. In this case, a
further anticipation could be used to prefetch the line from external
memory but, since the IU has just one path to external memory, this
implies suspending the fetching of instructions that follow in sequence
before the outcome of the branch is known. In [5] we demonstrated
that this alternative does not provide any additional benefit.
In consequence, the IU must only analyze in each cycle the

instruction that follows in sequence to the one that is in the first stage
of the EU pipeline. If the analyzed instruction is a branch, the BTIM
is accessed to obtain (if hit) the taken line. In the same cycle, the
instruction that sets the condition codes will be in the ALU stage. In
this way, at the end of this cycle, the BTIM line (or the corresponding
miss) will be selected or discarded, depending on the condition codes.

The IU has a register to store the line obtained from the BTIM
in case of hit. The first instruction of this line does not need to be
stored because it must immediately be sent to the EU.

XI is a multiplexer that selects the instruction to be sent to the EU.
The X2 multiplexer selects the instruction next to the one selected
by X I . This instruction is examined by the early branch detection
circuit to check if it is a branch (in a RISC architecture it could be
as simple as testing just one or very few bits of the op-code). The
circuit that generates the control signals for these two multiplexers
(not shown in Fig. 2) is basically a counter with the possibility of
being incremented by one or two units depending on the result of

,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 3, MARCH 1993 365

MSB: Most significant bits
LSB: Less significant bits
Ti: Tar@ ad&

s: Sign bit. Used to compute the MSB of the W'gCt ddrrps

c: Cany bit. Used to compute the MSB of the laget a&rr.ss

bt: Indicates whether the brauch is a canpuled b d or not.

I TAC I Target Address Computation circuit (see fig. 3).

Branch detection circuit.

Fig. 2. Block diagram of the Instruction Unit.

L+K (line size) 4 - 1 Ta+lii size

Computed branch
(from EU or-

M S W a + pL7
C+S

LSBCra)
bt

MSB: Most aignificaril bits

LSB Legs siglliticant bils

Ta: Target addrrss

s: Sign bit. Used to compute the MSB of the laget ddrrps

c: Carry bit. Used to compute the MSB of the target rddreps

bt: Indicats whether the branch is a computed b d or wt.

Fig. 3. Block diagram of the Target Address Computation circuit (TAC in Fig. 2).

the branch detection circuit. When a branch is taken, this counter is
reset to zero.

The instructions supplied by the external memory should arrive at
the IU one cycle before the EU can start its execution in order to be
analyzed by the branch detection circuit and processed by the IU if
they are really branches. A further anticipation, as explained above,
does not provide any additional benefit. If for any reason, like a BTIM
miss, they arrive later, some bubbles will occur in the EU pipeline,
causing a degradation in the processor performance. During the cycle
that an instruction supplied by the external memory is processed by
the IU, it is held in the Delay register.

When a branch is detected, the BTIM is searched for the target line
while the instruction that sets the condition codes is in the ALU stage.
At the end of this cycle, the condition codes determine whether the

branch is to be taken. If the branch is taken, the PC block is loaded
with the target address and X , selects the address that is sent to
external memory. If the access to the BTIM produced a cache miss
the selected address is the branch target address. Otherwise, it is the
branch target address plus the cache line size (S = L + K) . Note
that the burst transaction initiated for the last taken branch is not yet
suspended and, therefore, it can be continued if the branch is not
taken.

