
Neuron-Level Fuzzy Memoization in RNNs

Franyell Silfa
Universitat Politècnica de Catalunya

Barcelona, Spain
fsilfa@ac.upc.edu

Gem Dot
Universitat Politècnica de Catalunya

Barcelona, Spain
gdot@ac.upc.edu

Jose-Maria Arnau
Universitat Politècnica de Catalunya

Barcelona, Spain
jarnau@ac.upc.edu

Antonio Gonzàlez
Universitat Politècnica de Catalunya

Barcelona, Spain
antonio@ac.upc.edu

ABSTRACT

Recurrent Neural Networks (RNNs) are a key technology for ap-
plications such as automatic speech recognition or machine trans-
lation. Unlike conventional feed-forward DNNs, RNNs remember
past information to improve the accuracy of future predictions and,
therefore, they are very effective for sequence processing problems.

For each application run, each recurrent layer is executed many
times for processing a potentially large sequence of inputs (words,
images, audio frames, etc.). In this paper, we make the observation
that the output of a neuron exhibits small changes in consecutive
invocations. We exploit this property to build a neuron-level fuzzy
memoization scheme, which dynamically caches the output of each
neuron and reuses it whenever it is predicted that the current output
will be similar to a previously computed result, avoiding in this
way the output computations.

The main challenge in this scheme is determining whether the
new neuron’s output for the current input in the sequence will be
similar to a recently computed result. To this end, we extend the
recurrent layer with a much simpler Bitwise Neural Network (BNN),
and show that the BNN and RNN outputs are highly correlated:
if two BNN outputs are very similar, the corresponding outputs
in the original RNN layer are likely to exhibit negligible changes.
The BNN provides a low-cost and effective mechanism for deciding
when fuzzy memoization can be applied with a small impact on
accuracy.

We evaluate our memoization scheme on top of a state-of-the-art
accelerator for RNNs, for a variety of different neural networks
from multiple application domains. We show that our technique
avoids more than 24.2% of computations, resulting in 18.5% energy
savings and 1.35x speedup on average.

CCS CONCEPTS

•Computer systems organization→NeuralNetworks; •Com-

puting Methodologies →Machine Learning;

KEYWORDS

Recurrent Neural Networks, Long Short Term Memory, Binary
Networks, Memoization

ACM Reference format:

Franyell Silfa, Gem Dot, Jose-Maria Arnau, and Antonio Gonzàlez. 2019.
Neuron-Level Fuzzy Memoization in RNNs. In Proceedings of The 52nd

Annual IEEE/ACM International Symposium on Microarchitecture, Columbus,

OH, USA, October 12–16, 2019 (MICRO-52), 12 pages.
https://doi.org/10.1145/3352460.3358309

1 INTRODUCTION

Recurrent Neuronal Networks (RNNs) represent the state-of-the-art
solution for many sequence processing problems such as speech
recognition [15], machine translation [34] or automatic caption gen-
eration [32]. Not surprisingly, data recently published in [20] show
that around 30% ofmachine learningworkloads in Google’s datacen-
ters are RNNs, whereas Convolutional Neuronal Networks (CNNs)
only represent 5% of the applications. Unlike CNNs, RNNs use in-
formation of previously processed inputs to improve the accuracy
of the output, and they can process variable length input/output
sequences.

Although RNN training can be performed efficiently on GPUs [7],
RNN inference is more challenging. The small batch size (just one
input sequence per batch) and the data dependencies in recurrent
layers severely constrain the amount of parallelism. Hardware accel-
eration is key for achieving high-performance and energy-efficient
RNN inference and, to this end, several RNN accelerators have been
recently proposed [17, 18, 22, 23].

Neurons in an RNN are recurrently executed for processing the
elements in an input sequence. An analysis of the output results
reveals that many neurons produce very similar outputs for con-
secutive elements in the input sequence. On average, the relative
difference between the current and previous output of a neuron
is smaller than 23% in our set of RNNs, whereas previous work
in [28] has reported similar results. Since RNNs are inherently error
tolerant [36], we propose to exploit the aforementioned property
to save computations by using a neuron-level fuzzy memoization
scheme. With this approach, the outputs of a neuron are dynami-
cally cached in a local memoization buffer. When the next output is
predicted to be extremely similar to the previously computed result,
the neuron’s output is read from the memoization buffer rather
than recalculating it, avoiding all the corresponding computations
and memory accesses.

1

MICRO-52, October 12–16, 2019, Columbus, OH, USA Silfa, et al.

0 0.1 0.2 0.3 0.4 0.5 0.6
Threshold

0
2

5

10

15

20

W
ER

 L
os

s (
%

)

0

10

20

30

40

50

60

70

80

C
om

pu
ta

tio
n

R
eu

se
 (%

)

DeepSpeech

WER Loss
Computation Reuse

0 0.1 0.2 0.3 0.4 0.5 0.6
Threshold

0
2

5

10

15

20

W
ER

 L
os

s (
%

)

0

10

20

30

40

50

60

70

80

C
om

pu
ta

tio
n

R
eu

se
 (%

)

EESEN

WER Loss
Computation Reuse

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Threshold

0

5

10

15

20

25

A
cc

ur
ac

y
Lo

ss
 (%

)

0

10

20

30

40

50

60

70

C
om

pu
ta

tio
n

R
eu

se
 (%

)

IMDB Sentiment

Accuracy Loss
Computation Reuse

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Threshold

0

2

5

10

15

B
le

u
Lo

ss
 (%

)

0

10

20

30

40

50

60

C
om

pu
ta

tio
n

R
eu

se
 (%

)

Machine Translation

Bleu Loss
Computation Reuse

Figure 1: Accuracy loss of different RNNs versus the relative output error threshold using an oracle predictor. If the difference

between the previous and current output predicted is smaller than the threshold, the memoized output is employed instead

of calculating the new one.

Figure 1 shows the potential benefits of this memoization scheme
by using an oracle that accurately predicts the relative difference
between the next output of the neuron and the previous output
stored in the memoization buffer. The memoized value is used
when this difference is smaller than a given threshold, shown in
the x-axis of Figure 1. As it can be seen, the RNNs can tolerate
relative errors in the outputs of a neuron in the range of 30-50%
with a negligible impact on accuracy. With these thresholds, a
memoization scheme with an oracle predictor can save more than
30% of the computations.

A key challenge for our memoization scheme is how to predict
the difference between the current output and the previous output
stored in the memoization buffer, without performing all the corre-
sponding neuron computations. To this end, we propose to extend
each recurrent layer with a Bitwise Neural Network (BNN) [21]. We
do this by reducing each input and weight to one bit that represents
the sign as described in [11]. We found that BNN outputs are highly
correlated with the outputs of the original recurrent layer, i.e. a sim-
ilar BNN outputs indicates a high likelihood of having similar RNN
output (although BNN outputs are very different to RNN outputs).
The BNN is extremely small, hardware-friendly and very effective
at predicting when memoization can be safely applied.

