7,342 research outputs found

    Influence of artificial intelligence on the work design of emergency department clinicians:a systematic literature review

    Get PDF
    Objective: This systematic literature review aims to demonstrate how Artificial Intelligence (AI) is currently used in emergency departments (ED) and how it alters the work design of ED clinicians. AI is still new and unknown to many healthcare professionals in emergency care, leading to unfamiliarity with its capabilities. Method: Various criteria were used to establish the suitability of the articles to answer the research question. This study was based on 34 selected peer-reviewed papers on the use of Artificial Intelligence (AI) in the Emergency Department (ED), published in the last five years. Drawing on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, all articles were scanned, read full-text, and analyzed afterward. Results: The majority of the AI applications consisted of AI-based tools to aid with clinical decisions and to relieve overcrowded EDs of their burden. AI support was mostly offered during triage, the moment that sets the patient trajectory. There is ample evidence that AI-based applications could improve the clinical decision-making process. Conclusion: The use of AI in EDs is still in its nascent stages. Many studies focus on the question of whether AI has clinical utility, such as decision support, improving resource allocation, reducing diagnostic errors, and promoting proactivity. Some studies suggest that AI-based tools essentially have the ability to outperform human skills. However, it is evident from the literature that current technology does not have the aims or power to do so. Nevertheless, AI-based tools can impact clinician work design in the ED by providing support with clinical decisions, which could ultimately help alleviate a portion of the increasing clinical burden

    Utilization of big data to improve management of the emergency departments. Results of a systematic review

    Get PDF
    Background. The emphasis on using big data is growing exponentially in several sectors including biomedicine, life sciences and scientific research, mainly due to advances in information technologies and data analysis techniques. Actually, medical sciences can rely on a large amount of biomedical information and Big Data can aggregate information around multiple scales, from the DNA to the ecosystems. Given these premises, we wondered if big data could be useful to analyze complex systems such as the Emergency Departments (EDs) to improve their management and eventually patient outcomes. Methods. We performed a systematic review of the literature to identify the studies that implemented the application of big data in EDs and to describe what have already been done and what are the expectations, issues and challenges in this field. Results. Globally, eight studies met our inclusion criteria concerning three main activities: the management of ED visits, the ED process and activities and, finally, the prediction of the outcome of ED patients. Although the results of the studies show good perspectives regarding the use of big data in the management of emergency departments, there are still some issues that make their use still difficult. Most of the predictive models and algorithms have been applied only in retrospective studies, not considering the challenge and the costs of a real-time use of big data. Only few studies highlight the possible usefulness of the large volume of clinical data stored into electronic health records to generate evidence in real time. Conclusion. The proper use of big data in this field still requires a better management information flow to allow real-time application

    Machine learning for developing a prediction model of hospital admission of emergency department patients:Hype or hope?

    Get PDF
    Objective: Early identification of emergency department (ED) patients who need hospitalization is essential for quality of care and patient safety. We aimed to compare machine learning (ML) models predicting the hospitalization of ED patients and conventional regression techniques at three points in time after ED registration. Methods: We analyzed consecutive ED patients of three hospitals using the Netherlands Emergency Department Evaluation Database (NEED). We developed prediction models for hospitalization using an increasing number of data available at triage, similar to 30 min (including vital signs) and similar to 2 h (including laboratory tests) after ED registration, using ML (random forest, gradient boosted decision trees, deep neural networks) and multivariable logistic regression analysis (including spline transformations for continuous predictors). Demographics, urgency, presenting complaints, disease severity and proxies for comorbidity, and complexity were used as covariates. We compared the performance using the area under the ROC curve in independent validation sets from each hospital. Results: We included 172,104 ED patients of whom 66,782 (39 %) were hospitalized. The AUC of the multi-variable logistic regression model was 0.82 (0.78-0.86) at triage, 0.84 (0.81-0.86) at similar to 30 min and 0.83 (0.75-0.92) after similar to 2 h. The best performing ML model over time was the gradient boosted decision trees model with an AUC of 0.84 (0.77-0.88) at triage, 0.86 (0.82-0.89) at similar to 30 min and 0.86 (0.74-0.93) after similar to 2 h. Conclusions: Our study showed that machine learning models had an excellent but similar predictive performance as the logistic regression model for predicting hospital admission. In comparison to the 30-min model, the 2-h model did not show a performance improvement. After further validation, these prediction models could support management decisions by real-time feedback to medical personal
    corecore