The target address of computed branches is calculated by the EU
and sent to the IU. Call and Return instructions are also a particular
kind of branches. Call instructions can be sent to the execution unit,
like an arithmetic instruction, with the sole objective of storing the
return address (the targets address is computed by the IU). Return
instructions are also sent to the EU and are treated like computed

366 IEEE TRANSACITONS ON COMPUTERS, VOL. 42, NO. 3, MARCH 1993

TABLE I
NOTATION FOR THE MODELS

From the amlications:
B: Probability that an instruction is a branch
T: Probability that a branch is taken

D(d): Probability density function of the distance
between two consecutive taken branches
(length of sequences)

F(d): Probability dellsity function of the distance
between two consecutive branch
instructions.

branches that obtain the target address from the place where the
corresponding call instruction stored it. The drawback of this solution
is that Call and Return instructions, unlike the rest of branches, spend
one cycle in the EU, and, therefore, cannot be completely executed
in parallel. A more efficient solution, also more expensive, consists
in adding a hardware stack to the IU, where the IU will store the
return address of Call instructions in parallel with the EU activity. In
this case, when the IU finds a Return instruction, the target address
is obtained from the top of this stack, also completely in parallel
with the EU activity. In this way, Call and Return instructions can
be executed with zero time cost. The results presented in the next
section assume that the IU has available this hardware stack.

IV. MODELING COBRA
A mathematical model of COBRA for the implementation that

uses a BTIM is developed in this section. The model has some
input parameters listed in Table I. These input parameters can be
classified in three types: a) Those that depend on the applications
(B ,T , D(d), F (d)) , b) those that depend on the implementation
(L and S), and c) those that depend on both the applications and
the implementations (H). This model will be used. to compute the
performance of the processor for different system configurations.
In addition, an analytical model for the Delayed Branch scheme is
presented. Its objective is to compare COBRA with Delayed Branch
in order to show the extra performance of COBRA in relation to its
hardware cost (shown in the previous section).

A. Pipeline
The efficiency of COBRA and Delayed Branch depend on the

length of the pipeline. In this paper we concentrate on a pipeline in
which the ALU stage is the second one. For this, pipeline, the Delayed
Branch scheme has one delay slot per branch whereas COBRA does
not need any delay slot and, in addition, branches are executed in
parallel with other instructions. A deeper pipeline will imply an
increase in the number of delay slots of both schemes.

B. Analytical Model for COBRA
The peak performance of the processor using COBRA is zero

cycles for branches and one cycle for any other instruction. However,
to achieve this peak performance several conditions must hold:

The target line of each taken branch should be in the BTIM. The
ratio of lines that are actually found in the BTIM depends on
the number of lines of the BTIM, the BTIM organization, and
the temporal locality of the program.
Each cycle, the EU should begin the execution of a nonbranch
instruction and, in parallel, the IU should deal with the instruc-
tion that follows in sequence. Even when every target line were
in the BTIM, there would be no guarantee that this condition
is met, since the IU relies on the external memory for part of
those sequences whose size is greater than a BTIM line. So

From the implementation:
L: Latency of external memory
S: Size of BTIM lines

From both the amlications and imDlementatioK
H: BTlM target hit ratio, which is computed as

the number of taken branches whose target
sequence is found in the BTIM divided by
the total number of taken branches

the line size and the external memory latency also affect the
performance of the processor.

In the development of the analytical model we assume that two
branches never occur without at least one instruction between them.
This hypothesis simplifies the model by introducing a negligible error,
since in practice this fact happens very rarely.

The processor performance (P) is computed as the average number
of useful instructions executed per cycle. Useful instructions are those
instructions processed by the EU (all instructions but branches). In
this way, P = (1 - B) / (1 - B + D), where D is the average number
of lost cycles per instruction (including branches). To compute D , the
different sources pf penalization will be characterized. Lost cycles
are due to five different causes: 1) Memory latency due to BTIM
misses, 2) Complete replacement of lines, 3) Memory latency for
BTIM hits, 4) Lack of anticipation due to BTIM misses, and 5) Loss
of anticipation due to not taken branches. Then, D = D1 + 0 2 +
0 3 + 0 4 + 0 5 , where Di represents the average number of lost
cycles per instruction due to cause i . Next, expressions for each Di
are developed.

1) Memory Latency Due to BTIM Misses: This happens when a
branch is taken and a cache miss occurs when the IU accesses the
BTIM to fetch the next sequence. The cost of this cache miss is L
cycles. The probability that this event happens is B T (1 - H), and,
therefore, the average number of lost cycles per instruction due to
this cause is D1 = L B T (1 - H) .

