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ABSTRACT

An integral component of the Intelligent Transportation System (ITS) is the emerg-

ing technology called Vehicular ad-hoc network (VANET). VANET allows Vehicle to

Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication wirelessly to im-

prove road safety, traffic congestion, and information dissemination. Communication

of vehicles in a VANET network is vulnerable to various attacks. Commonly used

cryptographic techniques alone are insufficient to ensure and protect vehicle message

integrity and authentication from insider attacks. In such cases, additional measures

are necessary to ensure the correctness of the transmitted data. Each vehicle in the

network periodically broadcasts a basic safety message (BSM) that contains essential

status information about a vehicle, such as its position, speed, and heading to other

vehicles and Road Side Units (RSU) to report its status. A speed offset attack is

where an attacker (misbehaving vehicle) misleads the network by adding an offset

value to its actual speed data in each BSM. Such attacks can result in traffic con-

gestion and road accidents; therefore, it is essential to accurately detect and identify

such attackers to ensure safety in the network. This research proposes a novel data-

centric approach for detecting speed offset attacks using Machine Learning (ML) and

Deep Learning (DL) algorithms. Vehicular Reference Misbehavior (VeReMi) Exten-

sion Dataset is used for this research. Preliminary results indicate that the proposed

model can detect malicious nodes in the network quickly and accurately.
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CHAPTER 1

Introduction

1.1 Vehicular ad-hoc networks

As technology advances and intelligent cities develop worldwide, Wireless Commu-

nication is becoming a new paradigm of efficient data transfer techniques. As a

result of the vast range of options it offers, the Vehicular Ad-hoc Network (VANET)

has attracted much attention and research. Building transport infrastructure and

expanding it does not solve transportation issues. To mitigate these problems, In-

telligent Transportation System (ITS) develops a system combining people, roads,

and vehicles and applies advanced technologies in transportation. With its real-time,

accurate, and efficient transportation system, ITS provides drivers with essential road

information and services to alleviate traffic congestion, and accidents [1]. The global

status report of 2018 by the World Health Organization (WHO) shows that road

accidents cause 1.35 million people’s deaths annually and are the 8th leading cause.

Also, it is the 1st leading cause of death for young adults and children [2]. Studies

show that around 60% of the accidents could be avoided if the driver could be warned

of misbehavior in the network even half a second before the mishap [3]. VANET

connects vehicles with reliable and vital information that helps ensure their safety

on the road while providing a pleasant driving experience. As a result, VANET has

become a crucial component of the Intelligent Transportation System. VANET differs

from other ad-hoc networks as the network consists of components and infrastructures

with more processing capacity, a larger storage limit in data storing infrastructures, a

specific vehicle movement path, high dynamic topology, and a vast amount of energy

1



1. INTRODUCTION

[4]. Within the vehicles in a VANET network is the On-Board Unit (OBU), which

comprises of GPS, antennas, and processors. The Application Unit (AU) executes

the program and assists OBUs in communicating. Roadside units (RSU)s placed on

the side of roads help in node-to-node communication in the network. Moreover, the

Central Authority or Authorization Party registers a node to the network and revokes

it in case of misbehavior [5].

Dedicated Short-Range Communication (DSRC) is a technology that supports

various applications on vehicular communication that allow medium to short-range

high data transfer communication with low latency. These applications help to im-

prove safety, for instance, collision avoidance, lane change warning, etc., and they run

on data exchanged between vehicles and roadside infrastructures. According to a U.S.

Department of Transportation study, vehicles with DSRC can prevent up to 82% of

all accidents in the United States before they occur. DSRC standards and vehicular

network communication are supported by Wireless Access in Vehicular Environment

(WAVE) which is IEEE 1609 standard protocol [6].

Although DSRC supports various safety applications, it is not convenient for ex-

changing massive amounts of data. To bridge the gap, Cellular-V2X (C-V2X) is

introduced. C-V2X allows faster connectivity and data transfer between vehicles,

roadside units, central authority, and cloud-based services [7].