Note that by simply looking at the inputs, i.e. predicting that
similar inputs will produce similar outputs, might not be accurate.
Small changes in an input that is multiplied by a large weight will
introduce a significant change in the output of the neuron. Our
BNN approach takes into account both the inputs and the weights.

In short, we propose a neuron-level hardware-based fuzzy mem-
oization scheme that works as follows. The output of a neuron in

the last execution is dynamically cached in a memoization table,
together with the output of the corresponding BNN. For every new
input in the sequence, the BNN is first computed and the result is
compared with the BNN output stored in the memoization table. If
the difference between the new BNN output and the cached output
is smaller than a threshold, the neuron’s cached output is used as
the current output, avoiding all the associated computations and
memory accesses in the RNN. Otherwise, the neuron is evaluated
and the memoization table is updated.

Note that only using the BNN would result in a large accuracy
loss as reported elsewhere [27]. In this paper, we take a completely
different approach and use the BNN to predict when memoization
can be safely applied with negligible impact on accuracy. The inex-
pensive BNN is computed for every element of the sequence and
every neuron, whereas the large RNN is evaluated on demand as
indicated by the BNN. By doing so, we maintain high accuracy
while saving more than 24.2% of RNN computations.

In this paper we make the following contributions:

• We provide an evaluation of the outputs of neurons in re-
current layers, and show that they exhibit small changes in
consecutive executions.

• We propose a fuzzy memoization scheme that avoids more
than 24.2% of neuron evaluations by reusing previosly com-
puted results stored in a memoization buffer.

• We propose the use of a BNN to determine when memoiza-
tion can be applied with small impact on accuracy. We show
that BNN and RNN outputs are highly correlated.

2

Neuron-Level Fuzzy Memoization in RNNs MICRO-52, October 12–16, 2019, Columbus, OH, USA

Figure 2: Structure of a LSTM cell. � denotes an element-

wise multiplication of two vectors. ϕ denotes the hyperbolic

tangent.

Figure 3: Structure of a GRU cell.

• We implement our neuron-level memoization scheme on top
of a state-of-the-art RNN accelerator. The required hardware
introduces a negligible area overhead, while it provides 1.35x
speedup and 18.5% energy savings on average for several
RNNs.

2 BACKGROUND

2.1 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a state-of-the-art machine
learning approach that has achieved tremendous success in ap-
plications such as machine translation or video description. The
key characteristic of RNNs is that they include loops, a.k.a. recur-
rent connections, that allow the information to persist from one
time-step of execution to the next ones and, hence, they have the
potential to use unbounded context information (i.e. past or fu-
ture) to make predictions. Another important feature is that RNNs
are recurrently executed for every element of the input sequence
and, thus, they are able to handle input and output with variable
length. Because of these characteristics, RNNs provide an effective
framework for sequence-to-sequence applications (e.g. machine
translation), where they outperform feed forward Deep Neural
Networks (DNNs) [16, 29].

Basic RNN architectures can capture and exploit short term de-
pendencies in the input sequence. However, capturing long term
dependencies is challenging since useful information tend to dilute
over time. In order to exploit long term dependencies, Long Short
Term Memory (LSTM) [19] and Gated Recurrent Units (GRU) [10]
networks were proposed. These types of RNNs represent the most
successful and widely used RNN architectures. They have achieved
tremendous succcess for a variety of applications such as speech
recognition [5, 24], machine translation [9] and video descrip-
tion [32]. The next subsections provide further details on the struc-
ture and behavior of these networks.

2.1.1 Deep RNNs. RNNs are composed of multiple layers that
are stacked together to create deep RNNs. Each of these layers
consists of an LSTM or a GRU cell. In addition, these layers can be
unidirectional or bidirectional. Unidirectional layers only use past
information to make predictions, whereas bidirectional LSTM or
GRU networks use both past and future context.

The input sequence (X) is composed of N elements, i.e. X =
[x1,x2, ...,xN], which are processed by an LSTM or GRU cell in
the forward direction, i.e. from x1 to xN . For backward layers in
bidirectional RNNs, the input sequence is evaluated in the backward
direction, i.e from xN to x1.

2.1.2 LSTM Cell. Figure 2 shows the structure of an LSTM cell.
The key component is the cell state (ct), which is stored in the cell
memory. The cell state is updated by using three fully connected
single-layer neural networks, a.k.a. gates. The input gate, (it , whose
computations are shown in Equation 1) decides how much of the
input information, xt , will be added to the cell state. The forget gate
(ft , shown in Equation 2) determines howmuch information will be
erased from the cell state (ct−1). The updater gate (дt , Equation 3)
controls the amount of input information that is being considered
a candidate to update the cell state (ct). Once these three gates are
executed, the cell state is updated according to Equation 4. Finally,
the output gate (ot , Equation 5) decides the amount of information
that will be emitted from the cell to create the output (ht).

Figure 4 shows the computations carried out by an LSTM cell. As
it can be seen, a neuron in each gate has two types of connections:
forward connections that operate on xt and recurrent connections
that take as input ht−1. The evaluation of a neuron in one of these
gates requires a dot product between weights in forward connec-
tions and xt , and another dot product between weights in recurrent
connections and ht−1. Next, a peephole connection [13] and a bias
are also applied, followed by the computation of an activation func-
tion, typically a sigmoid or hyperbolic tangent.

2.1.3 GRU Cell. Analogous to an LSTM cell, a GRU cell includes
gates to control the flow of information inside the cell. However,
GRU cells do not have an independent memory cell (i.e. cell state).
As it can be seen in Figure 3, in a GRU cell the update gate (zt)
controls how much of the candidate information (дt) is used to
update the cell activation. On the other hand, the reset gate (rt)
modulates the amount of information that is removed from the
previous computed state. Note that GRUs do not include an output
gate and, hence, the whole state of the cell is exposed at each
timestep. The computations carried out by each gate in a GRU cell
are very similar to those in Equations 1, 2 and 3. We omit them for

3

MICRO-52, October 12–16, 2019, Columbus, OH, USA Silfa, et al.

it = σ (Wixxt +Wihht−1 + bi) (1)

ft = σ (Wf xxt +Wf hht−1 + bf) (2)

дt = ϕ(Wдxxt +Wдhht−1 + bд) (3)

ct = ft � ct−1 + it � дt (4)

ot = σ (Woxxt +Wohht−1 + bo) (5)

ht = ot � ϕ(ct) (6)

Figure 4: Computations of an LSTM cell. �, ϕ, and σ de-

note element-wise multiplication, hyperbolic tangent and

sigmoid function respectively.

the sake of brevity, the exact details are provided in [10]. For the
rest of the paper, we used the term RNN cell to refer to both LSTM
and GRU cells.