2) Complzte Replacement of Lines: This happens when the IU is
dealing with a branch that turns out to be taken, a BTIM miss occurred
in the previous taken branch and the distance between these two
branches (here called d) is less that S - 1. In this case, the IU must
finish the replacement of the former line before beginning to search
the BTIM for the new line. The additional cycles needed to complete
the replacement are S - 1 - d, and the average number of lost cycles
per instruction due to this cause is

$--2 ~-

0 2 = B T (l - H) E D (d) (S - 1 - d) .
d=2

3) Memory Latency for BTIM Hits: This happens when the current
sequence was found in the BTIM but it is larger than a line, and
therefore, only the first instructions are in the BTIM; the remaining
instructions are provided by the external memory. If the external
memory latency (L) is greater than the line size (S), then L - S
cycles will be lost for each one of those sequences. The average
number of lost cycles per instruction due to this cause is

4) Lack of Anticipation Due to a BTIM Miss: This happens for any
branch when a BTIM miss occurred in the previous taken branch.
In this case, all the instructions between the last taken branch and
the next taken one are provided by the external memory at the rate

IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 3, MARCH 1993 361

of one per cycle and therefore branches cost one cycle since they
are not detected early enough to overlap its execution with some
previous instruction. In this way, while the IU is dealing with the
branch a NOP is sent to the EU. The average number of lost cycles
per instruction due to this cause is 0 4 = B(l - H) .

5) Loss of Anticipation Due to not Taken Branches: This happens
for sequences that are found in the BTIM and are larger than a line.
Let assume that Y is the size of the sequence and it contains X
branches. The number of cycles needed to read the complete sequence
from memory is Y - S + L and the number of useful instructions in
the block is Y - X. Then, the number of cycles that the EU will be
idle is (I’ - S + L) - (Y - X) = X - (S - L). When S < L, from
this amount we must subtract the L - S cycles that have already been
taken into account in cause 3. In conclusion, we must count a lost
cycle for each branch that is preceded by at least S - L not taken
branches, assuming that if S - L < 0 the previous sentence must be
interpreted as preceded by at least zero not taken branches (this holds
for any branch). The average number of lost cycles per instruction
due to this cause is (see equation at bottom of page)
where N and I are random variables. N represents the number of
not taken branches between the current branch and the previous taken
branch and I represents the number of instructions of the sequence
to which the branch being analyzed belongs.

Computing P r (N 2 K) : We assume that the probability that a
branch is taken is independent of what happened in the branches
executed before, which implies that the random variable N follows
a geometric law. Note that in this case, the previous branches
correspond to not taken branches and therefore all the previous
branches and the one analyzed are different instructions. Then, it is
reasonable to assume that each branch instruction is independent of
the others, although this is not necessarily true. This introduces some
negligible error in our analysis, but not enough to affect the result as
the validation of the model (next section) will prove. Therefore,

00

P r (N 2 IC) = ~ (1 - T) , = (1 - TI*.
,=K

Computing Prob(I > SIN 2 K): To compute this probability,
we will first calculate P r (I > S). To do that, we define By as
the average number of branch instructions in a sequence with Y
instructions. We have that

P r (I = Y) = oo B y D (Y) + Prob(1 > Y) c B A A
3=2

,=2

By can be computed using the expression
Y

BY = j A, C, (Y)
,=1

where A, is the probability that a sequence is composed of j branches
and C, (Y) represents the probability that a sequence with j branches
has a length equal to Y.

Because of the hypothesis made before, the value of A, is given
by the probability density function of a geometric law, which means

that

A, = T(1 - Ty-1.

C,(Y) depends on F (d) and can be computed using the following
expressions.