VANET applications are categorized as Comfort applications and Safety applica-

tions. Comfort applications give vehicle users a comfortable experience and ensure

traffic efficiency. It includes map navigations price and locations of gas stations and

restaurants, automatic toll collection, internet connectivity, weather updates, enter-

tainment, and passenger health updates. On the other hand, Safety applications try

to avoid accidents by delivering safety information to the desired receiver. There

are three different kinds of messages that Safety applications give out: Information

messages (IM) that consist of the toll collection point, speed limits, etc., Assistance

messages (AM) that consist of critical information like cooperative collision avoid-

ance and lane switching, lastly Warning messages (WM) that include information

like lousy road condition and traffic signal ahead [8].

2



1. INTRODUCTION

VANET communications communication can be of different types, such as Vehicle-

to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), Infrastructure-to-Infrastructure (I2I),

and Vehicle-to other devices (V2X). Communication over the VANET network in-

cludes sharing sensitive information with vehicles promptly. This makes the network

prone to different types of attacks and misbehavior, which need to be detected and

verified to ensure the network’s correctness, integrity, authenticity, and confidential-

ity.

Moreover, the VANET network is susceptible to different types of attackers. Each

of these attackers has other intentions. They also have different statuses and roles in

the network; some are authorized members, and some are not. Chapter 2 will further

discuss details on types of attackers.

This research addresses the detection of Speed Offset attacks. In this attack, the

malicious vehicle adds an offset value and alters the actual speed data in each Ba-

sic Safety Message (BSM). This can lead to traffic congestion and even accidents.

Cryptographic techniques can secure message integrity but not correctness; as a re-

sult, cryptographic methods are insufficient to ensure network security. Advanced

detection methods are required to detect malicious vehicles delivering misleading in-

formation across the network.

1.2 Motivation

Due to the highly dynamic topology, infrastructure-less architecture, and time-sensitive

information sharing, communication of nodes in the VANET network is crucial and

prone to different security threats. Moreover, vehicles in the network are responsible

for spreading safety-related information, so any alteration in this transmitted data by

malicious nodes can cause grave harm to the network. Confidentiality, authenticity,

and integrity of these data are essential to ensure soundness in the network. Defense

mechanisms like Public Key Infrastructure, symmetric and hybrid methods, certificate

revocation methods, and ID-Based Cryptography methods are used to ensure mes-

sage authenticity [9]. Public Key Infrastructure (PKI) methods use cryptographic

3



1. INTRODUCTION

techniques to authenticate vehicles in the network. Temporary digital certificates are

issued by the Certification Authority (CA) to the communicating nodes. If misbe-

havior is detected, the certificate is revoked and added to the Certificate Revocation

List (CRL) [10]. However, it is pretty challenging to maintain such lists due to high

mobility. As these cryptographic techniques give message authenticity and cannot en-

sure message integrity and correctness, concrete misbehavior detection schemes must

serve the cause.

Each authenticated vehicle broadcasts Basic Safety Messages (BSMs) to the net-

work, containing information about the vehicle’s position coordinates, time, speed,

etc. A speed offset attack is where a malicious node adds a fixed or random offset

value to its speed data to alter the actual information passed in each BSM. This kind

of attack causes an illusion for legitimate vehicles and can result in traffic conges-

tion and accidents. The attackers are authenticated vehicles, so only cryptographic

techniques are insufficient in identifying them.

Although several researchers in the past have adapted misbehavior detection using

Machine learning approaches, very few notable works are there for identifying speed

offset attacks in VANET. In this research, we propose efficient misbehavior detected

model using Machine learning with an efficient and high detection rate.

1.3 Problem Statement

VANET networks are reliable and efficient information distribution and communi-

cation between network vehicles. Nevertheless, the network is highly likely to be

attacked by malicious nodes who aim to damage it for their benefit. Speed offset at-

tackers alter the actual speed of a vehicle and cause a discrepancy in the network. As

these attackers are often authenticated users, cryptographic techniques fail to serve

their purpose. The novelty of this work is that not much noticeable work is there that

uses Machine learning approaches for speed offset misbehavior detection in VANET.

