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Abstract—This paper presents experiments with a morphology-
independent, life-long strategy for online learning of locomotion
gaits, performed on a quadruped robot constructed from the
LocoKit modular robot. The learning strategy applies a stochastic
optimization algorithm to optimize eight open parameters of a
central pattern generator based gait implementation. We observe
that the strategy converges in roughly ten minutes to gaits of
similar or higher velocity than a manually designed gait and
that the strategy readapts in the event of failed actuators. In
future work we plan to study co-learning of morphological and
control parameters directly on the physical robot.

I. INTRODUCTION

Reconfigurable modular robots are polymorphic in the sense
that by assembling the modules in different configurations,
robots with different morphologies and thereby capabilities can
be constructed. Since a robot’s mobility is highly dependent
on the details of its morphology, the flexibility of a modular
morphology makes modular robots an attractive platform for
studying robot locomotion.

Control of locomotion must be designed with careful atten-
tion to the interdependence with the robot’s morphology and
environment. However, since modular robots are polymorphic,
we desire a control strategy which is not designed for a specific
morphology. The strategy should rather be adaptive to enable
optimization of a variable number of control parameters, for
a class of morphologies. The morphology of a modular robot
can change over time, either due to module failures, adding
or removing of modules, or due to voluntary morphosis.
Therefore, the strategy should ideally be life-long to enable
adaptation to changes in morphology or environment during
the lifetime of the robot.

In this paper we address the challenge of interdependence
between environment, morphology, and locomotion control
by proposing a morphology-independent, life-long, online
learning strategy. The strategy control each actuator based
on periodic actuation patterns generated by an oscillator. The
robot is controlled by a network of coupled oscillators that
form an entrained central pattern generator (CPG). To enable
life-long learning based on noisy fitness measurements we
apply the model-less Simultaneous Perturbation Stochastic
Approximation (SPSA) method [20]. The phase-shift of each
oscillator is optimized based on the robot’s measured velocity.

In previous work we studied the proposed strategy on
simulated Roombot robots [5]. This paper contributes physical
experimental validation of the proposed strategy on an 8-DOF
quadruped LocoKit robot. We successfully apply the same
online learning strategy on a LocoKit quadruped as we did
on the Roombots, although the two systems are very different
in terms of degrees of freedom and modularity. In this paper all
experiments are controlled from a single processor, but both
the control and the learning can be distributed without any
centralized control necessary (as we did in [5]).

In this paper we first in Sec. II provide an overview of
related work with a focus on adaptive locomotion of modular
robots. Then, in Sec. III, we describe the LocoKit and the
design of a quadruped utilized for experiments. The proposed
control and learning strategy is described in Sec. IV. The
experimental setup with the robot on a boom and establishment
of learning parameters is described in Sec. V. Experiments on
online learning and adaptation to failures are described in Sec.
VI. Future work and conclusions are given in Sec. VII.

II. RELATED WORK

Homogeneous reconfigurable modular robots are systems
where all the modules have the same combination of me-
chanics and electronics. Alternatively, heterogeneous modular
robots contains several types of modules with different func-
tionality, the degree to which the modules are self-contained
can vary from autonomous mobile modules [8] to mechanical
components as in LEGO MINDSTORMS. Heterogeneous sys-
tems [6], [23], [27] includes the LocoKit [13] which we utilize
in this paper. More details on the history and mechatronics of
modular robots can be found in recent surveys [22], [26].

Evolutionary algorithms are a popular way to optimize lo-
comotion gaits for modular robots. In the early 90’s, Karl Sims
pioneered the field by co-evolving the morphology and control
of simulated modular robots [19]. Later work succeeded
in transferring similar co-evolved robots from simulation to
hardware [14], [17]. An example of adaptation by evolution
in modular robots was conducted by Kamimura et al., who
evolved the coupling parameters of central pattern generators
for straight line locomotion of modular M-TRAN robots [11].
By incorporating sensory entrainment in the optimization
the authors were able to bridge the reality gap. Although



appealing, one challenge with evolutionary approaches is that
once transferred, the robot is typically no longer able to adapt
to major changes in the morphology or environment.

To overcome this limitation of evolutionary algorithms,
locomotion gaits can be optimized online. This was studied by
Marbach and Ijspeert on the YaMoR modular robotic system
[18]. Their strategy was based on Powell’s method, which
performed a localized search in the space of selected parame-
ters of coupled oscillators. Parameters were manually extracted
from the modular robot by exploiting symmetries. Follow-up
work by Spröwitz et al. demonstrated online optimization of
6 parameters on a physical robot in roughly 25-40 minutes
[21]. We also try to realize simple, robust, fast, model-free,
life-long learning on a modular robot. The main difference is
that we seek to automate the controller design further in the
sense that no parameters have to be extracted from symmetric
properties of the robot.

