6,396 research outputs found

    On the use of machine learning algorithms in the measurement of stellar magnetic fields

    Full text link
    Regression methods based in Machine Learning Algorithms (MLA) have become an important tool for data analysis in many different disciplines. In this work, we use MLA in an astrophysical context; our goal is to measure the mean longitudinal magnetic field in stars (H_ eff) from polarized spectra of high resolution, through the inversion of the so-called multi-line profiles. Using synthetic data, we tested the performance of our technique considering different noise levels: In an ideal scenario of noise-free multi-line profiles, the inversion results are excellent; however, the accuracy of the inversions diminish considerably when noise is taken into account. In consequence, we propose a data pre-process in order to reduce the noise impact, which consists in a denoising profile process combined with an iterative inversion methodology. Applying this data pre-process, we have found a considerable improvement of the inversions results, allowing to estimate the errors associated to the measurements of stellar magnetic fields at different noise levels. We have successfully applied our data analysis technique to two different stars, attaining by first time the measurement of H_eff from multi-line profiles beyond the condition of line autosimilarity assumed by other techniques.Comment: Accepted for publication in A&

    Determination of chaotic behaviour in time series generated by charged particle motion around magnetized Schwarzschild black holes

    Full text link
    We study behaviour of ionized region of a Keplerian disk orbiting a Schwarzschild black hole immersed in an asymptotically uniform magnetic field. In dependence on the magnetic parameter B{\cal B}, and inclination angle θ\theta of the disk plane with respect to the magnetic field direction, the charged particles of the ionized disk can enter three regimes: a) regular oscillatory motion, b) destruction due to capture by the magnetized black hole, c) chaotic regime of the motion. In order to study transition between the regular and chaotic type of the charged particle motion, we generate time series of the solution of equations of motion under various conditions, and study them by non-linear (box counting, correlation dimension, Lyapunov exponent, recurrence analysis, machine learning) methods of chaos determination. We demonstrate that the machine learning method appears to be the most efficient in determining the chaotic region of the θ−r\theta-r space. We show that the chaotic character of the ionized particle motion increases with the inclination angle. For the inclination angles θ∼0\theta \sim 0 whole the ionized internal part of the Keplerian disk is captured by the black hole.Comment: 21 pages, 9 figure

    NASA Thesaurus supplement: A four part cumulative supplement to the 1988 edition of the NASA Thesaurus (supplement 3)

    Get PDF
    The four-part cumulative supplement to the 1988 edition of the NASA Thesaurus includes the Hierarchical Listing (Part 1), Access Vocabulary (Part 2), Definitions (Part 3), and Changes (Part 4). The semiannual supplement gives complete hierarchies and accepted upper/lowercase forms for new terms

    Determining the Mass of Kepler-78b With Nonparametric Gaussian Process Estimation

    Get PDF
    Kepler-78b is a transiting planet that is 1.2 times the radius of Earth and orbits a young, active K dwarf every 8 hours. The mass of Kepler-78b has been independently reported by two teams based on radial velocity measurements using the HIRES and HARPS-N spectrographs. Due to the active nature of the host star, a stellar activity model is required to distinguish and isolate the planetary signal in radial velocity data. Whereas previous studies tested parametric stellar activity models, we modeled this system using nonparametric Gaussian process (GP) regression. We produced a GP regression of relevant Kepler photometry. We then use the posterior parameter distribution for our photometric fit as a prior for our simultaneous GP + Keplerian orbit models of the radial velocity datasets. We tested three simple kernel functions for our GP regressions. Based on a Bayesian likelihood analysis, we selected a quasi-periodic kernel model with GP hyperparameters coupled between the two RV datasets, giving a Doppler amplitude of 1.86 ±\pm 0.25 m s−1^{-1} and supporting our belief that the correlated noise we are modeling is astrophysical. The corresponding mass of 1.87 −0.26+0.27^{+0.27}_{-0.26} M⊕_{\oplus} is consistent with that measured in previous studies, and more robust due to our nonparametric signal estimation. Based on our mass and the radius measurement from transit photometry, Kepler-78b has a bulk density of 6.0−1.4+1.9^{+1.9}_{-1.4} g cm−3^{-3}. We estimate that Kepler-78b is 32±\pm26% iron using a two-component rock-iron model. This is consistent with an Earth-like composition, with uncertainty spanning Moon-like to Mercury-like compositions.Comment: 10 pages, 5 figures, accepted to ApJ 6/16/201

    Unsupervised feature-learning for galaxy SEDs with denoising autoencoders

    Full text link
    With the increasing number of deep multi-wavelength galaxy surveys, the spectral energy distribution (SED) of galaxies has become an invaluable tool for studying the formation of their structures and their evolution. In this context, standard analysis relies on simple spectro-photometric selection criteria based on a few SED colors. If this fully supervised classification already yielded clear achievements, it is not optimal to extract relevant information from the data. In this article, we propose to employ very recent advances in machine learning, and more precisely in feature learning, to derive a data-driven diagram. We show that the proposed approach based on denoising autoencoders recovers the bi-modality in the galaxy population in an unsupervised manner, without using any prior knowledge on galaxy SED classification. This technique has been compared to principal component analysis (PCA) and to standard color/color representations. In addition, preliminary results illustrate that this enables the capturing of extra physically meaningful information, such as redshift dependence, galaxy mass evolution and variation over the specific star formation rate. PCA also results in an unsupervised representation with physical properties, such as mass and sSFR, although this representation separates out. less other characteristics (bimodality, redshift evolution) than denoising autoencoders.Comment: 11 pages and 15 figures. To be published in A&

    Automated supervised classification of variable stars I. Methodology

    Get PDF
    The fast classification of new variable stars is an important step in making them available for further research. Selection of science targets from large databases is much more efficient if they have been classified first. Defining the classes in terms of physical parameters is also important to get an unbiased statistical view on the variability mechanisms and the borders of instability strips. Our goal is twofold: provide an overview of the stellar variability classes that are presently known, in terms of some relevant stellar parameters; use the class descriptions obtained as the basis for an automated `supervised classification' of large databases. Such automated classification will compare and assign new objects to a set of pre-defined variability training classes. For every variability class, a literature search was performed to find as many well-known member stars as possible, or a considerable subset if too many were present. Next, we searched on-line and private databases for their light curves in the visible band and performed period analysis and harmonic fitting. The derived light curve parameters are used to describe the classes and define the training classifiers. We compared the performance of different classifiers in terms of percentage of correct identification, of confusion among classes and of computation time. We describe how well the classes can be separated using the proposed set of parameters and how future improvements can be made, based on new large databases such as the light curves to be assembled by the CoRoT and Kepler space missions.Comment: This paper has been accepted for publication in Astronomy and Astrophysics (reference AA/2007/7638) Number of pages: 27 Number of figures: 1
    • …
    corecore