Previous works mostly revolved around heuristic approaches like integrity and plau-

sibility checks. Moreover, the earlier works relied on vehicles to store and share the

4



1. INTRODUCTION

misbehavior detection system.

1.4 Solution Outline

In this research, to solve the abovementioned issue, we propose a Data-centric ap-

proach of using a machine learning-based misbehavior detection system to detect

misbehaving nodes in the network with a high classification rate. Each vehicle sends

out BSMs periodically. Based on the BSMs, a car is classified as malicious or le-

gitimate by the model installed at RSU. An extension of the first public extensible

dataset available in this field: VeReMi Extension Dataset (Vehicular Reference Mis-

behavior Extension Dataset) [11] is used in this research to train and evaluate the

proposed approach. The model is trained on the dataset with low traffic densities.

The first stage of the solution is data collection and preprocessing, where the correct

information from the Ground Truth file is mapped together with the false information

from the Log files. The resulting dataset is preprocessed for being fed to the model

for classification. The second is the classification stage. The dataset is provided to

multiple machine learning algorithms and a deep learning algorithm for detecting

the vehicles as legitimate and malicious. Additionally, we propose implementing a

time parameter that will assist in finding the best trade-off between the accuracy

of a model and the time taken to run the model. This way, we can determine the

most efficient algorithm for misbehavior classification. In our approach, we propose

to create an efficient and time-sensitive misbehavior detection model for Speed offset

attack detection in VANETs.

1.5 Thesis Organization

The remaining outline of this thesis is as follows: chapter 2 includes an overview

of fundamental concepts of VANET and Speed offset attack, along with a literature

review of related work in misbehavior detection using machine learning approaches.

Chapter 3 contains an outline of the proposed methodology and a brief discussion of

5



1. INTRODUCTION

the VeReMi dataset, followed by chapter 4, including an experimental setup and a

discussion of the results. In the end, chapter 5 gives a conclusion followed by possible

future work on the proposed methodology.

6



CHAPTER 2

Literature Survey

2.1 Overview of VANET

VANET supports various applications to improve traffic conditions through collabo-

rative communication. These applications are divided into Safety and Comfort ap-

plications, as demonstrated in Figure 2.1.1.

Safety applications are further divided into Road safety applications and road

efficiency applications, whereas Comfort applications consist of commercial and in-

formation services [12]. Road safety applications ensure to decrease in the chances of

road accidents and damages caused by accidents. Moreover, these applications can

provide drivers with warning messages about potential future accidents. This appli-

cation type is further divided into three subcategories [13]. Firstly, when an RSU

detects a probable collision between vehicles, it sends out warning messages to the

OBU of vehicles through Collision avoidance applications. This safety application

gives out intersection collision warnings, pre-collision warnings, lane change alerts,

and alarms for dangerous locations to make drivers cautious. Secondly, the Traffic

sign notification applications warn drivers about curve speed and traffic signal vio-

lations. Lastly, Incident management specializes in tackling the effect of an accident

by giving out emergency vehicle alarms and post-collision warning messages.

The other division of Safety application is the Road Efficiency application which

aims to improve traffic conditions by monitoring vehicles and road conditions. Road

efficiency is divided into two branches. The first is a traffic management application,

which consists of traffic flow information such as intelligent traffic control, traffic-

7



2. LITERATURE SURVEY

free tolls, speed control of vehicles, and route guidance for improved driving [14].

Secondly, Traffic monitoring applications notify the drivers of unusual situations by

monitoring road conditions and tracking vehicles.

The Comfort applications provide drivers and passengers with entertainment and

information services. Entertainment applications give the users on road Wifi access

points and mobile cellular data networks for recreational services like internet surfing

and online gaming. Whereas, Background information applications provide users with

services like advertising business locations and information about local attractions and

gas stations.