In most related work, control and optimization is performed
in a centralized fashion. However, our approach utilizes a
control and optimization strategy which is also appropriate for
a distributed implementation. A similar approach was taken
by Maes and Brooks who performed distributed learning of
locomotion on a 6-legged robot [15]. The learning was dis-
tributed to the legs themselves. The potential advantages of a
distributed strategy include inherent morphology independence
and fault tolerance.

Our strategy is not dependent on the robot’s specific mor-
phology. Similarly, Bongard et al. demonstrated learning of
locomotion and adaptation to changes in the configuration
of a modular robot [1]. They took a self-modeling approach,
where the robot developed a model of its own configuration
by performing basic motor actions. In a physical simulator a
model of the robot configuration was evolved to match the
sampled sensor data (from accelerometers). By co-evolving
the model with a locomotion gait, the robot could then learn
to move with different morphologies. Our work presented here
is similar in purpose but different in approach: The strategy
is simple, model-less and computationally cheap to allow
implementation on small embedded devices, such as typical
modular robots.

This paper includes experiment on adaptation after failures
of the robots actuators. It is an attractive possibility to realize
fault tolerance and self-repair by taking advantage of modular
robot’s redundancy and ability to adapt and self-reconfigure.
This has previously been demonstrated on modular robots
engaged in locomotion and self-reconfiguration [1], [2], [7],
[24], [28]. For example, in a paper by Mahadavi and Bentley
[16] the control of a snake like robot was optimized online
using a genetic algorithm. The algorithm was shown to recover
from failures in the SMAs actuating the robot.

This paper utilizes a model of central pattern generators
(CPGs) to generate actuation patterns for locomotion. For
snakes and legged robots, CPGs are often applied to control
locomotion [9]. The advantages of CPGs include: stable limit
cycle behavior, appropriate for distributed implementation, few
control parameters, suited to integrate sensory feedback sig-

nals, and offers a good substrate for learning and optimization
algorithms [9].

The choice of learning strategy critically affects the perfor-
mance of the system. An experimental comparison of different
algorithms for online optimization of locomotion gaits for the
AIBO robot was presented in a paper by Kohl and Stone [12].
They compared four machine learning algorithms and found
that simpler algorithms (hill climbing and policy gradient)
performed better on the problem than the more complex
algorithms (amoeba and genetic algorithm). In this paper we
utilize a stochastic optimization algorithm (SPSA) to optimize
the parameters of the central pattern generators. In previous
work we used distributed reinforcement learning (DRL) for
morphology independent learning of discrete actions and gait-
tables to control locomotion of modular robots [2], [4]. The
main advantage of SPSA over DRL is that it allows optimiza-
tion in a continuous space which is appropriate for central
pattern generators.

III. LOCOKIT - A ROBOTIC BUILDING KIT

The robot, used for experiments in this paper, is build from
the polymorphic modular robotic building kit called “LocoKit”
[13]. The objective of LocoKit is to realize a flexible user
reconfigurable modular robotic kit which is light weight,
affordable and can be used to quickly realize energy efficient
and robust legged robots. The LocoKit aims at realizing these
design goals through a layered heterogeneous structure, with
the following layers:

• Skeleton layer - low weight mechanical components
• Actuation layer - currently electrical servos
• Electronics layer - sensing, power and computation

The LocoKit separates the mechanics, actuation and electron-
ics in simple reconfigurable modular components to increase
flexibility and reduce the weight and complexity of individual
modules.

The LocoKit components include glass fiber-reinforced
plastic rods that connect everything in the system, and con-
nection components made of 3D printed acryl. For actuation,
the system currently uses the Dynamixel RX-10 servo. Note
that the prototype of the LocoKit used in this paper is a
relative early prototype and the details of the kit has changed
significantly in newer versions.

