29 research outputs found

    Quadruped robot locomotion using a global optimization stochastic algorithm

    Get PDF
    The problem of tuning nonlinear dynamical systems parameters, such that the attained results are considered good ones, is a relevant one. This article describes the development of a gait optimization system that allows a fast but stable robot quadruped crawl gait. We combine bio-inspired Central Patterns Generators (CPGs) and Genetic Algorithms (GA). CPGs are modelled as autonomous differential equations, that generate the necessar y limb movement to perform the required walking gait. The GA finds parameterizations of the CPGs parameters which attain good gaits in terms of speed, vibration and stability. Moreover, two constraint handling techniques based on tournament selection and repairing mechanism are embedded in the GA to solve the proposed constrained optimization problem and make the search more efficient. The experimental results, performed on a simulated Aibo robot, demonstrate that our approach allows low vibration with a high velocity and wide stability margin for a quadruped slow crawl gait.This work is funded by FEDER Funding supported by the Operational Program Competitive Factors .U COMPETE and National Funding supported by the FCT Portuguese Science Foundation through project PTDC/EEACRO/100655/200

    Multiobjective optimization of a quadruped robot locomotion using a genetic algorithm

    Get PDF
    In this work, it is described a gait multiobjective optimization system that allows to obtain fast but stable robot quadruped crawl gaits. We combine bioinspired Central Patterns Generators (CPGs) and Genetic Algorithms (GA). A motion architecture based on CPGs oscillators is used to model the locomotion of the robot dog and a GA is used to search parameterizations of the CPGs parameters which minimize the body vibration, maximize the velocity and maximize the wide stability margin. In this problem, there are several conflicting objectives that leads to a multiobjective formulation that is solved using the Weighted Tchebycheff scalarization method. Several experimental results show the effectiveness of this proposed approach.Fundação para a Ciência e a Tecnologia (FCT

    An Open-Loop Baseline for Reinforcement Learning Locomotion Tasks

    Full text link
    In search of a simple baseline for Deep Reinforcement Learning in locomotion tasks, we propose a model-free open-loop strategy. By leveraging prior knowledge and the elegance of simple oscillators to generate periodic joint motions, it achieves respectable performance in five different locomotion environments, with a number of tunable parameters that is a tiny fraction of the thousands typically required by DRL algorithms. We conduct two additional experiments using open-loop oscillators to identify current shortcomings of these algorithms. Our results show that, compared to the baseline, DRL is more prone to performance degradation when exposed to sensor noise or failure. Furthermore, we demonstrate a successful transfer from simulation to reality using an elastic quadruped, where RL fails without randomization or reward engineering. Overall, the proposed baseline and associated experiments highlight the existing limitations of DRL for robotic applications, provide insights on how to address them, and encourage reflection on the costs of complexity and generality.Comment: video: https://b2drop.eudat.eu/s/ykDPMM7F9KFyLgi minimal code: https://gist.github.com/araffin/1fb77a8f290ac248b2e76e01164f21e

    Learning Powerful Kicks on the Aibo ERS-7: The Quest for a Striker

    Full text link
    corecore