Fig. 2.1.1: Applications in VANET

Vehicles in the VANET network move freely with high speed, which results in

its highly dynamic topology. Unlike MANET, the infrastructure-less architecture of

VANET allows each node in the network to move and communicate independently

[15]. Coverage of VANET network ranges from vast area network to local area net-

work. Moreover, the VANET network does not have strict limitations on battery

power and storage capabilities, which allows it to host a considerable number of ve-

hicles in high traffic densities and also cover significant geographical areas [16]. The

covered area consists of both uniform and non-uniform regions. The Uniform region

is where the vehicles share their route, direction, and speed for a long time with all

8



2. LITERATURE SURVEY

other nodes in the network. The highway is an example of such a region, where the

attributes of each vehicle stay nearly constant for a significant time. On the other

hand, non-uniform areas are where the vehicles’ paths, speed, and direction change

frequently and are not shared throughout the network, such as local roads [17].

2.1.1 Types of Communication

Each vehicle in a VANET network acts as a node in charge of safely sending, receiv-

ing, and broadcasting data packets throughout the network. Vehicles in the network

are equipped with On-Board Unit (OBU) that facilitates communication with other

vehicles as well as roadside units (RSUs), and the Application Unit (AU) executes

the OBU’s computational programs [18]. Moreover, the vehicles contain a Global po-

sitioning system (GPS), allowing the OBUs to determine the current vehicle location.

Road side unit (RSU) acts as the central point of communication for nodes in the

network [19]. VANET facilitates different types of communication:

1. Vehicle-to-Vehicle (V2V): This type of communication allows a vehicle to

establish direct communication with another vehicle without the interference of

any other infrastructure. This communication is used for safety, security, and

dissemination applications and also allows a vehicle to broadcast data packets

to all vehicles in its range [20].

2. Vehicle-to-Infrastructure (V2I): This communication allows vehicles to com-

municate with nearby infrastructures such as RSUs and Central Authority to

establish a connection and provide current status information. Infrastructures

such as RSUs can also communicate with vehicles in the network, e.g., to broad-

cast safety messages and provide services across the network.

3. Infrastructure-to-Infrastructure (I2I): Infrastructures communicate with

each other to keep the nodes in the network within a range updated with the

required information.

4. Vehicle-to-everything (V2X): This is the communication between vehicles
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and other devices in the network such as mobile phones and internet connectivity

devices.

2.1.2 Challenges in VANET

VANET network deals with transmitting and generating real-time traffic information.

The prime objective of functioning in this domain is ensuring road safety through con-

tinuously sharing information among vehicles. The disseminated information’s lack

of accuracy, efficiency, and reliability can have adverse effects. Ensuring smooth op-

eration in this infrastructure-less and dynamic architecture can be pretty challenging.

Several such challenges are listed below:

• Security: Ensuring security in the network is the most crucial challenge as

VANET is a robust network providing safe and secure traffic analysis [21]. The

most crucial security challenges of VANET are [22]:

1. Data consistency: Inconsistency in data shared among vehicles from

malicious and legitimate vehicles can result in accidents. Also, the network

must be adaptive to instant errors in the transmitted data.

2. High mobility: Vehicles in VANET are fast and continuously moving.

Although it has high processing and storage capacity, a comparatively less

complex algorithm is required to process data in VANET.

3. Key management: Authentication of nodes depends on the key-based

architecture. Ensuring the safe handling of these keys is very important in

such networks.

4. Revocability: Malicious vehicles should be revoked from the system on

identification.

• Scalability: Nodes are open to leaving and joining the network at any time.

The routing protocols must ensure service to all the vehicles functioning at

different hours of the day and avoid any network congestion [15].
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• Efficient Routing and Network Management: As VANET is a network

with changing topology, deploying an efficient routing protocol that ensures

minimum delay in packet sending, maximum system capacity, and less com-

plexity for this changing topology is challenging [23]. Moreover, the network

must use an adaptive routing protocol that can handle varying network densities

in different scenarios [20].

• Error Tolerance and Latency Control: In a VANET network, the nodes

are constantly sharing real-time data. The time taken in this communication is

quite fast. These data packets can contain errors, so the network must prepare

to deal with these errors without any delay. Moreover, the network must com-

ply with data communication rapidly. Any latency in real-time data sharing

between vehicles can result in grave accidents [21].

