22,346 research outputs found

    Neuron-level fuzzy memoization in RNNs

    Get PDF
    The final publication is available at ACM via http://dx.doi.org/10.1145/3352460.3358309Recurrent Neural Networks (RNNs) are a key technology for applications such as automatic speech recognition or machine translation. Unlike conventional feed-forward DNNs, RNNs remember past information to improve the accuracy of future predictions and, therefore, they are very effective for sequence processing problems. For each application run, each recurrent layer is executed many times for processing a potentially large sequence of inputs (words, images, audio frames, etc.). In this paper, we make the observation that the output of a neuron exhibits small changes in consecutive invocations. We exploit this property to build a neuron-level fuzzy memoization scheme, which dynamically caches the output of each neuron and reuses it whenever it is predicted that the current output will be similar to a previously computed result, avoiding in this way the output computations. The main challenge in this scheme is determining whether the new neuron's output for the current input in the sequence will be similar to a recently computed result. To this end, we extend the recurrent layer with a much simpler Bitwise Neural Network (BNN), and show that the BNN and RNN outputs are highly correlated: if two BNN outputs are very similar, the corresponding outputs in the original RNN layer are likely to exhibit negligible changes. The BNN provides a low-cost and effective mechanism for deciding when fuzzy memoization can be applied with a small impact on accuracy. We evaluate our memoization scheme on top of a state-of-the-art accelerator for RNNs, for a variety of different neural networks from multiple application domains. We show that our technique avoids more than 24.2% of computations, resulting in 18.5% energy savings and 1.35x speedup on average.Peer ReviewedPostprint (author's final draft

    Approximate FPGA-based LSTMs under Computation Time Constraints

    Full text link
    Recurrent Neural Networks and in particular Long Short-Term Memory (LSTM) networks have demonstrated state-of-the-art accuracy in several emerging Artificial Intelligence tasks. However, the models are becoming increasingly demanding in terms of computational and memory load. Emerging latency-sensitive applications including mobile robots and autonomous vehicles often operate under stringent computation time constraints. In this paper, we address the challenge of deploying computationally demanding LSTMs at a constrained time budget by introducing an approximate computing scheme that combines iterative low-rank compression and pruning, along with a novel FPGA-based LSTM architecture. Combined in an end-to-end framework, the approximation method's parameters are optimised and the architecture is configured to address the problem of high-performance LSTM execution in time-constrained applications. Quantitative evaluation on a real-life image captioning application indicates that the proposed methods required up to 6.5x less time to achieve the same application-level accuracy compared to a baseline method, while achieving an average of 25x higher accuracy under the same computation time constraints.Comment: Accepted at the 14th International Symposium in Applied Reconfigurable Computing (ARC) 201

    Machine Learning Based Auto-tuning for Enhanced OpenCL Performance Portability

    Full text link
    Heterogeneous computing, which combines devices with different architectures, is rising in popularity, and promises increased performance combined with reduced energy consumption. OpenCL has been proposed as a standard for programing such systems, and offers functional portability. It does, however, suffer from poor performance portability, code tuned for one device must be re-tuned to achieve good performance on another device. In this paper, we use machine learning-based auto-tuning to address this problem. Benchmarks are run on a random subset of the entire tuning parameter configuration space, and the results are used to build an artificial neural network based model. The model can then be used to find interesting parts of the parameter space for further search. We evaluate our method with different benchmarks, on several devices, including an Intel i7 3770 CPU, an Nvidia K40 GPU and an AMD Radeon HD 7970 GPU. Our model achieves a mean relative error as low as 6.1%, and is able to find configurations as little as 1.3% worse than the global minimum.Comment: This is a pre-print version an article to be published in the Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). For personal use onl

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    A general guide to applying machine learning to computer architecture

    Get PDF
    The resurgence of machine learning since the late 1990s has been enabled by significant advances in computing performance and the growth of big data. The ability of these algorithms to detect complex patterns in data which are extremely difficult to achieve manually, helps to produce effective predictive models. Whilst computer architects have been accelerating the performance of machine learning algorithms with GPUs and custom hardware, there have been few implementations leveraging these algorithms to improve the computer system performance. The work that has been conducted, however, has produced considerably promising results. The purpose of this paper is to serve as a foundational base and guide to future computer architecture research seeking to make use of machine learning models for improving system efficiency. We describe a method that highlights when, why, and how to utilize machine learning models for improving system performance and provide a relevant example showcasing the effectiveness of applying machine learning in computer architecture. We describe a process of data generation every execution quantum and parameter engineering. This is followed by a survey of a set of popular machine learning models. We discuss their strengths and weaknesses and provide an evaluation of implementations for the purpose of creating a workload performance predictor for different core types in an x86 processor. The predictions can then be exploited by a scheduler for heterogeneous processors to improve the system throughput. The algorithms of focus are stochastic gradient descent based linear regression, decision trees, random forests, artificial neural networks, and k-nearest neighbors.This work has been supported by the European Research Council (ERC) Advanced Grant RoMoL (Grant Agreemnt 321253) and by the Spanish Ministry of Science and Innovation (contract TIN 2015-65316P).Peer ReviewedPostprint (published version
    • …
    corecore