Cl(Y) = F (Y)

c,(Y) = F(Y - k)~,-l(k) if j > 1.
Y - 1

le=, - 1

The evaluation of P r (I > SIN 2 K) is similar to the calculation
of P r (I > S) with the difference that only those sequences with
more than K branches must be considered, and the contribution of
the fist K branches must not be taken into account for computing
this probability. Thus, we have that

k=2

where h l ~ (k) represents the average number of branches left (not
including the first K branches) in a sequence with k instructions and
assuming that the sequence has at least K + 1 branch instructions.
Its value is equal to

L.

where A, and C3 (k) are the functions above defined.
6) Validation ofthe Model: The correctness of the analytical model

was validated by comparing its results with the ones obtained by sim-
ulation of the execution of four benchmark programs: LEX, NROFF,
PCC, and YACC’ (9, 12, 21, and 42 million of executed instructions,
respectively). These programs written in C language were compiled
to RISC-I1 Assembly language [13] and their execution was simulated
using the approach presented in [l]. From this simulation, in addition
to the COBRA performance, the input parameters to the model (see
Table I) were also obtained. The simulation was carried out for
several values of the cache size, line size, and external memory
latency. In this way, the processor performance was obtained for
31. sets of different values for these three parameters. The processor
performance predicted by the model and the performance obtained
by simulation was always less than 3.76% different and the average
difference for the 31 simulations was 1.36%.

C. Analytical Model for Delayed Branch
For the memory organization that we call a BTIM, a line size

equal to the external memory latency (S = L) is enough to obtain
the maximum benefit from the delayed branch mechanism in terms
of instruction execution rate. A further increase in the line size
would reduce the external memory traffic but would not provide any
additional gain ih terms of execution rate since these extra instructions
can be supplied by the external memory without any performance
degradation. In consequence, the following model assumes that S is
equal to L. The average number of lost cycles per instruction is the
sum of the following four terms:

a) Execution of branch instructions: B
Unix utilities Unix is a trademark of AT&T Bell Labs.

B H P r (N 2 (S- L) n I > S) = B H P r (I > SIN 2 (S - L)) P r (N 2 (S - L))
B H P r (N 2 On1 > S) = BIIPr(I> SIN 2 O)Pr(N >_ 0)

if S 2 L
ifS < L D 5 = {

IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 3, MARCH 1993

,
BTlM M ra60

No optimization of the delay slot: B (l - P o) . The value of
P o for each benchmark was obtained by the simulation of its
execution.
BTIM miss for a taken branch: B T (1 - H)
A taken branch occurs before concluding the replacement of the
line corresponding to the previous BTIM miss: BT(1 - H) N c ,
where N c is the average number of entries in the cache line that
have not yet been filled. It can be calculated by the following
expression:

L - 2

N c = D (d) (L - 1 - d) .
d=2

Then, the processor performance computed as the average number
of useful instructions executed per cycle is equal to

1 - B
1 + B (1 - P o + T (l - H) + T (l - H) N c) '

P =

The difference between the processor performance estimated by
means of this model and the results obtained by simulation of the
four benchmarks for 15 different sets of parameters was always less
than 0.22%, and the mean value of the difference was 0.05%.

V. PERFORMANCE MEASURES
In this section, the efficiency of the COBRA mechanism is an-

alyzed. First, we investigate which is the BTIM line size that
maximizes the performance of COBRA. Next, the improvement
achieved by COBRA in relation to the delayed branch mechanism
is shown. Finally, the performance of COBRA with two alternative
cache memory organizations are compared.

A. Size of the Cache Line

The first application of the mathematical model was to determine
the optimum size of BTIM lines for COBRA mechanism. A typical
value of the external memory latency (three cycles) was assumed for
this analysis. In this section we show that, for the assumed external
memory latency, the best tradeoff between cost and performance is
provided by a cache line equal to four instructions.

The performance of the processor was obtained for a BTIM line
size ranging from 1 to 6 instructions and a hit ratio ranAing from 0 to
1 (note that the hit ratio, as it is defined in Table I, only depends on
the number of lines, not on the line size). The other input parameters
to the model (B, T, F (d) , and D (d) , see Table I), which depend
on the applications, were assumed to be equal to the average of the
values obtained for the four benchmarks. The results are shown in
Fig. 4.