• Dynamic Topology and Efficient Routing: Vehicles in VANET are fast

and continuously moving. RSUs and vehicles are considered network nodes,

while one is stationary and the other can reach speeds of over 100 kilometers

per hour. This extremity in the difference of node velocity causes a high mobility

challenge for processing the joint wireless communication [16]. Moreover, the

VANET network has a highly variable network density. The number of vehicles

in a specific area per second can vary widely depending on the region and time.

For instance, urban areas will have more density of nodes than rural areas, and

the same region has highly variable node density based on time of the day [20].

High mobility, high node velocity, and variable node density make VANET a

dynamic network with changing topology. To address the challenges of changing

topology VANET network must offer an adaptive Quality of Service that can

continue to provide high connectivity time and low latency with the available

bandwidth and vehicle density [5]. Additionally, it is challenging for a VANET

network to implement an efficient routing protocol that will ensure minimum

delay in packet sending, maximum system capacity, and less complexity for this

changing topology [23].
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2.1.3 Security Requirements in VANET

VANET provides its users with wireless services and information throughout the

network. Ensuring the truthfulness and authenticity of these messages is crucial,

as failing to do so can result in catastrophes. Moreover, the information shared

through this infrastructure-less network is real-time and sensitive, making it lucrative

to attackers. To keep the network safe from malicious attackers, security requirements

that should be maintained are as follows [24]:

• Authenticity: The authentication process verifies and ensures that only legit-

imate vehicles are enrolled in the network and that the message they send is

legit. Authentication also checks that the data is transferred between a legiti-

mate sender and receiver pair [18]. Ensuring Authenticity in the network is one

of the first steps toward network security. Moreover, Cryptographic techniques

are adapted to secure the Authenticity of the network through unique key gen-

eration for the sender vehicles. Authentication is violated by critical attacks like

Sybil Attack, Data Replay Attack, and Certificate Replication Attack. In the

Sybil attack, the attacker creates ghost identities and disguises itself to mislead

the legitimate vehicles by sending out false information [25]. In a Data Replay

attack, the attacker alters the timestamp of a message, which confuses the net-

work [26]. A certificate replication attack is where the attacker manages to get

the private or public unique key of a legitimate vehicle and sends messages in

the network by impersonating itself [27].

• Integrity: One of the essential security requirements is integrity. The integrity

of a message is ensured when the content of a message from a sender to a

receiver remains intact and unaltered. Incorrect messages can come from au-

thenticated nodes, or the correct message can be altered by malicious nodes

[28]. Attackers change the original message and replace it with false content

to hamper the integrity of the network. Examples of integrity attacks are the

Position falsification attack, Speed Offset attack, timing attacks, and Message

alteration attacks. In a Position falsification attack, the malicious node sends
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out false position information to the network to delude the legitimate nodes.

Speed offset attack is similar, but the attacker plays around with speed infor-

mation in this case. In a Message alteration/deletion attack, the attacker either

alters or deletes an authentic message before reaching the receiver [29]. Lastly,

in Timing attacks, the emergency messages are deleted to cause a hamper to

the network [30].

• Confidentiality: Vehicles in the network send and receive messages both in

the form of V2V and V2I communication. Therefore, the system must protect

both the identity of an authorized vehicle and the authentic messages from them

from outsiders. Access to the messages must be only in the hands of authen-

ticated users. In confidentiality attacks, malicious nodes breach the network,

obtain personal information about legitimate vehicles, and silently overhear and

observe the network [30]. Eavesdropping attacks is a confidentiality attacks by

mostly passive attackers.

• Availability: Facilities and operation of the network must be available to all

authorized vehicles at all times. Malicious users attack the availability of the

network by restricting legitimate users from accessing the network [4]. Avail-

ability attacks include Denial of Service (DoS), spamming, broadcasting, and

jamming attacks. In a DoS attack, the attacker congests the communication

medium by flooding unwanted information, making the resources unavailable

to legitimate users [31]. A jamming attack occurs at the physical layer, similar

to DoS, where the attacker jams the network with disruptive signals [32].

2.1.4 Attackers in VANET

The impact of each attack on the VANET network depends on the attacker’s intention.

