47 research outputs found

    Learning Aggregation Functions

    Full text link
    Learning on sets is increasingly gaining attention in the machine learning community, due to its widespread applicability. Typically, representations over sets are computed by using fixed aggregation functions such as sum or maximum. However, recent results showed that universal function representation by sum- (or max-) decomposition requires either highly discontinuous (and thus poorly learnable) mappings, or a latent dimension equal to the maximum number of elements in the set. To mitigate this problem, we introduce a learnable aggregation function (LAF) for sets of arbitrary cardinality. LAF can approximate several extensively used aggregators (such as average, sum, maximum) as well as more complex functions (e.g., variance and skewness). We report experiments on semi-synthetic and real data showing that LAF outperforms state-of-the-art sum- (max-) decomposition architectures such as DeepSets and library-based architectures like Principal Neighborhood Aggregation, and can be effectively combined with attention-based architectures.Comment: Extended version (with proof appendix) of paper that is to appear in Proceedings of IJCAI 202

    A Comprehensive Study on Knowledge Graph Embedding over Relational Patterns Based on Rule Learning

    Full text link
    Knowledge Graph Embedding (KGE) has proven to be an effective approach to solving the Knowledge Graph Completion (KGC) task. Relational patterns which refer to relations with specific semantics exhibiting graph patterns are an important factor in the performance of KGE models. Though KGE models' capabilities are analyzed over different relational patterns in theory and a rough connection between better relational patterns modeling and better performance of KGC has been built, a comprehensive quantitative analysis on KGE models over relational patterns remains absent so it is uncertain how the theoretical support of KGE to a relational pattern contributes to the performance of triples associated to such a relational pattern. To address this challenge, we evaluate the performance of 7 KGE models over 4 common relational patterns on 2 benchmarks, then conduct an analysis in theory, entity frequency, and part-to-whole three aspects and get some counterintuitive conclusions. Finally, we introduce a training-free method Score-based Patterns Adaptation (SPA) to enhance KGE models' performance over various relational patterns. This approach is simple yet effective and can be applied to KGE models without additional training. Our experimental results demonstrate that our method generally enhances performance over specific relational patterns. Our source code is available from GitHub at https://github.com/zjukg/Comprehensive-Study-over-Relational-Patterns.Comment: This paper is accepted by ISWC 202

    Analyzing Granger causality in climate data with time series classification methods

    Get PDF
    Attribution studies in climate science aim for scientifically ascertaining the influence of climatic variations on natural or anthropogenic factors. Many of those studies adopt the concept of Granger causality to infer statistical cause-effect relationships, while utilizing traditional autoregressive models. In this article, we investigate the potential of state-of-the-art time series classification techniques to enhance causal inference in climate science. We conduct a comparative experimental study of different types of algorithms on a large test suite that comprises a unique collection of datasets from the area of climate-vegetation dynamics. The results indicate that specialized time series classification methods are able to improve existing inference procedures. Substantial differences are observed among the methods that were tested

    Building robust prediction models for defective sensor data using Artificial Neural Networks

    Get PDF
    Predicting the health of components in complex dynamic systems such as an automobile poses numerous challenges. The primary aim of such predictive systems is to use the high-dimensional data acquired from different sensors and predict the state-of-health of a particular component, e.g., brake pad. The classical approach involves selecting a smaller set of relevant sensor signals using feature selection and using them to train a machine learning algorithm. However, this fails to address two prominent problems: (1) sensors are susceptible to failure when exposed to extreme conditions over a long periods of time; (2) sensors are electrical devices that can be affected by noise or electrical interference. Using the failed and noisy sensor signals as inputs largely reduce the prediction accuracy. To tackle this problem, it is advantageous to use the information from all sensor signals, so that the failure of one sensor can be compensated by another. In this work, we propose an Artificial Neural Network (ANN) based framework to exploit the information from a large number of signals. Secondly, our framework introduces a data augmentation approach to perform accurate predictions in spite of noisy signals. The plausibility of our framework is validated on real life industrial application from Robert Bosch GmbH.Comment: 16 pages, 7 figures. Currently under review. This research has obtained funding from the Electronic Components and Systems for European Leadership (ECSEL) Joint Undertaking, the framework programme for research and innovation Horizon 2020 (2014-2020) under grant agreement number 662189-MANTIS-2014-