The main conclusion that can be drawn from Fig. 4 is that for a
given hit ratio, the processor performance is improved when the line
size augments, but only until a given size. A further increase in the
line size produces a decrease in the processor performance due to
the cost of loading a new line on cache misses. In this figure we can
also see that the higher the hit ratio, the greater the size from which
the performance begins to decrease. At the left end of the graphs
(hit = 0) performance decreases as the line size increases whereas at
the right end, performance augments as the line size gets larger.

When the line size is lower than the external memory latency (1
or 2 instructions) the performance of the system is rather low. If we
compare line size of three with line size of four in Fig. 4, we can
observe that the performance of the latter is better from low values of
hit ratio on (hit 2 0.4), and the difference between them is substantial
for typical values of the target hit ratio (0.7-0.9). A further increment
in the line size (5 instructions) is useful only if the hit ratio is greater
than 0.7 and, in this case, the increase in performance is so low

0.8 1 p - 4

I - - 5

Fig. 4. Processor performance for different values of the BTIM hit ratio and
line size, assuming an external memory latency of three cycles.

that it does not justify the additional occupied chip area. So, we can
conclude that the best tradeoff between cost and efficiency is a line
size of four instructions.

B. COBRA Versus Delayed Branch
In this section we show the benefits brought by COBRA. We

have already seen the hardware cost needed to implement it. Here
we compare the performance of COBRA against the delayed branch
mechanism. Since this latter mechanism does not use any additional
hardware, we can have an idea of the extra performance in relation
to the additional hardware of COBRA.

Fig. 5 shows the performance of COBRA and delayed branch
mechanisms. In both cases, the same cache memory organization has
been assumed, that is, a BTIM with direct mapping and 32,64,128, or
256 lines. The line size is equal to the memory latency (3 instructions)
for the delayed branch scheme and equal to the latency plus one
unit (4 instructions) for the COBRA mechanism. The line size for
COBRA is justified in the previous section whereas the choice for
delayed branch, as explained in Section IV-C, is due to the fact that
having a line greater than the external memory latency does not
provide any additional increase in the instruction execution rate. In
consequence, for a four instruction line size, the performance figures
(useful instruction per cycle) of the delayed branch mechanism with
a BTIM will be the same as the ones depicted in Fig. 5. The other
input parameters to the analytical models (H, B, T, F (d) , D (d) ,
see Table I) were obtained from the simulation of the execution of
each benchmark.

The efficiency of the COBRA mechanism is between 36% (BTIM
with 32 lines) and 40% (BTIM with 256 lines) higher than the
delayed branch for LEX; between 6 and 21% for NROFF; between
12 and 21% for PCC and between 24 and 26% for YACC. The higher
the cache hit ratio, the greater the difference between them.

C. BTZM Versus Conventional Instruction Cache
It is also interesting to compare the efficiency of COBRA for

different cache organizations. Fig. 6 shows the performance of the
COBRA mechanism with a BTIM and with a conventional instruction
cache. In both cases we assume the same number of cache lines, the
same size of lines (4 instructions), a direct mapping and a three-cycle
external memory latency. The performance figures for a conventional
cache were obtained using the approach presented in [SI.

Fig. 6 shows that, for the cache parameters evaluated, a conven-
tional instruction cache and a BTIM have a similar performance for

IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 3, MARCH 1993

usMho.lw!E LEX

0.9

0.8 -

1

0.9

0.8

0.7

0.6

0.5

0.a -

32 84 128 254

0.7 -

0.6 -

dlnl3.lLW PCC

0.9 1

BTlMlineS

0.5
32 64 128 256

1

0.9

0.8

0.7

0.6

0.5
BnM lirmr

32 64 128 256

urrlu(inU.lryds YACC

BTIM linsr

369

Fig. 5. COBRA versus delayed branch.