An attacker is a node whose main motive is to hamper the functionality of the running

network. A malicious node can disrupt the network for several reasons: to benefit

from a network it is not part of, to eavesdrop on confidential information, or to disturb

the ongoing functionalities. Based on their characteristics and potential, attackers are
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divided as follows [4]:

1. Internal Attackers: They are the authorized network members who leave

a more substantial impact on the network’s functionality than the external

attackers. Their motive is either personal gain or simply disrupting the network.

2. External Attackers: They are not part of the network but try to enter it

to gain benefit by either pretending to be a legitimate node or through other

attacks.

3. Active Attackers: These attackers try to alter the network through direct in-

volvement. They send out malicious signals and data packets directly through-

out the network. They impose a higher impact than the passive attackers.

4. Passive Attackers: They intend to observe the network without direct in-

volvement for their benefit.

5. Rational Attackers: They attack the network for their interest; hence they

are often easier to detect.

6. Malicious Attackers: On the contrary, they have no personal benefit; instead,

they want to hinder the operation of a running network.

7. Global Attackers: These attackers have a wide-range reach and can manipu-

late the operation of all the nodes in the network.

8. Local Attackers: Their control range is limited, and they have lesser entities

to manipulate.

2.2 Overview of Machine Learning

Artificial Intelligence introduced a branch called Machine learning which makes exe-

cuting complex jobs faster and simpler using statistical learning [33]. Machine learn-

ing contributes to solving real-world problems in various fields. It is being extensively
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implemented in essential domains like e-commerce, agriculture, natural language pro-

cessing, healthcare, robotics, facial and image recognition, and many more [34]. Ac-

cordingly, the field of VANET is no exception and is utilizing Machine learning vastly

for attacks, intrusion, and misbehavior detection in the network. Machine learning is

categorized into four types [35]:

1. Supervised Learning: In this learning, the model is trained with labeled data.

Later the model is expected to make predictions on the unlabeled data by learn-

ing from the labeled data. Supervised learning involves finding a relationship

between a dataset’s independent and dependant features.

2. Unsupervised Learning: In this case, the model learns from a set of unlabeled

data. It uses its capability to learn from unlabeled data and find patterns to

solve a problem.

3. Semi-supervised Learning: The model is trained using both labeled and

unlabeled data. The model learns and predicts by using this combination of

data.

4. Reinforcement Learning: Unlike the other learning techniques, the algo-

rithm, in this case, learns, adapts, and predicts from its environment without

providing any data. The model receives a prize for every successful learning

with nothing to lose in case of failure.

2.2.1 Basic Machine Learning Concepts and Terminologies

• Model: A machine learning model is an algorithm that learns and solves given

problems.

• Dataset: It is the information that the machine learning model learns from

and predicts or executes its learning upon. Dataset is one of the most critical

components for building a machine learning model.
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• Training and Testing Set: The input dataset is divided into training and

testing datasets. The training data is used to train the machine learning model,

and the testing dataset is used to test the predictions or learnings of the model.

• Features: These are the attributes of the dataset. Usually, the features are rep-

resented in columns and are often known as data objects. They each represent

a dataset property that contributes to solving the problem.

• Data Pre-processing: The raw version of the dataset might contain irrelevant

information. There can also be duplicate entries and noise in the dataset, which

will hinder the accuracy and quality of the prediction process of the machine

learning model.

• Cross-validation: A statistical method where the dataset is divided into

groups (folds) for training and evaluation of the machine learning model. In

each iteration, a different subgroup is used to validate the results, while the

remaining are used to train the model in the next iteration. The average of

each prediction is used to calculate the overall prediction of the model using

the provided dataset [36]. One of the most common forms of cross-validation is

k-fold cross-validation, where ‘k’ denotes the number of divisions of the training

dataset.