2.2 Binarized Neural Networks

State-of-the-art DNNs typically consist of millions of parameters
(a.k.a. weights) represented as floating point numbers using 32
or 16 bits and, hence, their storage requirements are quite large.
Linear quantization may be used to reduce memory footprint and
improve performance [20, 34]. In addition, real-time evaluation of
DNNs requires a high energy cost. As an attempt to improve the
energy-efficiency of DNNs, Binarized Neural Networks (BNNs) [11]
or Bitwise Neural Networks [21] are a promising alternative to
conventional DNNs. BNNs use one-bit weights and inputs that are
constrained to +1 or -1. Typically, the binarization is done using
the following function:

xb =

{
+1 if x >= 0,

−1 otherwise,
(7)

where x is either a weight or an input and xb is the binarized value
which is stored as 0 or 1. Regarding the output of a given neuron,
its computation is analogous to conventional DNNs, but employing
the binarized version of weights and inputs, as shown in Equation 8:

ybt =
∑

wbxbt (8)

wherewb and xbt are the binarized weight and input vectors respec-

tively. Note that evaluating the neuron output (ybt) only involves
multiplications and additions that, with binarized operands, can
be computed with XNORs and integer adders. BNN evaluation is
orders of magnitude more efficient, in terms of both performance
and energy, than conventional DNNs [11]. Nonetheless, DNNs and
RNNs still deliver significantly higher accuracy than BNNs [27].

2.3 Fuzzy Memoization

Memoization is a well-known optimization technique used to im-
prove performance and energy consumption that has been used
both in software [2] and hardware [14]. In some applications, a
given function is executed many times, but the inputs of different
executions are not always different. Memoization exploits this fact

0 10 20 30 40 50 60 70 80 90 100
Cummulative % of neurons (%)

0

10

20

30

40

50

60

70

80

90

100

R
el

at
iv

e
O

up
ut

 D
iff

er
en

ce
 (%

)

EESEN
Deepspeech
Machine Translation
IMDB Sentiment

Figure 5: Relative change in neuron output between consec-

utive input elements.

to avoid these redundant computations by reusing the result of a
previous evaluation. In general, the first time an input is evaluated,
the result is cached in a memoization table. Subsequent evaluations
probe the memoization table and reuse previously cached results if
the current input matches a previous execution.

In a classical memoization scheme, a memoized value is only
reused when it is known to be equal to the real output of the com-
putation. However, for some applications such as multimedia [4],
graphics [8], and neural networks [36], this scheme can be extended
to tolerate a small loss in accuracy with negligible impact in the
quality of the results, and is normally referred to as fuzzy memo-
ization.

3 NEURON LEVEL MEMOIZATION

In this section, we propose a novel memoization scheme to reduce
computations and memory accesses in RNNs. First, we discuss
the main performance and energy bottlenecks on state-of-the-art
hardware accelerators for RNN inference. Next, we introduce the
key idea for our neuron-level fuzzy memoization technique. Finally,
we describe the hardware implementation of our technique.

3.1 Motivation

As shown in Figure 4, RNN inference involves the evaluation of
multiple single-layer feed-forward neural networks or gates that,
from a computational point of view, consist of multiplying a weight
matrix by an input vector (xt for forward connections and ht−1
for recurrent connections). Typically, the number of elements in
the weight matrices ranges from a few thousands to millions of
elements and, thus, fetching them from on-chip buffers or main
memory is one of the major sources of energy consumption. Not
surprisingly, it accounts for up to 80% of the total energy consump-
tion in state-of-the-art accelerators [30]. For this reason, a very
effective way of saving energy in RNNs is to avoid fetching the
synaptic weights. In addition, avoiding the corresponding compu-
tations also increases the energy savings. In this work, we leverage

4

Neuron-Level Fuzzy Memoization in RNNs MICRO-52, October 12–16, 2019, Columbus, OH, USA

δ =

����yot − ym

yot

���� (9)

yt =

{
ym if δ <= θ

yot otherwise,
(10)

ym =

{
yot if δ > θ

not updated otherwise,
(11)

Figure 6: Neuron Level memoization with Oracle Predictor.

yt is the neuron output. ym corresponds to the memoized

evaluation and yot is the output of the Oracle predictor. δ ,
θ are the relative error and the maximum allowed output

error respectively.

fuzzy memoization to selectively avoid neurons evaluations and,
hence, to avoid their corresponding memory accesses and compu-
tations. For fuzzy memoization to be effective, applications must
be tolerant to small errors and its hardware implementation must
be simple. In the next sections, we show that RNNs are resilient
to small errors in the outputs of the neurons, and we provide an
efficient implementation of the memoization scheme that requires
simple hardware support.

3.1.1 RNNs Redundancy. Memoization schemes rely on a high
degree of redundancy in the computations. For RNNs, a key obser-
vation is that the output of a given neuron tends to change lightly
between consecutive input elements. Note that RNNs are used in
sequence processing problems such as speech recognition or video
processing, where RNN inputs in consecutive time steps tend to
be extremely similar. Prior work in [28] reports high similarity
across consecutive frames of audio or video. Not surprisingly, our
own numbers for our set of RNNs also support this claim. Figure 5
shows the relative difference between consecutive outputs of a
neuron in our set of RNNs. As it can be seen, a neuron’s output
exhibits small changes (less than 10%) for 25% of consecutive input
elements. On average, consecutive outputs change by 23%. Further-
more, RNNs can tolerate small errors in the neuron output [36].
This observation is supported by data shown in Figure 1, where
the accuracy curve shows the accuracy loss when the output of a
neuron is reused using fuzzy memoization, for different thresholds
(x-axis) that control the aggressiveness of the memoization scheme.
For this study, the relative error (δ) between a predicted neuron
output (y

p
t) and a previously cached neuron output (ym) is used as

the discriminating factor to decide whether the previous output is
reused, as shown in Figure 6. To evaluate the potential benefits of a
memoization scheme, the predicted value is provided by an Oracle
predictor which is 100% accurate, i.e its prediction is always equal
to the neuron output (y

p
t = yt). As shown in Figure 1, neurons

can tolerate a relative output error between 0.3 and 0.5 without
significantly affecting the overall network accuracy (i.e, accuracy
loss smaller than 1%). On the other hand, the reuse curve shows the
percentage of neuron computations that could be avoided through
this memoization with an Oracle predictor. Note that by allowing
neurons to have an output error between 0.3 to 0.5, at least 30% of
the total network computations could be avoided.

-5 -4 -3 -2 -1 0 1 2 3 4 5
Full-precision Output

-200

-150

-100

-50

0

50

100

150

200

B
in

ar
iz

ed
 O

ut
pu

t

Correlation factor (R) =0.96

Figure 7: Outputs of the binarized neurons (y-axis) versus

outputs of the full-precision neurons (x-axis) in EESEN: an

RNN for speech recognition. BNN and RNN outputs are

highly correlated, showing a correlation coefficient of 0.96.

To achieve significant savings, the memoization scheme must
add a small overhead to the system. The key challenge is how
to approximate the behavior of the Oracle predictor with simple
hardware, to decide when memoization can be safely applied with
small impact on overall RNN accuracy. We describe an effective
solution in the next section.

