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Abstract In this work, it is described a gait multiobjective optimiize system
that allows to obtain fast but stable robot quadruped craitsgWe combine bio-
inspired Central Patterns Generators (CPGs) and Gengjari#ims (GA). A mo-
tion architecture based on CPGs oscillators is used to nmibddbcomotion of the
robot dog and a GA is used to search parameterizations of B@s(arameters
which minimize the body vibration, maximize the velocitydamaximize the wide
stability margin. In this problem, there are several cotifiggobjectives that leads to
a multiobjective formulation that is solved using the WeaghTchebycheff scalar-
ization method. Several experimental results show the@fness of this proposed
approach.

1 Introduction

Robot locomotion is a challenging task that involves theticof a large number
of degrees of freedom (DOF’s). Several previous works, i,atoposed biologic
approaches to generate and modulate gait locomotion ofgped robots, combin-
ing biometric sensory information with motion oscillatasch as Central Pattern
Generators (CPGSs).

There are still many open questions in the quadruped lodomatonsidering
learning gaits or gait optimization. The problem of findiing tbest possible loco-
motion is a problem currently addressed in the literatung2] it is presented a
Genetic Algorithm (GA) robust to the noise in the parametuslution and that
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also avoids premature local optima. The evaluation cdtei$ to maximize robot
velocity. A comparison between several gait learning atgors, including Genetic
and Policy Gradient algorithms, is presented in [11]. Thénoigation goal is to
determine the best 12 parameters of an elliptical locusrseha locomotion, such
that the robot takes less time to walk a certain distance.

In [6] it is presented an evolutionary algorithm based on g ®Avhich genetic
operators are chosen by an adaptation mechanism. Locamistimplemented in
real time and is evaluated by analysing the forward-bactysde-walk and rota-
tion motion as well as the vibration. In [8] it is presentedeamnlutionary algorithm
to optimize a vector of parameters for locomotion of an ERBdAdbot. In [10] it
is presented an optimization system for the locomotion dER®110 based on the
Powell's method. It online optimizes 12 parameters of a$doeomotion scheme.

In this work, we propose a multiobjective approach to optra quadruped slow
crawl gait, using Central Pattern Generators (CPGs) and a@Gs are neural
networks located in the spine of vertebrates, that gene@dedinated rhythmic
movements, namely locomotion [7]. In this work, a locomotimntroller, based on
CPGs, generates trajectories for hip robot joints [12].e8pgibration and stability
are the evaluated criterions used to explore the paramedeef the network of
CPGs to identify the best crawl pattern.

In order to achieve the desired crawl gait, it is necessagpiaropriately tune
these parameters by means of a optimization procedure. &hating optimiza-
tion problem has multiobjective nature since there arers¢eenflicting objectives.
This multiobjective problem was solved by a GA [5] appliedhe corresponding
Weighted Tchebycheff scalarized formulation [3]. Optiatinn is done online in a
simulated ers-7 AIBO robot using Webots [13].

We have already addressed a slightly different but relatedlem in a prelim-
inary experience using a genetic algorithm [16] and thetedetagnetism-like al-
gorithm [17]. In these works, we noticed that solving thislgem requires a con-
siderable computational effort. Notably because sevenadttaints are imposed in
this optimization problem. Thus, alternative techniquediandling constraints can
make the search more efficient.

This article is structured as follows. In Sect. 2, we introglseveral multiobjec-
tive optimization concepts. In Sect. 3 the optimizationigheon is formulated. Sect.
4 presents the optimization system details. Simulatedtseate presented in Sect.
5. The paper ends with a discussion and conclusions in Sect. 6

2 Multiobjective Optimization

Mathematically, a multiobjective optimization problemtkvs objectives anah de-
cision variables can be formulated as, without loss of gaditer

minf(x) = (f1(x),..., fs(x))
subjectto g(x) >0andh(x)=0
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wherex € X", g(x) andh(x) are the inequality and equality constraints, respectively

Solving multiobjective problems is a very difficult task dige in general, for
this class of problems, the objectives conflict across a-tigtensional problem
space and the computational complexity of the problem (BRHhess). Thus, the
interaction between the multiple objectives gives rise sefof efficient solutions,
known as Pareto-optimal solutions.