Based on the LocoKit components we constructed a
quadruped robot as our experimental platform, see Fig. 1(a).
Each leg is based on a 4-bar linkage which is actuated using
two actuators that are able to rotate infinite, the reachable space
of the foot is illustrated in Fig. 1(b). This design is inspired by
Theo Jansen’s StrandBeest [10]. It is a long term design goal
of the LocoKit to enable the design of energy efficient robots.
This affects several of our design choices: 1) The actuators are
placed in the body of the robot to keep the weight (and thereby
momentum) of the legs to a minimum. 2) A typical gait will be
generated by continuous phase-shifted rotations of the robots
eight actuators - by not using oscillatory actuation we avoid
that the actuators work against the momentum of itself and
its gearbox. In this paper, experiments are performed with the
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Fig. 1. (a) A quadruped robot with eight degrees of freedom constructed from the polymorphic robotic LocoKit. (b) The reachable space and two example
foot trajectories are shows for the 2 DOF leg. (c) The CPG network architecture of coupled oscillators to control the LocoKit robot. The network consists of
eight motors controlled by oscillators coupled to a single central oscillator.

servos controlled from a central PC and with external power,
for simplicity and reliability. However, the system does already
in the current version include the modules for onboard power
(batteries + power electronics boards) and onboard control
(micro-controller boards and communication boards).

IV. A STRATEGY FOR LIFE-LONG ONLINE LEARNING

This section describes an adaptive locomotion strategy
based on CPG’s for generating periodic actuation patterns for
gait implementation and SPSA for online optimization of gait
parameters.

A. Central Pattern Generator and Network Architecture

Biological CPGs are special neural circuits found in verte-
brates, able to produce a rhythmic signal without any external
sensory input, where they for example control muscles during
locomotion. We apply a CPG model for gait control because
of their ability to generate periodic actuation patterns, ability
to self-synchronize in a distributed system, open parameters
which are appropriate for optimization, and finally since CPGs
are biologically plausible. A review of CPGs and their use
in robot control can be found in [9]. The specific CPG
model we utilize is a Hopf oscillator in Cartesian space
with diffusive coupling [25]. The advantages of this model
include its simplicity, stable limit-cycle behavior, and explicit
parameters for setting phase, amplitude and frequency. For an
oscillator i the coupled differential equations are:

ẋi = γ(μ− r2i )xi − ω̄yi (1)

ẏi = γ(μ− r2i )yi + ω̄xi (2)

Where ri =
√

x2
i + y2i and the state variables are x and y. γ is

a parameter that affects the speed of convergence towards the
oscillators amplitude μ2. ω̄ is the oscillator’s frequency which
is a function of a frequency parameter, ω, and is also affected
by the sum of couplings to other oscillators. A coupling from
oscillator i to oscillator j has a weight parameter, wij , and

a desired phase difference φij . Then the oscillator may be
coupled to other oscillators using:

ω̄ = ω+

N∑
j=1

wij

ri
[(xiyj − xjyi) cosφij − (xixj + yiyj) sinφij ]

(3)
We can make the actuator oscillate with a given frequency,
phase-shift and amplitude by setting the setpoint of the actu-
ator to θ = xi. For the LocoKit robot, to make the actuator
rotate continuously we set it to θ = arctan(xi/yi) and select
the appropriate quadrant.

The LocoKit robot is programmed with nine coupled os-
cillators: eight which are used as set-points for its actuators
(Cm1, Cm2 ... Cm8) and one which acts as a central clock (Cc).
The architecture is illustrated in Fig. 1(c). The centralized ar-
chitecture can easily be made distributed without significantly
affecting the system performance, as in previous work [5].

B. Learning Algorithm

For online optimization of CPG parameters we apply the
Simultaneous Perturbation Stochastic Approximation (SPSA)
method by Spall [20]. This algorithm requires no explicit
gradient and therefore no model of the robot. It is designed to
build an approximation of the gradient from direct, generally
noisy, measurements of the objective function. Further, SPSA
only requires two measurements of the objective function
per iteration (i.e. two robot trials with different controllers)
independent on the number of adjustable parameters. Also,
these measurements are made based on small perturbations
of the same parameter set. Hence the robot’s behavior only
alters slightly while it is learning, unlike optimization based
on population-based methods such as evolutionary algorithms.
Finally, SPSA is simple to implement in a distributed fashion
since each module may independently optimize its own pa-
rameters without knowledge of the other modules parameters
or the need for any other coordination than simple synchro-
nization of when the parameters are updated.



The SPSA method optimizes the parameter set θ̂ defined by
the experimenter. In an iteration, k, it estimates the gradient,
g(θ̂), based on two noisy measurements of the objective
function y(θ̂):

ĝk(θ̂k) =
y(θ̂k + ckΔk)− y(θ̂k − ckΔk)

2ck

⎡
⎢⎢⎢⎣

Δ−1
k1

Δ−1
k2
...