3.1.2 Binary Network Correlation. A key challenge for an effec-
tive fuzzy memoization scheme is to identify when the next neuron
output will be similar to a previously computed (and cached) out-
put. Note that having similar inputs does not necessarily result in
similar outputs, as inputs with small changes might be multiplied
by large weights. Our proposed approach is based on a Bitwise
Neural Network (BNN). In particular, each fully-connected neural
network (NN) is extended to an equivalent BNN, as described in
Section 3.2. We use BNNs for two reasons. First, the outputs of a
BNN and its corresponding original NN are highly correlated [6],
i.e. a small change in a BNN output indicates that the neuron’s
output in the original NN is likely to be similar. Second, BNNs can
be implemented with extremely low hardware cost.

Regarding the correlation between BNN and RNN, Anderson
et al. [6] show that the binarization approximately preserves the
dot-products that a neural network performs for computations.
Therefore, there should be a high correlation between the outputs
of the full-precision neuron and the outputs of the corresponding
binarized neuron. We have empirically validated the dot product
preservation property for our set of RNNs. Figure 7 shows the lin-
ear correlation between RNN outputs and the corresponding BNN
outputs for EESEN network. Although the range of the outputs
of the full-precision (RNN) and binarized (BNN) dot products are
significantly different, their values exhibit a strong linear correla-
tion (correlation coefficient of 0.96). On the other hand, Figure 8
shows the histogram of the correlation coefficients for the neurons

5

MICRO-52, October 12–16, 2019, Columbus, OH, USA Silfa, et al.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100
EESEN
Deepspeech

0 0.2 0.4 0.6 0.8 1
R Factor

0

20

40

60

80

100
Machine Translation
IMDB Sentiment

Pe
rc

en
ta

ge
 o

f N
eu

ro
ns

 (%
)

Figure 8: Correlation factor between the neuron output com-

puted using full precision and the output computed with a

BNN.

in four different RNNs. As it can be seen, correlation between bina-
rized and full-precision neurons tend to be high for all the RNNs.
More specifically, for the networks EESEN, IMDB SENTIMENT, and
DEEPSPEECH, 85% of the neurons have a linear correlation factor
greater than 0.8 and for the Machine Translation network most
of them have a correlation factor greater than 0.5 . These results
indicate that if the output of a binarized neuron shows very small
changes with respect to a previously computed output, it is very
likely that the full-precision neuron will also show small changes
and, hence, memoization can be safely applied.

As shown in Equation 8, the output of a given neuron in a BNN
can be computed with an N-bit XOR operation for bit multiplication
and an integer adder to sum the resulting bits. These two operations
are orders of magnitude cheaper than those required by the tradi-
tional data representation (i.e., FP16). Therefore, a BNN represents
a low overhead and accurate manner to infer when the output of a
neuron is likely to exhibit significant changes with respect to its
recently computed outputs.

3.2 Overview

The target of our memoization scheme is to reuse a recently com-
puted neuron output, ym , as the output for the current timestep,
yt , provided that they are very similar. Reusing the cached neuron
output avoids performing all the corresponding computations and
memory accesses. To determine whether yt will be similar to ym ,
we use a BNN as a predictor.

In our memoization scheme, we extend the RNN with a much
simpler BNN. The BNN model is created by mirroring the full pre-
cision trained model of an LSTM or GRU gate, as illustrated in
Figure 9. More specifically, each neuron is binarized by applying
the binarization function shown in Equation 7 to its corresponding
set of weights. Therefore, in an gate, every neuron n with weights

Figure 9: The figure illustrates how a binary neuron is cre-

ated from a full precision neuron in the RNN network. Bin

is the binarization function shown in Equation 7. Peepholes,

bias and activation functions are omitted for simplicity.

ϵbt =

�����y
b
t − ybm

ybt

����� (12)

δbt =
i=t∑
i=m

ϵbi (13)

yt =

{
ym if δbt <= θ

evaluate neuron otherwise,
(14)

ym =

{
yt if δbt > θ

not updated otherwise,
(15)

ybm =

{
ybt if δbt > θ

not updated otherwise,
(16)

δbt =

{
0.0 if δbt > θ

not updated otherwise,
(17)

Figure 10: Neuron level fuzzy memoization with binary net-

work as predictor. yt , ym correspond to the neuron current

and memoized output computed by the LSTM Network. ybt ,

ybm are the current and memoized output computed by the

Binary Network. ϵbt is the relative difference between BNN

outputs. δbt is the summation of relative differences in suc-

cessive timesteps.

vector �w is mirrored to a neuron nb with weights vector �wb corre-
sponding to the element-wise binarization of �w .

Our scheme stores recently computed outputs for the binary
neuron nb and its associated full precision neuron n. We refer
to these memoized values as ybm and ym respectively. On every
timestep t , the binarized version of the neuron, nb , is evaluated first
obtaining ybt . Next, we compute the relative difference, ϵbt , between

ybt and ybm , i.e. the current and memoized outputs of the BNN, as

shown in Equation 12. If ϵbt is small, i.e. if the BNN outputs are
similar, it means that the outputs of the full precision neuron are

6

Neuron-Level Fuzzy Memoization in RNNs MICRO-52, October 12–16, 2019, Columbus, OH, USA

Figure 11: Computation reuse achieved by our BNN-based

memoization scheme with and without the throttling mech-

anism, for accuracy losses of 1% and 2%. The throttlingmech-

anism provides an extra 5% computation reuse on average

for the same accuracy.

likely to be similar. As we discuss in Section 3.1.2, there is a high
correlation between BNN and RNN outputs. In this case, we can
reuse the memoized output ym as the output of neuron n for the
current timestep, avoiding all the correspoding computations. If the
relative difference ϵbt is significant, we compute the full precision
neuron output, yt , and update our memoization buffer, as shown
in Equations 15, 16 and 17 so that these values can be reused in
subsequent timesteps.

We have observed that applyingmemoization to the same neuron
in a large number of successive timesteps may negatively impact
accuracy, even though the relative difference ϵbt in each individual
timestep is small. We found that using a simple throttling mecha-
nism can avoid this problem. More specifically, we accumulate the
relative differences over successive timesteps where memoizaiton is
applied, as shown in Equation 13. We use the summation of relative
differences, δbt , to decide whether the memoized value is reused. As
illustrated in Equation 14, the memoized value is only reused when
δbt is smaller or equal than a threshold θ . Otherwise, the full preci-
sion neuron is computed. This throttling mechanism avoids long
sequences of timesteps where memoization is applied to the same
neuron, since δbt includes the differences accumulated in the entire
sequence of reuses. Figure 11 shows that the throttling mechanism
provides higher computation reuse for the same accuracy loss.

Figure 12 summarizes the overall memoization scheme, that is
applied to the gates in an RNN cell as follows. For the first input
element (x0), i.e. the first timestep, the output values yb0 (binarized
version) and y0 (in full precision) are computed for each neuron
and stored in a memoization buffer. δb0 is set to zero. In the next

timestep, with input x1, the value yb1 is computed first by the BNN.