    Label Attention Network for sequential multi-label classification: you were looking at a wrong self-attention

    Full text link
    Most of the available user information can be represented as a sequence of timestamped events. Each event is assigned a set of categorical labels whose future structure is of great interest. For instance, our goal is to predict a group of items in the next customer's purchase or tomorrow's client transactions. This is a multi-label classification problem for sequential data. Modern approaches focus on transformer architecture for sequential data introducing self-attention for the elements in a sequence. In that case, we take into account events' time interactions but lose information on label inter-dependencies. Motivated by this shortcoming, we propose leveraging a self-attention mechanism over labels preceding the predicted step. As our approach is a Label-Attention NETwork, we call it LANET. Experimental evidence suggests that LANET outperforms the established models' performance and greatly captures interconnections between labels. For example, the micro-AUC of our approach is 0.95360.9536 compared to 0.75010.7501 for a vanilla transformer. We provide an implementation of LANET to facilitate its wider usage

    Branched Variational Autoencoder Classifiers

    Full text link
    This paper introduces a modified variational autoencoder (VAEs) that contains an additional neural network branch. The resulting branched VAE (BVAE) contributes a classification component based on the class labels to the total loss and therefore imparts categorical information to the latent representation. As a result, the latent space distributions of the input classes are separated and ordered, thereby enhancing the classification accuracy. The degree of improvement is quantified by numerical calculations employing the benchmark MNIST dataset for both unrotated and rotated digits. The proposed technique is then compared to and then incorporated into a VAE with fixed output distributions. This procedure is found to yield improved performance for a wide range of output distributions

    AdaCC: Cumulative Cost-Sensitive Boosting for Imbalanced Classification

    Get PDF
    Class imbalance poses a major challenge for machine learning as most supervised learning models might exhibit bias towards the majority class and under-perform in the minority class. Cost-sensitive learning tackles this problem by treating the classes differently, formulated typically via a user-defined fixed misclassification cost matrix provided as input to the learner. Such parameter tuning is a challenging task that requires domain knowledge and moreover, wrong adjustments might lead to overall predictive performance deterioration. In this work, we propose a novel cost-sensitive boosting approach for imbalanced data that dynamically adjusts the misclassification costs over the boosting rounds in response to model's performance instead of using a fixed misclassification cost matrix. Our method, called AdaCC, is parameter-free as it relies on the cumulative behavior of the boosting model in order to adjust the misclassification costs for the next boosting round and comes with theoretical guarantees regarding the training error. Experiments on 27 real-world datasets from different domains with high class imbalance demonstrate the superiority of our method over 12 state-of-the-art cost-sensitive boosting approaches exhibiting consistent improvements in different measures, for instance, in the range of [0.3%-28.56%] for AUC, [3.4%-21.4%] for balanced accuracy, [4.8%-45%] for gmean and [7.4%-85.5%] for recall.Comment: 30 page

    Videoprompter: an ensemble of foundational models for zero-shot video understanding

    Full text link
    Vision-language models (VLMs) classify the query video by calculating a similarity score between the visual features and text-based class label representations. Recently, large language models (LLMs) have been used to enrich the text-based class labels by enhancing the descriptiveness of the class names. However, these improvements are restricted to the text-based classifier only, and the query visual features are not considered. In this paper, we propose a framework which combines pre-trained discriminative VLMs with pre-trained generative video-to-text and text-to-text models. We introduce two key modifications to the standard zero-shot setting. First, we propose language-guided visual feature enhancement and employ a video-to-text model to convert the query video to its descriptive form. The resulting descriptions contain vital visual cues of the query video, such as what objects are present and their spatio-temporal interactions. These descriptive cues provide additional semantic knowledge to VLMs to enhance their zeroshot performance. Second, we propose video-specific prompts to LLMs to generate more meaningful descriptions to enrich class label representations. Specifically, we introduce prompt techniques to create a Tree Hierarchy of Categories for class names, offering a higher-level action context for additional visual cues, We demonstrate the effectiveness of our approach in video understanding across three different zero-shot settings: 1) video action recognition, 2) video-to-text and textto-video retrieval, and 3) time-sensitive video tasks. Consistent improvements across multiple benchmarks and with various VLMs demonstrate the effectiveness of our proposed framework. Our code will be made publicly available
    corecore