LEX and YACC (a little better for a conventional cache) whereas for
NROFF and PCC, the performance of a BTIM is considerably better
than a conventional cache. The improvement of the BTIM in relation
to the conventional cache ranges from -1 to -3% for LEX, 29 to
2% for NROFF, 18 to 12% for PCC, and 4 to -5% for YACC. The
main difference between LEX, YACC and PCC, NROFF is that the
former two programs exhibit a higher temporal locality. We can also
observe in Fig. 6 that the improvement of a BTIM in relation to a
conventional cache increases as the number of lines (and therefore
the hit ratio) increases. So the conclusion just regarding efficiency
is that both schemes provide about the same efficiency when the
cache hit ratio is very close to 1 and the performance of the BTIM
is considerably better when the hit ratio is not so high.

On the other hand, the BTIM generates much more traffic than
a conventional cache. For LEX the BTIM traffic is between 424
and 5220% higher than the conventional cache traffic; 28-234% for
NROFF; 46-104% for PCC; 422-5956% for YACC. The reason is
that, in a BTIM, there are many instructions that must always be
supplied by the extemal memory, regardless of the number of lines
of the cache and the cache hit ratio. These instructions are due to
sequences greater than a cache line. In this case, the BTIM only

stores the first instructions of the sequence (just a line) and the rest
of instructions are supplied by external memory even when a BTIM
hit occurs for that sequence. Note that this extra traffic does not mean
any penalization in the processor speed since the access to extemal
memory is overlapped with the execution of instructions provided by
the BTIM.

Finally, regarding hardware cost, the implementation of the IU
requires a simpler hardware for a BTIM. The design of the IU for a
conventional cache can be found in [8]. In conclusion, a BTIM offers
a better cost-efficiency performance than a conventional cache since
the former simplifies the implementation of the IU and in addition it
provides in many cases an efficiency quite higher than a conventional
cache.

VI. CONCLUSIONS
We have presented and evaluated a mechanism (COBRA) for

reducing the cost of branches in pipelined processors. The mechanism
is based on the following techniques: a) early computation of the
target address, b) multiple prefetch, c) delayed branch, and d) parallel
execution of branch instructions.

370

LEX

___ BTIM

Conventional cache _ _ _ - _ - - -

IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 3, MARCH 1993

NROFF d h o . l W d 8

d b . / W d 8 PCC
1

0.9

0.8

0.7

BnH bnl

0 A
32 64 128 250

32 64 128 256

uuhlhlb./clde YACC
1

04

0.E

0.1

0.6

0.5

0.4
32 64 128 256

Fig. 6. COBRA with a BTIM versus COBRA with a conventional instruction cache.

An implementation of the mechanism using a Branch Target
Instruction Memory (BTIM) is proposed. The behavior of the system
has been characterized by means of an analytical model. This model
has been used to select the most adequate size of BTIM lines which,
for a external memory with latency equal to three cycles, resulted to
be equal to the latency plus one unit.

The efficiency of the COBRA mechanism is in average about
25% higher than the Delayed Branch and the additional hardware
needed to implement COBRA is quite simple. We have also compared
two implementations of the COBRA mechanism, each one using
a different cache organization. The conclusion was that, in terms
of cost-effectiveness, the BTIM has a better performance than a
conventional instruction cache although the former generates a higher
memory traffic. This extra traffic does not mean any penalization
in the processor speed since it is overlapped with the execution of
instructions provided by the BTIM.

ACKNOWLEDGMENT

We would like to thank T. Lang and the anonymous referees for
many suggestions that improved the quality of this paper.

REFERENCES

[11 J. Cortadella and J. M. Llaberia, “Low cost evaluation methodology for
new architectures,” in Proc. USTED Int. Symp. Appl. Informatics, Feb.

[2] J.H. Crawford, “The i486 CPU: Executing instruction in one clock
cycle,” IEEE Micro, vol. 10, no. 1, pp. 27-36, Feb. 1990.