Δ−1
kp

⎤
⎥⎥⎥⎦ (4)

Where ck is a learning parameter and Δk is an vector of
randomized ±1. SPSA then updates θ̂ based on ĝk(θ̂k):

Δθ̂k = −ak · ĝk(θ̂k) (5)

θ̂k+1 = θ̂k + sign(Δθ̂k) ·min(|Δθ̂k|, ε) (6)

ak is a learning parameter, we also added a max step-size, ε,
to reduce the risk of instability.

V. EXPERIMENTAL SETUP

A. Physical Setup

In the process of learning how to walk, the robot will
need the freedom to try out numerous different gaits, while
observing its locomotion speed. For our experiments we mount
the robot on a boom, which gives us the advantage of being
able to run experiments for a longer period of time without
human interaction. The boom provides threaded power to the
robot and removes 665 grams of weight of the robot (i.e. 41
percent) by using counterweights, and thereby minimizing the
risk of the robot breaking itself during the experiments. Clearly
this lift together with the momentum of the boom affects the
dynamics of the robot. We do however accept this source of
error, since the purpose of the experiments is to validate the
learning strategy on a physical robot, not to find efficient gaits
for the particular quadruped operating without a boom. The
boom has a radius of 1.5 m and an encoder measures the
position of the robot with resolution of 0.5 cm/degree in the
end of the arm where the robot is mounted. To fasten the robot
onto the boom, a universal joint is placed between the robot
and the boom, in order to make it possible for the robot to
move in the roll and pitch angle while still being fastened
in the yaw angle. The robot can move in the up/down and
forward/backward direction but not sideway.

B. Control Parameters

Several parameters need to be established before experimen-
tal trials can be performed with the robot. The reward signal
optimized by the learning system is a measurement of the
velocity. We estimate the velocity as the distance moved by
the robot in five steps, v = |pt+T − pt|/T . This corresponds
to a time of T = 5 · 1/ω = 7.14 sec, where the actuators
are set to rotate with a frequency of ω = 0.7 Hz. The
oscillators are tightly coupled with weight parameters, wij ,
as described in previous work [5]. Both learning parameters,
ck and ak, are set at fixed values to enable life-long learning.
Generally, ck can be set based on about how much the control
parameters should be changed to cause an measurable effect

Exp nr. Learning Playback
Trot - 12.9 cm/sec
1 12.8 cm/sec 13.2 cm/sec
2 13.6 cm/sec 17.5 cm/sec
3 14.7 cm/sec 16.9 cm/sec
4 13.3 cm/sec 14.3 cm/sec
5 14.0 cm/sec 15.5 cm/sec

TABLE I
AVERAGE VELOCITY IN FIVE LEARNING TRIALS.
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Fig. 3. Average of 5 trials of online learning with LocoKit quadruped. Error
bars indicate one standard deviation.

on the objective function. For our purpose we set ck = 0.025
which corresponds to a variation in the phase-shifts of ±9.0
degrees while learning. Similarly, ak can be set based on how
much a control parameter should be changed given a typical
measured velocity difference. We set ak = 0.0015 which
corresponds to a phase shift change of 10.8 degrees at a typical
1 cm/sec velocity difference. These learning parameters are set
quite high to achieve fast convergence, potentially at the cost
of convergence to a local optima or divergence.

The learning strategy optimizes the eight phase-shifts for
the eight actuators from an initial gait which has all eight
phase-shifts set to 0. For comparison we utilize an ideally
symmetrical trot gait which has four phase-shifts set to π and
four to −π. This trot gait was previously manually designed
for high velocity for the purpose of a public demonstration.
The strategy is implemented as part of the “Assemble and
Animate” (ASE) control framework for modular robots [3].

VI. EXPERIMENTS

A. Online Gait Learning

In this experiment we validate the learning strategy on the
quadruped robot. As explained above the robot is mounted on
a boom, feedback from the boom-encoder is sent wireless to a
PC using ZigBee. The PC controls the robot’s actuators based
on the proposed SPSA and CPG based strategy. In each trial
we let the robot learn for a minimum of 20 minutes until the
gait velocity has stabilized.