Then, the relative error (ϵb1) between y
b
1 and the previously cached

value, yb0 , is computed and added to δb0 to obtain δb1 . Then, δ
b
1 is

compared with a threshold θ . If δb1 is smaller than θ , the cached

value y0 is reused, i.e. y1 is assumed to be equal to y0, and δb1 is

stored in the memoization buffer. On the contrary, if δb1 is larger
than θ , the full precision neuron outputy1 is computed and its value
is cached in a memoization buffer. In addition, yb1 is also cached

Figure 12: Fuzzy memoization scheme. Wx and Wh are the

weights for the forward (xt) and recurrent connections (ht−1)
respectively. yt , ym correspond to the current and cached

neuron output computed in full precision.ybt ,y
b
m are the cur-

rent and cached output computed by the Binary Network.

δbt is the summation of relative differences in successive

timesteps.

and δb1 is set to zero. This process is repeated for the remaining
timesteps and for all the neurons in each gate.

3.2.1 Finding the threshold value. One of the key parameters
in our scheme is the threshold θ . We perform an exploration of
different values of θ for each RNN model by using the training
set, obtaining accuracy and degree of computation reuse for each
threshold value and RNN network. We then select the value that
achieves highest computation reuse with the target accuracy loss
(i.e. less than 1%) for each RNN model. This process is done just
once for each model and once θ is determined, it can be used for
inference on the test dataset.

3.3 Hardware Implementation

We implement the proposed memoization scheme on top of EPUR,
a state-of-the-art RNN accelerator for low power mobile applica-
tions [30]. A high-level block diagram of this accelerator is shown
in Figure 13. E-PUR is composed of four computational units that
are tailored to the evaluation of each gate in an RNN cell, and a
dedicated on-chip memory used to store intermediate results. In
the next subsections, we outline the main components of the E-
PUR architecture and detail the necessary hardware modifications
required in order to support our fuzzy memoization scheme.

3.3.1 Hardware Baseline. In E-PUR each of the Computation
Units (CUs), shown in Figure 14, are composed of a dot product
unit (DPU), a Multi-functional Unit (MU) and buffers to store the
weights and inputs. The DPU is used to evaluate the matrix vector
multiplications between the weights and inputs (i.e. xt and ht−1)
whereas the MU is used to compute activation functions and scalar
operations. Note that in E-PUR computations can be performed
using 32 or 16 bits floating points operations.

7

MICRO-52, October 12–16, 2019, Columbus, OH, USA Silfa, et al.

Figure 13: Overview of E-PUR architecture which consist of

4 Computation Units (CU) and an on-chip memory (OM).

In E-PUR, while evaluating an RNN cell, all the gates are com-
puted in parallel for each input element. On the contrary, the neu-
rons in each gate are evaluated in a sequential manner for the for-
ward and recurrent connections. The following steps are executed
in order to compute the output value (yt) for a given neuron (i.e.
ni). First, the input and weight vectors formed by the recurrent and
forward connections (i.e, xt and ht−1) are split into K sub-vectors
of size N. Then, two sub-vectors of size N are loaded from the input
and weight buffer respectively and the dot product between them
is computed by the DPU, which also accumulates the result. Next,
the steps are repeated for the next kth sub-vector and its result is
added to the previously accumulated dot products. This process is
repeated until all K sub-vectors are evaluated and added together.
Once the output value yt is computed, the DPU sends it to the
MU where bias and peephole calculations are performed. Finally,
the MU computes the activation function and stores the result in
the on-chip memory for intermediate results. Note that once the
DPU sends a value to the MU, it will continue with the evaluation
of the next neuron output, hence, overlapping the computations
executed by the MU and DPU since they are independent. Finally,
these steps are repeated until all the neurons in the gate (for all
cells) are evaluated for the current input element.

3.3.2 Support for Fuzzy Memoization . In order to perform fuzzy
memoization through a BNN, two modifications are done to each
CU in E-PUR. First, the weight buffer is split into two buffers: one
buffer is used to store the weight signs (sign buffer) and the other
is used to store the remaining bits of the weights. Note that the
sign buffer is always accessed to compute the output of the binary
network (ybt) whereas the remaining bits are only accessed if the
memoized value (ym) is not reused. The binarizedweights are stored
in a small memory which has low energy cost but, as a consequence
of splitting the weight buffer, its area increases a bit (less than one
percent).

The second modification to the CUs is the addition of the fuzzy
memoization unit (FMU) which is used to evaluate the binary net-
work and to perform fuzzy memoization. This unit takes as input
two size-T vectors (i.e., number of neurons in an RNN cell). The
first vector is a weight vector loaded from the sign buffer whereas

Figure 14: Structure of E-PUR Computation Unit.

Figure 15: Structure of the Fuzzy Memoization Unit (FMU).

the other is created as the concatenation of the forward (xt) and
the recurrent connections (ht−1).

As shown in Figure 15, the main components of the FMU are the
BDPU that computes the binary dot product and the comparison
unit (CMP) which decides when to reuse a memoized value. In
addition, the FMU includes a buffer (memoization buffer) which
stores the δbt for every neuron and the latest evaluation of the
neurons by the full precision and binary networks. BNNneurons (i.e,
binary dot product) are evaluated using a bitwise XNOR operation
and an adder reduction tree to gather the resulting bit vector. In
the CMP unit, the relative error (δbt) is computed using integer and
fixed-point arithmetic.

The steps to evaluate the RNN cell, described in Section 3.3.1,
are executed in a slightly different manner to include the fuzzy
memoization scheme. First, the binarized input and weight vectors
for a given neuron in a gate are loaded into an FMU from the input
and sign buffers respectively. Next, the BDPU computes the dot
product and sends the result (ybt) to the comparison unit (CMP).

Then, the CMP loads the previously cached valuesybm and δbt−1 from
the memoization buffer and it uses them to compute the relative
error (ϵbt) and the δbt . Once δ

b
t is computed, it is compared with a

threshold (θ) to determine whether the full precision neuron needs
to be evaluated or the previously cached value is reused instead. In
the case that δbt is greater than θ , an evaluation in full precision
is triggered. In that regard, the DPU is signaled to start the full

8

Neuron-Level Fuzzy Memoization in RNNs MICRO-52, October 12–16, 2019, Columbus, OH, USA

Table 1: RNN Networks used for the experiments.

Network App Domain Cell Type Layers Neurons Base Accuracy Reuse Dataset

IMDB Sentiment [12] Sentiment Classification LSTM 1 128 86.5% 36.2% IMDB dataset

DeepSpeech2 [5] Speech Recognition GRU 5 800 10.24 WER 16.4% LibriSpeech

EESEN [24] Speech Recognition BiLSTM 10 320 23.8 WER 30.5% Tedlium V1

MNMT [9] Machine Translation LSTM 8 1024 29.8 Bleu 19.0% WMT’15 En→ Ge

Table 2: Configuration Parameters.