For a multiobjective minimization problem, a solutiaris said to dominate a
solutionb, if and only if, Vi € {1,...,s} : fi(a) < fi(b) and3j € {1,....s} : fj(a) <
fj(b). A solutiona is said to be non-dominated regarding a¥et_ X" if and only
if, there is no solution iy which dominates. The solutiora is Pareto-optimal if
and only ifais non-dominated regardir¥".

The main goal of a multiobjective algorithm is to find a good &alanced ap-
proximation to the Pareto-optimal set. Multiobjective lplems can be addressed by
scalarization methods such as the Weighted Tchebychedfitm[3]:

min f(x) = max{\WM i“:. —fix¥)|} (1)

whereW > 0 andy; ;W = 1. The weighted distance is measured to an utopian
objective vectoi= with componentds. Different combinations of the weight&

can produce different (weakly) Pareto optimal solutionise problem defined in
(1) is non differentiable and must be solved by a derivatiee falgorithm such as
genetic algorithms [3].

3 Problem Formulation

The proposed network of CPGs generates trajectories faotha limbs. Different
combinations of these trajectories for each joint in termaroplitude, offset and
frequency, result in different gait patterns.

The proposed CPGs are based on Hopf oscillators and onesictproperty is
the possibility to smoothly modulate the generated trajges according to explicit
changes in the CPG parameters: amplitude, offset and theeskmee value. There-
fore, in order to tune the CPG parameters, we use a GA to séarem optimal
combination of these parameters. Speed, vibration andistale the objectives to
optimize in order to define different walking pattern sabuis.

Robot trajectories are generated and modulated by the gedpoetwork of
CPGs, by explicitly changing the CPG parameters: ampli{i@deOffset©), and
the stance knee valu&}, for each limb. Further, the parameter swing frequency
(wsw) is common for the overall network. This means a total of 1&peeters we
need to tune to modulate trajectories. However, left ant figre and left and right
hind limb trajectories have the same amplitude, offset aeduency but a relative
phase ofrtr among them. These considerations enable us to reduce theenuin
CPG parameters required to optimize, as follows: amplitwidie fore and hind
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limbs (ArL, AqL); fore and hind limbs knee stance andgte(, Ky ); fore and hind
limbs offset O, OyL) and swing frequencyugy). Thus, the problem has 7 deci-
sion variables corresponding to the 7 CPG free parameters.

The goal is the minimization of the body vibration and maxation the veloc-
ity and wide stability margin. We have used a scalarizati@ihod based on the
minimization of the Weighted Tchebycheff function:

min f (X) = max{Wa|Fa — fa(X)|,V\A/|FV — fv(x)|,WNSM|FWSM — fWSM(X)|} (2)

where Wa, W, Wysm are weights satisfyingVa, Wy, Wysm > 0 and W, + W, +
Wusm = 1, andx = (AeL, AL, Ker, Kh, OeL, Oni, tsy) is the vector of decision
variables.

The weighted distance is measured to a reference pointae.gtopian objective
vector with components,, K, andRysy. Different combinations of the weights,,
W, andWysm can produce different (weakly) Pareto optimal solutioras thpresent
different locomotion compromises.

In (2), fa(x), fv(x) andfwsm(x) are, respectively, the robot body vibration, robot
forward velocity and wide stability margin (WSM) computed CPG parameteri-
zation given byx. We consider that a good gait should have less vibratiorg s
the robot is subjected to less strain.

In order to calculate the total vibration we sum the standhedation of the
measures of théay,ay,a,) accelerometers built-in onto the robag., std(ay) +
std(ay) + std(a;), similarly to [14, 6, 15].

We calculate forward velocity using the traveled distanicéne robot during 12
seconds. A gait is considered better if it achieves highkrcities.

For stability, we calculate the wide stability margin [18his is a measure of the
locomotion stability that provides the shortest distaneveen the projection of the
center of mass in the ground and the polygon formed by thécaégrojection in
the ground of robot feet contact points. A gait is considdretter for higher WSM
values.

The search range of the CPG network parameters directlyndepe the Aibo
Ers-7 robot. The values & andAy_ are limited by the maximum range that the
AIBO Hip joints may have. Offset valugdr_ andOy for the hips are limited by
the same ranges and the calculated amplitude vadggsandAy, , respectively.