The reward graph of a typical learning example is shown in
Fig. 2(a). For comparison the graph also shows the measured
velocity of a manually designed trot gait which has an average
velocity of 12.9 cm/sec (with a standard deviation of σ=0.49).
We observe that the robot while learning improves its initial
velocity from around 0 cm/sec until it stabilizes around
13.0 cm/sec after approximately eight minutes. Further, when
running the final learned gait without online learning we find
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Fig. 2. Online learning with quadruped robot. (a) The reward (average robot velocity in five steps) is shown as a function of time in four cases: for a learning
gait, for the initial start-gait of learning, for a manually designed trot gait, and for the learned gait (CPG control and no learning). (b) Online learning of eight
control parameters (phase-shifts).

that the robot is moving with a velocity of 17.5 cm/sec which
is significant faster than the manually designed gait. This
increase in velocity when not learning is due to a decrease in
average velocity caused by the learning strategy’s exploration
of CPG parameters.

The adaptations of the corresponding eight open parameters
are shown in Fig. 2(b). The parameters do not show any clear
convergence towards specific values, but fluctuate over time.
However, from observing the behavior of the robot, it is clear
that the gait quickly converge to a trot-like gait.

A total of five learning trials have been run with similar
results. An overview of the results are shown in Table I. The
table shows the average velocity at the end of five learning
trials and the average velocity of “playing back” the learned
controller, i.e. CPG control without learning enabled. For
comparison also the average velocity of a manually designed
trot gait is shown. Fig. 3 illustrate the average fitness graph
for the five trials.

We observe that although the different trials converge to
different gaits they all have similar velocity (from 12.8 to 14.7
cm/sec). On average this is slightly faster (13.7 cm/sec) than
the manually designed trot gait with a velocity of 12.9 cm/sec.
The average velocity of playing back the learned gaits is 15.5

cm/sec which means that the gait variations while learning
decrease the velocity with on average 1.8 cm/sec. In the five
trials it takes 4-11 minutes (on average 8 minutes) before
the learning robot is moving with an average velocity faster
than 12 cm/sec. This fast convergence confirms our results
with simulated Roombots which would optimize 45-54 open
parameters in 5-30 min. to gaits with 35-50% faster velocity
than gaits found by blind random search [5].

In summary the learning strategy is fast, reliable, and
effective in converging to gaits comparable or slightly better
than the manually designed gait.

B. Online Adaptation to Failures

In this experiment we use the quadruped LocoKit robot to
study the strategy’s ability to adapt to failures of the actuators.
In both experiments we let the robot continue to learn after
several of the actuators has been stopped in a predefined
position to simulate a failure of the actuators.

In the first experiment the two actuators controlling a back
leg is stopped. The result is shown in Fig. 4(a). If learning is
not enabled the robot’s average velocity drops to 6.9 cm/sec,
however, due to the online learning the robot regains an
average velocity of 9.61 cm/sec while learning. Although we
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Fig. 4. Online adaptation to actuator failures in the LocoKit quadruped. (a) The effect of single back leg failure (two actuators stops). (b) The effect of
failure on all knees (four actuators stop).



cannot make strong conclusions based on a single trial, we
expect this to be a beneficial effect of adaptation. Simulation
experiments on adaptation to failures shows a significant effect
for the same strategy in previous work [5].

In the second experiment four actuators controlling the
“knee” of each leg is stopped. The result is shown in Fig. 4(b).
This causes the velocity to drop to 12.2 cm/sec (no learning).
If learning is enabled the robot achieves an average velocity
of 13.1 cm/sec while learning and of 14.4 cm/sec if executing
the learned gait. In this trial the effect of adaptation is less
clear. In fact is seems that the quick drop in velocity due
to the failure, makes the gait diverge temporary to an less
efficient gait, which the strategy then readapts to its previous
performance within a couple of minutes.

In summary the experiments indicate that the online learning
strategy is able to adapt to morphological changes such as
failed actuators, but the concrete effect depends on complex
interactions between the robot, its environment, the control
system, and the type of failure.

VII. CONCLUSION AND FUTURE WORK

This paper described a control strategy for online life-long
learning of locomotion gaits. The strategy was experimen-
tally evaluated on a robot constructed from the polymorphic
robotic LocoKit. We found that the strategy was able to find
efficient locomotion gaits by online optimization of eight
open parameters on average within 10 minutes. We also
performed experiments on continued adaptation after failures
of several actuators and found that the system was able to
readapt after such failures. In future work we will refine
the mechanical components of the LocoKit and extend the
system with components that enables the system to change
its morphology online. We can then study online co-learning
of morphological and control parameters. Further, numerous
improvements could be studied for the proposed strategy, most
significantly, adaptive learning parameters in order to make the
strategy even more generic.
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