E-PUR

Parameter Value

Technology 28 nm

Frequency 500 MHz

Intermediate Memory 6 MiB

Weight Buffer 2 MiB per CU

Input Buffer 8 KiB per CU

DPU Width 16 operations

Memoization Unit

BDPU Width 2048 bits

Latency 5 cycles

Integer Width 2 bytes

Memoization Buffer 8 KiB

precision evaluation which is done following the steps described
in Section 3.3.1. After the full precision evaluation, the values yt ,
ybt , and 0.0 are cached in the memoization table corresponding to

ym , ybm , and δbt respectively. On the other hand, if memoization

can be applied (i.e. δbt is smaller than the maximum allowed error),

δbt is updated in the memoization table and the memoized value
(ym) is sent directly to the MU (bypassing the DPU), so the full
precision evaluation of the neuron is avoided. Finally, these steps
are repeated until all the neurons in a gate are evaluated for the
current input element. Since LSTM or GRU gates are processed by
independent CUs, the above process is executed concurrently by
all gates.

4 EVALUATION METHODOLOGY

We use a cycle-level simulator of E-PUR customized to model our
scheme as described in Section 3.3.2. This simulator estimates the
total energy consumption (static and dynamic) and execution time
of the LSTM networks. The different pipeline components were
implemented in Verilog and we synthesized them using the Synop-
sys Design Compiler to obtain their delay and energy consumption.
Furthermore, we used a typical process corner with voltage of 0.78V.
We employed CACTI [26] to estimate the delay and energy con-
sumption (static and dynamic) of on-chip memories. Finally, to
estimate timing and energy consumption of main memory we used
MICRON’s memory model [25]. We model 4 GB of LPDDR4 DRAM.

In order to set the clock frequency, the delays reported by Synop-
sys Design Compiler and CACTI are used. We set a clock frequency
that allows most hardware structures to operate at one clock cycle.
In addition, we evaluated alternative frequency values in order to
minimize energy consumption.

Regarding the memoization unit, the configuration parameters
are shown in Table 2. Since E-PUR supports large LSTM networks,
the memoization unit is designed to match the largest models sup-
ported by E-PUR. This unit has a latency of 5 clock cycles for the
largest supported LSTM networks. In this unit, integer and fixed
point operations are used to perform most computations. The mem-
oization buffer is modeled as 8KiB scratch-pad eDRAM.

The remaining configuration parameters of the accelerator used
in our experiments are shown in Table 2. We strive to select an
energy-efficient configuration for all the neural networks in Table 1.
Because the baseline accelerator is designed to accommodate large
LSTM networks, some of its on-chip storage and functional units
might be oversized for some of our RNNs. In this case, unused
on-chip memories and functional units are power gated when not
needed.

As for benchmarks, we use four modern LSTM networks which
are described in Table 1. Our selection includes RNNs for popular
application such as speech recognition, machine translation and
image description. These networks have different number of inter-
nal layers and neurons. We include both bidirectional (EESEN) and
unidirectional networks (the other three). On the other hand, the
length of the input sequence is also different for each RNN and it
ranges from 20 to a few thousand input elements.

The software implementation of the networks was done in Ten-
sorflow [1]. We used the network models and the test set provided
in [9, 12, 24, 33] for each RNN. The original accuracy for each RNN
is listed in Table 1, and the accuracy loss is later reported as the
absolute loss with respect to this baseline accuracy.

5 EXPERIMENTAL RESULTS

This section presents the evaluation of the proposed fuzzy mem-
oization technique for RNNs, implemented on top of E-PUR [30].
We refer to it as E-PUR+BM. First, we present the percentage of
computation reuse and the accuracy achieved. Second, we show the
performance and energy improvements, followed by an analysis of
the area overheads of our technique.

Figure 16 shows the percentage of computation reuse achieved by
the BNN and the Oracle predictors. The percentage of computation
reuse indicates the percentage of neuron evaluations avoided due to
fuzzy memoization. For accuracy losses smaller than 2%, the BNN
obtains a percentage of computation reuse extremely similar to the
Oracle. The networks EESEN and IMDB are highly tolerant to errors
in neuron’s outputs, thus, for these networks, our memoization
scheme achieves reuse percentages of up to 40% while having an
accuracy loss smaller than 3%. Note that, for classification problems,
BNNs achieve an accuracy close to the state-of-the-art [27] and,
hence, it is not surprising that the BNN predictor is highly accurate
for approximating the neuron output. For DeepSpeech (speech

9

MICRO-52, October 12–16, 2019, Columbus, OH, USA Silfa, et al.

0 10 20 30 40 50 60 70
Computation Reuse (%)

0
2

5

10

15

20

25

W
ER

 L
os

s (
%

)

Oracle predictor
Binary Network predictor

0 10 20 30 40 50 60 70
Computation Reuse (%)

0
2

5

10

15

20

25

W
ER

 L
os

s (
%

)

EESEN

Oracle predictor
Binary Network predictor

0 10 20 30 40 50 60 70 80
Computation Reuse (%)

0
2

5

10

15

20

A
cc

ur
ac

y
Lo

ss
 (%

)

IMDB Sentiment

Oracle predictor
Binary Network predictor

0 10 20 30 40 50 60
Computation Reuse (%)

0
2

5

10

15

20

B
le

u
Lo

ss
 (%

)

Machine Translation

Oracle predictor
Binary Network predictor

Figure 16: Percentage of computations that could be reused versus accuracy loss using Fuzzy Neuron Level Memoization with

an Oracle and a Binary Network as predictors for several LSTM networks.

recognition) the reuse percentage is up to 20% for accuracy losses
smaller than 2%. In this network, the input sequence tends to be
large (i.e, 900 elements on average). As the reuse is increased, the
error introduced to the output sequence of a neuron persists for
a larger number of elements. Therefore, the introduced error will
have a bigger impact both in the evaluation of the current layer, due
to the recurrent connections, and the following layers. As a result,
the overall accuracy of the network decreases faster. For MNMT
(machine translation) the BNN predictor and the oracle achieve
similar reuse versus accuracy trade-off for up to 23% of computation
reuse. Note that, for this network, the linear correlation between
the BNN and the full precision neuron output is typically lower
than for the other networks in the benchmark set.

Figure 17 shows the energy savings and computation reuse
achieved by our scheme, for different thresholds of accuracy loss.
For a conservative loss of 2%, the average energy saving is 25.5%,
whereas the reuse percentage is 31%. In this case, the networks
DeepSpeech and MNMT and have similar energy savings, whereas
the networks IMDB and EESEN exhibit the largest savings since
they are more tolerant to errors in the neuron output. For an ex-
tremely conservative 1% of accuracy loss, the computation reuse
and energy saving are 24.2% and 18.5% on average respectively.
EESEN and DeepSpeech achieve 25.32% and 12.23% energy savings
respectively for a 1% accuracy loss. Regarding the machine transla-
tion network (MNMT), the energy savings for 1% and 2% accuracy
loss are 15.17% and 23.46% respectively.

