66 research outputs found

    Attack Classification and Detection for Misbehaving Vehicles using ML/DL

    Get PDF
    Vehicle ad hoc networks are a crucial component of the next Intelligent Transportation System created to build a reliable and secure connection between various network components to establish a safe and effective transportation network. Because of open nature of VANETs become vulnerable to numerous assaults such forgery, Denial-of-Service (DoS), and false reports, which can ultimately cause traffic jams or accidents The earlier study concentrated on misbehaving vehicles rather than RSUs. Proposed method integrates data from two subsequent BSMs for testing and training by employing machine learning (ML) methods. The framework merges the data from two BSMs in the right manner and utilizes machine learning/Deep learning methodology which identify the running vehicle as a legal or hostile one

    Position Falsification Detection in VANET with Consecutive BSM Approach using Machine Learning Algorithm

    Get PDF
    Vehicular ad-hoc network (VANET) is an emerging technology for vehicle-to-vehicle communication vital for reducing road accidents and traffic congestion in an Intelligent Transportation System (ITS). VANET communication is vulnerable to various attacks and cryptographic techniques are used for message integrity and authentication of vehicles in order to ensure security and privacy for vehicular communications. However, if there is an inside attacker additional measures are necessary to ensure the correctness of the transmitted data. A basic safety message (BSM) is broadcasted by each vehicle in the network periodically to transmit its status. Position falsification is an attack where the attacker broadcasts a false BSM position, leading to congestion or even accidents. It becomes imperative to detect and identify the attacker to ensure safety in the network. Although many trust-based models are researched in the past, this research proposes a feasible and efficient data-centric approach to detect malicious behavior, using machine learning (ML) algorithms.The proposed Machine Learning based misbehavior detection system utilizes labelled dataset called Vehicular Reference Misbehavior Dataset (VeReMi). VeReMi dataset offers five different types of position falsification attacks with different vehicle and attacker densities. This ML-based model uses two consecutive BSM approach to detect these attacks. Model classification on the Road-side Unit detects and could revoke malicious nodes from the network, reducing computational overhead on vehicles

    Ensemble Learning Based Malicious Node Detection in SDN-Based VANETs

    Get PDF
    Background: The architecture of Software Defined Networking (SDN) integrated with Vehicular Ad-hoc Networks (VANETs) is considered a practical method for handling large-scale, dynamic, heterogeneous vehicular networks, since it offers flexibility, programmability, scalability, and a global understanding. However, the integration with VANETs introduces additional security vulnerabilities due to the deployment of a logically centralized control mechanism. These security attacks are classified as internal and external based on the nature of the attacker. The method adopted in this work facilitated the detection of internal position falsification attacks. Objective: This study aimed to investigate the performance of k-NN, SVM, Naïve Bayes, Logistic Regression, and Random Forest machine learning (ML) algorithms in detecting position falsification attacks using the Vehicular Reference Misbehavior (VeReMi) dataset. It also aimed to conduct a comparative analysis of two ensemble classification models, namely voting and stacking for final decision-making. These ensemble classification methods used the ML algorithms cooperatively to achieve improved classification. Methods: The simulations and evaluations were conducted using the Python programming language. VeReMi dataset was selected since it was an application-specific dataset for VANETs environment. Performance evaluation metrics, such as accuracy, precision, recall, F-measure, and prediction time were also used in the comparative studies. Results: This experimental study showed that Random Forest ML algorithm provided the best performance in detecting attacks among the ML algorithms. Voting and stacking were both used to enhance classification accuracy and reduce time required to identify an attack through predictions generated by k-NN, SVM, Naïve Bayes, Logistic Regression, and Random Forest classifiers. Conclusion: In terms of attack detection accuracy, both methods (voting and stacking) achieved the same level of accuracy as Random Forest. However, the detection of attack using stacking could be achieved in roughly less than half the time required by voting ensemble. Keywords: Machine learning methods, Majority voting ensemble, SDN-based VANETs, Security attacks, Stacking ensemble classifiers, VANETs

    Neural Network Based Approach for Detecting Location Spoofing in Vehicular Communication

    Get PDF
    Vehicular Ad hoc Network (VANET) is an evolving subset of MANET. It\u27s deployed on the roads, where vehicles act as mobile nodes. Active security and Intelligent Transportation System (ITS) are integral applications of VANET, which require stable and uninterrupted vehicle-to-vehicle communication technology. VANET, is a type of wireless network, due to which it is quite prone to security attacks. Extremely dynamic connections, sensitive data sharing and time-sensitivity of this network make it a vulnerable to security attacks. The messages shared between the vehicles are the basic safety message (BSM), these messages are broadcasted by each vehicle in the network to report its status to the other vehicles and Road Side Unit (RSU). One common attack is to use position falsification to hamper the roadside safety, leading to road accidents and congestion. Identifying malicious nodes involved in such attacks is crucial to ensure safety in the network. The proposed research presents a neural network based approach for detecting position falsification attacks in VANET. The proposed Deep Learning-based detection of attackers is done using the dataset called Vehicular Reference Misbehavior Dataset (VeReMi). VeReMi dataset provides five classes of attackers, each broadcasting fabricated coordinates concerning the type. This MLP-based model uses resampled single BSM and two consecutive BSM to detect these attacks