[3] R. W. Edenfield, “The 68040 Processor. Part 1, Design and implemen-
tation,” IEEEMicro, vol. 10, no. 1, pp. 66-78, Feb. 1990.

[4] R. B. Gamer et al., “The scalable processor architecture (SPARC),” in
Proc. 33rd. IEEE Int. Comput. SOC. Con$, COMPCON’88, Feb 1988,

[5] A. Gonzilez, “Designing an instruction cache for reducing the cost of
branches,” Rese. Rep. UPCDAC RR-91/02, Comput. Architecture Dep.,
Polythecnic Univ. of Catalonia, Barcelona, Jan. 1991.

[6] A. Gonzilez and J.M. Llaberia, “Instruction fetch unit for parallel
execution of branch instructions,” in Proc. 3rd In?. Con$ Supercomput.,
ACM SIGARCH ICs-89, June 1989, pp. 417-426.

[7] A. Gonzilez, J. M. Llaberia, and J. Cortadella, “Zero-delay cost branches
in RISC architectures,” in Proc. LASTED Int. Symp. Appl. Informatics,
Feb. 1988, pp. 24-27.

[8] -, “A mechanism for reducing the cost of branches in RISC archi-
tectures,” Microprocessing and Microprogramming, vol. 24, no. 1-5,

1987, pp. 192-195.

pp. 278-283.

pp. 565-572, Aug. 1988.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 3, MARCH 1993 371

[9] G. F. Grohoski, “Machine organization of the IBM RISC System/6000
Processor,” IBMJ. Res. Develop., vol. 34, no. 1, pp. 37-58, Jan. 1990.

[lo] T. R. Gross and J. L. Hennessy, “Optimizing delayed branches,” in Proc.
15th Annu. Workshop Microprogramming, ACM SIGMICRO, Oct. 1982,

[l l] G. Hinton, “80960 - Next generation,” in Proc 34th. IEEE Comput.
Society Con$ COMPCON’89, Feb. 1989, pp. 13-17.

[12] M. Johnson, “System considerations in the design of the Am29000,”
IEEE Micro, vol. 7, no. 4, pp. 29-41, Aug. 1987.

[13] M. G. H. Katevenis, Reduced Instruction Set Computer Architecture for
VLSI. Cambridge, MA, MIT Press, 1985.

[14] D. L. Lilja, “Reducing the branch penalty in pipelined processors,”IEEE
Comput. Mag., vol. 21, no. 7, pp. 47-55, July 1988.

[15] S. McFarling and J. Hennessy, “Reducing the cost of branches,” in Proc.
13th Int. Symp. Comput. Architecture, 1986, pp. 396-403.

1161 T. Riordan et a[., “System design using the MIPS R3000/3010 RISC
Chipset,” in Proc. 34th IEEE Comput. SOC. Conf, COMPCON’89, Feb.

pp. 114-120.

1989, pp. 494-498.

Constant Geometry Fast Fourier
Transforms on Array Processors

George Miel

Abstract-Matrix algebra is used to design and validate parallel algo-
rithms for large constant geometry FFT’s on fixed-size array processors.
The N-point radix 2 case for a linear array processor with N/2 cells is
identical to the usual procedure corresponding to the matrix factorization
of M. C. Pease. The algorithms are engendered by matrix factorizations,
which themselves depend on a basic factorization of the perfect shuffle.
The resulting data movement is realized in parallel as relatively small
perfect shuffles inside each local memory and along each row and column
of the array processor, without requiring that the complete array itself
have the shuffle-exchange network.

Index Terms-Array processing, fast Fourier transforms, parallel al-
gorithms.