Figure 17: Energy savings and computation reuse of E-

PUR+BM with respect to the baseline.

Regarding the sources of energy savings, Figure 18 reports the
energy breakdown, including static and dynamic energy, for the
baseline accelerator and E-PUR+BM,for an accuracy loss of 1%. The
sources of energy consumption are grouped into on-chip memories
("scratch-pad" memories), pipeline components ("operations", i.e.
multipliers), main memory (LPDDR4) and the energy consumed by
our FMU component. Note that most of the energy consumption is
due to the scratch-pad memories and the pipeline components and,
as it can been seen, both are reduced when using our memoization
scheme. In E-PUR+BM, each time a value from the memoization
buffer is reused, we avoid accessing all the neuron’s weights and

10

Neuron-Level Fuzzy Memoization in RNNs MICRO-52, October 12–16, 2019, Columbus, OH, USA

Figure 18: Energy breakdown for E-PUR and EPUR+BM.

FMU Energy is the overhead due to the memoization

scheme.

the input buffers, achieving significant energy savings. In addition,
since the extra buffers used by E-PUR+BM are fairly small (i.e.
8 KB), the energy overhead due to the memoization scheme is
negligible. The energy consumption due to the operations is also
reduced, as the memoization scheme avoids neuron’s computations.
Furthermore, the leakage of scratch-pad and operations are also
reduced due to the speedups achieved by the memoization scheme.
Finally, the energy consumption due to accessing main memory is
not affected by our technique since both, E-PUR and E-PUR+BM,
must access main memory to load all the weights once for each
input sequence.

Figure 19 shows the performance improvements for the different
RNNs. On average, an speedup of 1.35x is obtained for a 1% accuracy
loss, whereas accuracy losses of 2% and 3% achieve improvements of
1.5x and 1.67x respectively. The performance improvement comes
from avoiding the dot product computations for the memoized
neurons. Therefore, the larger the degree of computation reuse
the bigger the performance improvement. Note that the memoiza-
tion scheme introduces an overhead of 5 cycles per neuron (see
Table 2), mainly due to the evaluation of the binarized neuron.
In case the full precision neuron evaluation can be avoided, our
scheme saves between 16 and 80 cycles depending on the RNN.
Therefore, configurations with low degree of computation reuse,
like Deepspeech at 1% accuracy loss, exhibit smaller speedups due
to the overhead of the memoization scheme. On the other hand,
RNNs that exhibit higher computation reuse, such as EESEN at 2%
accuracy loss, achieve an speepup of 1.55x.

E-PUR has an area of 64.6mm2, whereas E-PUR+BM requires
66.8mm2 (4% area overhead). The largest overhead contribution (3%)
is in the extra scratch-pad memory required by the memoization
unit.

6 RELATEDWORK

Increasing energy-efficiency and performance of LSTM networks
has attracted the attention of the architectural community in re-
cent years [17, 18, 22, 23]. Most of these works employ pruning
and compression techniques to improve performance and reduce
energy consumption. Furthermore, linear quantization is employed
to decrease the memory footprint. On the contrary, our technique

Figure 19: Speedup of E-PUR+BMover the baseline (E-PUR).

improves energy-efficiency by relying solely on computation reuse
at the neuron level. To the best of our knowledge, this is the first
work using a BNN as a predictor for a fuzzy memoization scheme.
BNNs have been used previously [11, 21, 27] as standalone net-
works, whereas we employs BNNs in conjunction with the LSTM
network to evaluate neurons on demand.

Fuzzy memoization has been extensively researched in the past
and has been implemented both in hardware and software. Hard-
ware schemes to reuse instructions have been proposed in [3, 8, 14,
31]. Alvarez et al. [4] presented a fuzzy memoization scheme to
improve performance of floating point operations in multimedia ap-
plications. In their scheme floating point operations are memoized
using a hash of the source operands, whereas in our technique, a
whole function (neuron inference) is memoized based on the values
predicted by a BNN.

Finally, software schemes to memoize entire functions have been
presented in the past [2, 35]. These schemes are tailored to general
purpose programs whereas our scheme is solely focused in LSTM
networks, since it exploits the intrinsic error tolerance of LSTM
networks.

7 CONCLUSIONS

In this paper, we have shown that 25% of neurons in an LSTM net-
work change their output value by less than 10%. This motivated us
to propose a fuzzy memoization scheme to save energy and time.
A major challenge to perform neuron level fuzzy memoization is to
predict, in a simple and accurate manner, whether the output of a
given neuron will be similar to a previously computed and cached
value. To this end, we propose to use a Binarized Neural Network
(BNN) as a predictor, based on the observation that the fully pre-
cision output of a neuron is highly correlated with the output of
the corresponding BNN. We show that a BNN predictor achieves
24.2% computation reuse on average, which is very similar to the re-
sults obtained with an Oracle predictor. We have implemented our
technique on top of E-PUR, a state-of-the-art accelerator for LSTM
networks. Results show that our memoization scheme achieves
significant time and energy savings with minimal impact in the
accuracy of the RNNs. When compared with the E-PUR accelera-
tor, our scheme achieves 18.5% energy savings on average, while
providing 1.35x speedup at the expense of a minor accuracy loss.

11

MICRO-52, October 12–16, 2019, Columbus, OH, USA Silfa, et al.

ACKNOWLEDGMENTS

This work has been supported by the the CoCoUnit ERC Advanced
Grant of the EU's Horizon 2020 program (grant No 833057), the Span-
ish State ResearchAgency under grant TIN2016-75344-R (AEI/FEDER,
EU), the ICREA Academia program, and the Fundaciòn Carolina
and PUCMM by a scholarship.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Gregory S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian J. Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Józefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dan Mané, Rajat Monga, Sherry Moore, Derek Gordon Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul A.
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda B. Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems. CoRR abs/1603.04467 (2016). http://arxiv.org/abs/1603.04467

[2] Umut A. Acar, Guy E. Blelloch, and Robert Harper. 2003. Selective Memoization.
SIGPLAN Not. 38, 1 (Jan. 2003), 14–25. https://doi.org/10.1145/640128.604133

[3] Carlos Álvarez, Jesús Corbal, Esther Salamí, and Mateo Valero. 2001. On the
Potential of Tolerant Region Reuse for Multimedia Applications (ICS ’01). 218–228.
https://doi.org/10.1145/377792.377835

[4] Carlos Alvarez, Jesus Corbal, and Mateo Valero. 2005. Fuzzy Memoization for
Floating-Point Multimedia Applications. IEEE Trans. Comput. 54, 7 (July 2005),
922–927. https://doi.org/10.1109/TC.2005.119