Maximum and minimum values for each knee stance angle acaelastd in or-
der to avoid leg collision during locomotion. Thus, the desh has several simple
boundary constraints (fés, AqL, OFL, OnL andwsy), as follows

0.01< Ay, AL <60
—40<Of. <20
—20< Oy <40
1<wsw<12

()

Moreover, several inequality constraints were imposeddfg , Oy, , Kr. andKyy ),
given by



Multiobjective Optimization of a Quadruped Robot Loconootusing a GA 5

A
a0+ 2t <o <20 AR
2 2
A A
—20+ 2 <oy <402t
2 2
A
KeL < max{—OpL — % +50,—OpL + % + 50}
AFL A|:|_ (4)
KrL > max{—Opy — == +20,—OpL + —~ +20}
A A
Khe < max{—On — % +40, —OpL + % + 40}
KuL = max{ —Oni — % —5,—OnL + % -5}

4 Optimization System
A scheme of the optimization system is depicted in fig 1. Ireotd tune the CPG

Locomotion System

vibration
velocity

. parameters
Initial CPGs Robot

Fitness
Population LY 4 Servos

Evaluation

wsm

Genetic
D Algorithm

Criteria?

Best
chromosome

Fig. 1 Optimization Locomotion System

parameters, we use a GA to search the optimal combinatidred@2PG parameters.
GAs are population based algorithms that use techniquegéusby evolutionary
biology such as inheritance, mutation, selection, andsoneer [5]. GAs work with a
population of points that represent potential optimal sohs to the problem being
solved, usually referred to as chromosomes.

In this work, real representation of the variables was amrsid. So, each vector
consists of a vector of 7 real values representing the decigriables of the prob-
lem. In our optimization system, we begin the GA search byloanly generating
an initial population of chromosomes. The chromosomes weakiated according
to the fitness function defined in (2), in terms of robot bodyration, robot forward
velocity and stability.

In order to handle the simple boundary constraints, eachgemerated point is
projected component by component in order to satisfy boynetanstraints (for all
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components ox, see (3)) as follows:

|i iin<|i
Xi=4qx ifli<x <u; (5)
Ui if X > uj

wherel;, u; are the lower and upper limit afcomponent, respectively. A repair-
ing mechanism is implemented to handle the inequality caims. Therefore, any
infeasible solution is repaired exploring the relationsoam variables expressed
by the inequality constraints (see (4)), i.e., the valOeg, Oy ,Kr. andKy, are
repaired in order to satisfy the constraints. The applcadf this repairing mech-
anism to all infeasible solutions in the population, guéeas that all solutions be-
come feasible.

We implement a tournament selection that guarantees thiar lshromosomes
are more likely to be selected. Although selection assinasn the next generation
the best chromosomes will be present with a higher proligpildoes not search the
space, because it just copies the previous chromosomeseaheh results from the
creation of new chromosomes from old ones by the applicatigenetic operators.

The crossover operator takes two randomly selected chromes; one point
along their common length is randomly selected, and theacitens of the two parent
strings are swapped, thus generating two new chromosomes.

The mutation operator, randomly selects a position in therdlosome and, with
a given probability, changes the corresponding value. ®perator introduces di-
versity in the population since selection and crossovetusively, could not assure
the exploration of new regions in the search space.

In order to recombine and mutate chromosomes, the Simubatedy Crossover
(SBX) and Polynomial Mutation were considered, respebtivEhese operators
simulate the working of the traditional binary operatork [4

5 Simulation Results

In this section, we describe the experiment done in a sirdlats-7 AIBO robot
using Webots [13]. Webots is a software for the physic sitimheof robots based
on ODE, an open source physics engine for simulating 3D kgl dynamics.

The ers-7 AIBO dog robot is a 18 DOFs quadruped robot made by.Sdne
locomotion controller generates trajectories for the Imig knee joint angles, that is
8 DOFs of the robot, 2 DOFs in each leg.

At each sensorial cycle (30 ms), sensory information is seduFor each chro-
mosome, the evaluation time for locomotion was 12s. We afty@dyEuler method
with 1ms fixed integration step, to integrate the system afaégns. At the end
of each chromosome evaluation the robot is set to its iniiesition and rotation,
such that initial conditions are equal for the evaluatioralbithromosomes of all
populations.
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In all experiments, the optimization system ends when timebar of generations
exceeds 50 generations. We depict results when a populatisrestablished with
30 chromosomes. The SBX crossover and polynomial mutatiolbgbilities were,
respectively, ® and 7. An elite size of 3 chromosomes was implemented.