    RSU-Based Online Intrusion Detection and Mitigation for VANET

    Full text link
    Secure vehicular communication is a critical factor for secure traffic management. Effective security in intelligent transportation systems (ITS) requires effective and timely intrusion detection systems (IDS). In this paper, we consider false data injection attacks and distributed denial-of-service (DDoS) attacks, especially the stealthy DDoS attacks, targeting the integrity and availability, respectively, in vehicular ad-hoc networks (VANET). Novel statistical intrusion detection and mitigation techniques based on centralized communications through roadside units (RSU) are proposed for the considered attacks. The performance of the proposed methods are evaluated using a traffic simulator and a real traffic dataset. Comparisons with the state-of-the-art solutions clearly demonstrate the superior performance of the proposed methods in terms of quick and accurate detection and localization of cyberattacks

    Security Improvements for Connected Vehicles Position-Based Routing

    Get PDF
    The constant growing on the number of vehicles is increasing the complexity of traffic in urban and highway environments. It is paramount to improve traffic management to guarantee better road usage and people’s safety. Through efficient communications, Vehicular Ad hoc Networks (VANETs) can provide enough information for traffic safety initiatives, daily traffic data processing, and entertainment information. However, VANETs are vulnerable to malicious nodes applying different types of net-work attacks, where an attacker can, for instance, forge its position to receive the data packet and drop the message. This can lead vehicles and authorities to make incorrect assumptions and decisions, which can result in dangerous situations. Therefore, any data dissemination protocol designed for VANET should consider security issues when selecting the next-hop forwarding node. In this paper, we propose a security scheme designed for position-based routing algorithms, which analyzes nodes position, transmission range, and hello packet interval. The scheme deals with malicious nodes performing network attacks, faking their positions forcing packets to be dropped. We used the Simulation of Urban MObility (SUMO) and Network Simulator-version 3 (NS-3) to compare our proposed scheme integrated with two well-known position-based algorithms. The results were collected in an urban Manhattan grid environment varying the number of nodes, the number of malicious nodes, as well as the number of source-destination pairs. The results show that the proposed security scheme can successfully improve the packet delivery ratio while maintaining low average end-to-end delay of the algorithms.

    Towards a Reliable Machine Learning Based Global Misbehavior Detection in C-ITS: Model Evaluation Approach

    Get PDF
    International audienceGlobal misbehavior detection in Cooperative Intelligent Transport Systems (C-ITS) is carried out by a central entity named Misbe-havior Authority (MA). The detection is based on local misbehavior detection information sent by Vehicle's On-Board Units (OBUs) and by RoadSide Units (RSUs) called Misbehavior Reports (MBRs) to the MA. By analyzing these Misbehavior Reports (MBRs), the MA is able to compute various misbehavior detection information. In this work, we propose and evaluate different Machine Learning (ML) based solutions for the internal detection process of the MA. We show through extensive simulation and several detection metrics the ability of solutions to precisely identify different misbehavior types

    A Survey on Machine Learning-based Misbehavior Detection Systems for 5G and Beyond Vehicular Networks

    Get PDF
    Advances in Vehicle-to-Everything (V2X) technology and onboard sensors have significantly accelerated deploying Connected and Automated Vehicles (CAVs). Integrating V2X with 5G has enabled Ultra-Reliable Low Latency Communications (URLLC) to CAVs. However, while communication performance has been enhanced, security and privacy issues have increased. Attacks have become more aggressive, and attackers have become more strategic. Public Key Infrastructure (PKI) proposed by standardization bodies cannot solely defend against these attacks. Thus, in complementary of that, sophisticated systems should be designed to detect such attacks and attackers. Machine Learning (ML) has recently emerged as a key enabler to secure future roads. Various V2X Misbehavior Detection Systems (MDSs) have adopted this paradigm. However, analyzing these systems is a research gap, and developing effective ML-based MDSs is still an open issue. To this end, this paper comprehensively surveys and classifies ML-based MDSs as well as discusses and analyses them from security and ML perspectives. It also provides some learned lessons and recommendations for guiding the development, validation, and deployment of ML-based MDSs. Finally, this paper highlighted open research and standardization issues with some future directions

    Speed Offset Attack Detection in Vehicular Ad-Hoc Networks (VANETs) Using Machine Learning

    Get PDF
    An integral component of the Intelligent Transportation System (ITS) is the emerging technology called Vehicular ad-hoc network (VANET). VANET allows Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication wirelessly to improve road safety, traffic congestion, and information dissemination. Communication of vehicles in a VANET network is vulnerable to various attacks. Commonly used cryptographic techniques alone are insufficient to ensure and protect vehicle message integrity and authentication from insider attacks. In such cases, additional measures are necessary to ensure the correctness of the transmitted data. Each vehicle in the network periodically broadcasts a basic safety message (BSM) that contains essential status information about a vehicle, such as its position, speed, and heading to other vehicles and Road Side Units (RSU) to report its status. A speed offset attack is where an attacker (misbehaving vehicle) misleads the network by adding an offset value to its actual speed data in each BSM. Such attacks can result in traffic congestion and road accidents; therefore, it is essential to accurately detect and identify such attackers to ensure safety in the network. This research proposes a novel data-centric approach for detecting speed offset attacks using Machine Learning (ML) and Deep Learning (DL) algorithms. Vehicular Reference Misbehavior (VeReMi) Extension Dataset is used for this research. Preliminary results indicate that the proposed model can detect malicious nodes in the network quickly and accurately
    • …
    corecore