[5] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan
Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos,
Erich Elsen, Jesse Engel, Linxi Fan, Christopher Fougner, Tony Han, Awni Y.
Hannun, Billy Jun, Patrick LeGresley, Libby Lin, Sharan Narang, Andrew Y.
Ng, Sherjil Ozair, Ryan Prenger, Jonathan Raiman, Sanjeev Satheesh, David
Seetapun, Shubho Sengupta, Yi Wang, Zhiqian Wang, Chong Wang, Bo Xiao,
Dani Yogatama, Jun Zhan, and Zhenyao Zhu. 2015. Deep Speech 2: End-to-
End Speech Recognition in English and Mandarin. CoRR abs/1512.02595 (2015).
arXiv:1512.02595 http://arxiv.org/abs/1512.02595

[6] Alexander G. Anderson and Cory P. Berg. 2017. The High-Dimensional Geometry
of Binary Neural Networks. CoRR abs/1705.07199 (2017). arXiv:1705.07199
http://arxiv.org/abs/1705.07199

[7] Jeremy Appleyard, Tomas Kocisky, and Phil Blunsom. 2016. Optimizing Perfor-
mance of Recurrent Neural Networks on GPUs. arXiv preprint arXiv:1604.01946
(2016).

[8] Jose-Maria Arnau, Joan-Manuel Parcerisa, and Polychronis Xekalakis. 2014. Elim-
inating redundant fragment shader executions on a mobile GPU via hardware
memoization. 2014 ACM/IEEE 41st International Symposium on Computer Archi-
tecture (ISCA) (2014), 529–540.

[9] Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc V. Le. 2017. Massive
Exploration of Neural Machine Translation Architectures. CoRR abs/1703.03906
(2017). http://arxiv.org/abs/1703.03906

[10] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation. CoRR abs/1406.1078 (2014).
arXiv:1406.1078 http://arxiv.org/abs/1406.1078

[11] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830
(2016).

[12] Andrew M. Dai and Quoc V. Le. 2015. Semi-supervised Sequence Learning. CoRR
abs/1511.01432 (2015). http://arxiv.org/abs/1511.01432

[13] Felix A Gers and Jürgen Schmidhuber. 2000. Recurrent nets that time and count.
In Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS Inter-
national Joint Conference on, Vol. 3. IEEE, 189–194.

[14] Antonio González, Jordi Tubella, and Carlos Molina-Clemente. 1999. Trace-Level
Reuse. In ICPP. 30–.

[15] A. Graves, A. r. Mohamed, and G. Hinton. 2013. Speech recognition with deep
recurrent neural networks. In 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing. 6645–6649. https://doi.org/10.1109/ICASSP.2013.
6638947

[16] Klaus Greff, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and Jürgen
Schmidhuber. 2016. LSTM: A search space odyssey. IEEE transactions on neural
networks and learning systems (2016).

[17] Yijin Guan, Zhihang Yuan, Guangyu Sun, and Jason Cong. 2017. FPGA-based
accelerator for long short-term memory recurrent neural networks. In Design
Automation Conference (ASP-DAC), 2017 22nd Asia and South Pacific. IEEE, 629–
634.

[18] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang
Xie, Hong Luo, Song Yao, Yu Wang, Huazhong Yang, and William (Bill) J.
Dally. 2017. ESE: Efficient Speech Recognition Engine with Sparse LSTM
on FPGA. In Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA ’17). ACM, New York, NY, USA, 75–84.
https://doi.org/10.1145/3020078.3021745

[19] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[20] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis
of a Tensor Processing Unit. In Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA ’17). ACM, New York, NY, USA, 1–12.
https://doi.org/10.1145/3079856.3080246

[21] Minje Kim and Paris Smaragdis. 2016. Bitwise neural networks. arXiv preprint
arXiv:1601.06071 (2016).

[22] Minjae Lee, Kyuyeon Hwang, Jinhwan Park, Sungwook Choi, Sungho Shin, and
Wonyong Sung. 2016. FPGA-based low-power speech recognition with recurrent
neural networks. In Signal Processing Systems (SiPS), 2016 IEEE International
Workshop on. IEEE, 230–235.

[23] Sicheng Li, Chunpeng Wu, Hai Li, Boxun Li, Yu Wang, and Qinru Qiu. 2015.
Fpga acceleration of recurrent neural network based language model. In Field-
Programmable Custom Computing Machines (FCCM), 2015 IEEE 23rd Annual In-
ternational Symposium on. IEEE, 111–118.

[24] Yajie Miao, Mohammad Gowayyed, and Florian Metze. 2015. EESEN: End-to-
end speech recognition using deep RNN models and WFST-based decoding. In
Automatic Speech Recognition and Understanding (ASRU), 2015 IEEE Workshop on.
IEEE, 167–174.

[25] Micron Inc. [n. d.]. TN-53-01: LPDDR4 System Power Calculator. https://www.
micron.com/support/tools-and-utilities/power-calc.

[26] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. 2009.
CACTI 6.0: A tool to model large caches. HP Laboratories (2009), 22–31.

[27] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
Xnor-net: Imagenet classification using binary convolutional neural networks.
In European Conference on Computer Vision. Springer, 525–542.

[28] Marc Riera, Jose-Maria Arnau, and Antonio González. 2018. Computation reuse
in DNNs by exploiting input similarity. In Proceedings of the 45th Annual Interna-
tional Symposium on Computer Architecture. IEEE Press, 57–68.

[29] Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural net-
works. IEEE Transactions on Signal Processing 45, 11 (1997), 2673–2681.

[30] Franyell Silfa, Gem Dot, Jose-Maria Arnau, and Antonio Gonzàlez. 2018. E-
PUR: An Energy-efficient Processing Unit for Recurrent Neural Networks. In
Proceedings of the 27th International Conference on Parallel Architectures and
Compilation Techniques (PACT ’18). ACM, New York, NY, USA, Article 18, 12 pages.
https://doi.org/10.1145/3243176.3243184

[31] Avinash Sodani and Gurindar S. Sohi. 1997. Dynamic Instruction Reuse (ISCA
’97). 194–205. https://doi.org/10.1145/264107.264200

[32] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2015. Show
and Tell: A Neural Image Caption Generator. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[33] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2016. Show
and Tell: Lessons learned from the 2015 MSCOCO Image Captioning Challenge.
CoRR abs/1609.06647 (2016). http://arxiv.org/abs/1609.06647

[34] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144 (2016).

[35] Haiying Xu, Christopher J. F. Pickett, and Clark Verbrugge. 2007. Dynamic Purity
Analysis for Java Programs (PASTE ’07). 75–82. https://doi.org/10.1145/1251535.
1251548

[36] Qian Zhang, Ting Wang, Ye Tian, Feng Yuan, and Qiang Xu. 2015. Approx-
ANN: An Approximate Computing Framework for Artificial Neural Network.
In Proceedings of the 2015 Design, Automation & Test in Europe Conference
& Exhibition (DATE ’15). EDA Consortium, San Jose, CA, USA, 701–706.
http://dl.acm.org/citation.cfm?id=2755753.2755913

12