Table 5 presents the results obtained for several combimabtf weights in the
scalar function. As reference point considered has thevidilg components:; =
0, R, = —150 andRysy = —65. Combinations of weights defining multiobjective
problems with different number of objectives were consder

e T1toT3 correspond to the optimization of each one of the objestive

e T3toT15 are different combinations of weights of two objectivesly simul-
taneously optimized,;

o finally, T16 toT19 are combinations of weights in which the three objectares
simultaneously optimized.

In this table, the solutions obtained for each weights cowtdns are also pre-
sented, in terms of,, fy and fysy. In the last column, the value of the scalar
function is also presented (x)).

Table 1 Multiobjective results for different combinations of waig.

fa fv fWSM f(X)

0.0135 21.0471|14.6093 0.0136
0.12131385492 6.0067|114509
0.0384 4.9457 |64.6248 0.3752
0.10581251315 6.1785{19.894
0.1215127.7335 7.2684| 7.3599
0.1181) 134967 | 6.3661| 4.0242
0.11181293525 4.5230| 4.1295
0.12101357304 7.6250({11.475(
0.6 0.1125114775211.008021.5968
0.4 0.1292 89.3642|19.129427.5223
0.2| 0.8 [0.0307 17.9153|63.848326.4169
0

0

0

T1
T2
T3
T4(0.2|0.8
T5(0.4|0.6
T6(0.6|0.4
T7(0.8/0.2
T8

T9

T10
T11
T12

corlg

cooo £
m@_bl\)oooon—\oog

0.2 |0.0206 29.8379|54.8389 2.0322
T13 0.4 |0.0144 3.3254 |50.2399 5.9040
T14/0.4 0.6 |0.034q 2.9505 |63.790¢ 0.7256
T15/0.2| 0 | 0.8 |0.0249 0.5827 |63.7955 0.9635
T16|1/3|1/3| 1/3 |0.1013103588011390517.8680
T17|1/2|1/4| 1/4 |0.0699 95.7004|11537627.1494
T18|1/41/2| 1/4 |0.1081/1218231) 9.1177|27.1498
T19/1/4|1/4| 1/2 |0.1259 66.8218|19.2712422.8644

o o
CD‘..DOOOO

These solutions are also depicted in Figures 2a)-c). Asaegeit can be ob-
served that solutionE1, T2 andT 3 are the extreme solutions of the Pareto front in
Figures 2a), 2b) and 2c). The other solutions of the frontesgnt different com-
promises of the objectives. Taking into account the infdiomeprovided by these
graphs, it is possible to choose a compromise solution épaesent a differentloco-
motion gait of the robot. Moreover, it possible to inspee thlationships between
objectives.
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Fig. 2 Representation of the solutions in objective space. axitgleersus vibrationT1, T2 and
T4 to T7 combinations of weights). b) vibration versus WSML( T3 andT 12 toT 15 combina-
tions of weights). c) velocity versus WSM 2, T3 andT8 to T11 combinations of weights).

In Figure 3, the 2D projections of 3D objective space is presk Since the 3
objectives are conflicting, these solutions define a 3D Bagetface. This multi-
objective approach allows to select solutions that achieednighest velocity for a
slow, crawl gait and perceive the tradeoff in terms of vilmaand WSM.
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Fig. 3 Representation of the solutions in objective space: vloegibration and WSM T16 to
T19 combinations of weights).

6 Conclusionsand Future Work

In this article, we have addressed the locomotion optiroraif a quadruped robot.
A locomotion controller based on dynamical systems to m@RGs, generates
quadruped locomotion. These CPG parameters are tuned Ipfiamzation system.
This optimization system combines CPGs and a genetic digorivhich solves a
multiobjective formulation of the problem. The goal is tatioize simultaneously,
three conflicting objectives, namely the vibration, vetpeind WSM.

Experiments were performed in the Webots robotics simuldtee multiobjec-
tive optimization was formulated considering a scalarimafunction based on the
Weighted Tchebycheff method for different combinationsvefghts. The solutions
obtained represent locomotion strategies that are differempromises of the ob-
jectives.

We also plan to use multi-objective optimization algoritheuch as MEES [1]
or NSGAII [3]. We will extend this optimization work to adds® other locomotion
related problems, such as: the generation and switch amfeigedt gaits according
to the sensorial information and the control of locomotimection.
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