I. INTRODUCTION
The matrix approach, as a means to design and validate algorithms

for parallel architectures, was used and advocated by Pease [9]
in his modification of the Cooley-Tukey procedure. The resulting
algorithm is often called a constant geometry FFT because its
communication pattern, namely, the addressing of operands for the
butterfly operations, is kept the same from stage to stage. For the
N-point radix 2 case, the algorithm consists of log, N stages each
preceded by a perfect shuffle of the data. The most natural mapping of
this algorithm is onto a linear array architecture with N/2 cells and a
shuffle-exchange interconnection network [2] , [141, [151. Thompson
[16] has shown that the VLSI design of this architecture achieves
area*time2 performance of R (N 2 log: N), which is the optimum
theoretical limit for the N-element Fourier transform established by
Vuillemin [17].

The matrix factorization of the Fourier transform given by Pease is
invaluable in the study of parallel FIT’S. The problem of parallelizing

Manuscript received June 15, 1990; revised March 15, 1992. This work was
done at and supported by Hughes Research Laboratories, Malibu, CA 90265.

The author is with the Department of Mathematical Sciences, University
of Nevada, Las Vegas, N V 89154.

IEEE Log Number 9202844.

an FFT is essentially that of scheduling onto a targeted architecture
the tasks engendered by the matrix factors in the corresponding
factorization. This approach was used by Norton and Silberger [8] in
the parallelization and performance prediction of FFT algorithms for
MIMD shared-memory architectures. Recently, Whelchel and others
[18] used the Pease factorization to describe a pipeline architec-
ture, based on matrix factors called systolic phase rotations, which
eliminates delay commutator switches used in the Purdy McClellan
processor.

Our aim is to decompose the Pease factorization in order to
map large constant geometry FFT’s onto fixed-size rectangular array
processors. Section I1 shows that our results depend fundamentally on
a factorization of the perfect shuffle permutation. The resulting data
movement is realized in parallel as relatively small perfect shuffles
inside each local memory and along each row and column of the
array processor, without requiring that the complete array itself have
the shuffle-exchange interconnection network. Section I11 uses these
results to validate parallel algorithms for rectangular array processors.

The effectiveness of a mapping of a constant geometry FFT onto
an array processor depends primarily on two items. The first item is
the efficiency with which the interconnection network of the array
processor realizes the data movement required by the algorithm. The
second item involves a divide-and-conquer strategy for the SIMD
evaluation of specialized matrix-vector products. Suppose that a
product D z , where D is the direct sum

N - 1

D = @ A
Z = O

with each A , of dimension M x M and 2 is an hlN-vector, is to
be computed on an array processor with N cells. The vector is first
divided into N M-tuples

2 = (209 21, ’ ’ ’ 7 Z N - 1 I t , 22 = (Z t A - 4 . . ’ ’ 7 z(%+l)A4-1)$

each cell computes in parallel a product A,ZI, and the subvectors
are then concatenated to get the result. Whereas the first item deals
with the communication complexity of the mapping, the second item
pertains to its parallel arithmetic complexity.

11. MATRIX FACTORIZATIONS
A perfect shuffle is a permutation that transforms the 2m-vector

t = (0,1,.. . .m - 1 , m . m + 1 , . . . , 2 m -

to the vector

~ , ~ z = (O,m,l,m+ l , . . . , i . m + i , . . . , m - 1,2m - lit. (2)

Components that were m apart become adjacent as a result of the
perfect shuffle. For simplicity, we henceforth call (2) the shufpe of z .

Permutations by cutting and shuffling were studied by Golomb
[3]. Computational applications of the shuffle were conceived by
Batcher [l] for bitonic sorting and by Singleton [13] and Pease
[9] for the fast Fourier transform. In particular, Pease presented a
matrix factorization of the transform, (4)-(5) below, suitable for
parallel implementation. The relevance of the shuffle permutation
in parallel processing was further established by Stone [14]. The
shuffle-exchange interconnection network in a multiprocessor system
provides useful capabilities [2]. For instance, Wu and Feng [19] have
shown that a shuffle-exchange network of size N can realize an
arbitrary permutation in 31og, N - 1 passes.

001&9340/93$03.00 0 1993 IEEE