2.2.2 Classification Algorithms

Classification is a category of supervised machine learning where the output data

points are classified as members of different classes [37]. Classification is used to

identify group memberships for data points [38]. Each data instance is accurately

predicted and assigned to a target class in the classification process. Algorithms

for classification tasks are classifiers that learn from the training data and predict

categorical labels for each data point. A classification algorithm develops a model by

learning from the labeled training data and predicts the class label for the unlabeled

test dataset [39]. In VANET, machine learning can classify incoming vehicles as
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legitimate and misbehaving based on the input Basic Safety Messages. There are

mainly two types of classification [39]:

1. Binary Classification: The predicted output data can belong to either of the

two classes in binary classification.

2. Multiclass Classification: In this classification task, more than two output

classes are possible.

This research is based on supervised binary and multiclass classification using

labeled and structured data. The predicted output will classify an input vehicle as

either an honest and legitimate network member or a malicious attacker.

Following are brief descriptions of the classification algorithms used in this re-

search. For our work, we implemented K-nearest neighbor, Logistic regression, Adap-

tive Boost, Decision tree, Random forest, Extreme Gradient Boost, and Multi-layer

Perceptron classifiers for classification.

2.2.2.1 K-Nearest Neighbours Algorithm

K-Nearest Neighbour is a widely used supervised Machine learning classification al-

gorithm that is a simple yet effective case-based learning model. KNN works well

with balanced and imbalanced datasets [40]. The algorithm chooses a target point

and determines the distance between that target variable and all other data points.

It selects the ’K’ number of nearest neighbors to the target point. It chooses the label

for the target data point based on the similarity and popularity score of the labels of

k nearest neighbors [41]. The query point gets assigned a label based on the majority

voting technique of its neighbors [42]. This algorithm can use Euclidean, Manhattan,

Mikowski, and Hamming distance functions to calculate the distance between data

points [40].

2.2.2.2 Logistic Regression Algorithm

Logistic regression is a supervised statistical method widely used for binary classi-

fication in machine learning [43]. This algorithm classifies a particular class using
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probability. The algorithm predicts the occurrence probability of binary class values

using a logit function.

2.2.2.3 Adaptive Boost Algorithm

Adaptive Boost (AdaBoost) is a robust ensemble classifier built by combining several

weaker classifiers. Ensemble classifiers are built upon multiple individual classifiers.

AdaBoost generates member classifiers, and the output of the ensemble classifier

depends on the diversity between the base classifier and each member classifier’s

performance. The algorithm is adaptive as it adjusts the weight of member classifiers

to rectify incorrect predictions in each iteration. Our research uses a Decision tree

with a single split [44].

2.2.2.4 Decision Tree Algorithm

The decision tree is a valuable and powerful supervised Machine learning algorithm

for data mining of linearly inseparable data [45]. The algorithm uses the divide

and conquer approach for classification. The dataset is transformed into a tree-like

structure where the root node represents the best features of the dataset, and the

branches carry out classification [46]. The two main components of a decision tree

are the decision node representing the conditions the tree uses to operate and the

leaf nodes representing the decision node’s decision with a numerical value. Splitting,

stopping, and pruning are the critical components for building a decision tree model

[47]. Moreover, the decision tree is suitable for handling large, noisy, and complicated

datasets and does not require pre-processing. The major drawback of this algorithm

is that it can easily get overfitted.

2.2.2.5 Random Forest Algorithm

Random forest is a supervised machine learning algorithm suitable for classification

and regression problems [48]. This algorithm consists of a collection of Decision trees

that it trains to obtain the final prediction result. The best solution is determined us-

ing the ensemble method in which the algorithm returns the class getting the majority
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vote count. Random forest is not only fast, scalable and robust but also overcomes the

shortcoming of the Decision tree algorithm of being overfitted by large and complex

datasets [45].

2.2.2.6 Extreme Gradient Boost (XGBoost) Algorithm

XGBoost is an ensemble approach of tree boosting, in which new models are added

to improvise the errors of the existing models to make a combined final prediction.

XGBoost is a library that implements the gradient boosting decision tree algorithm.

XGBoost goes by the name of gradient boosting as it utilizes the gradient descent

algorithm to minimize the loss of existing models. XGBoost is widely known for

its unparallel execution speed and model performance. Moreover, it is one of the

most scalable algorithms for both regression and classification for all purposes. This

algorithm uses a novel tree learning algorithm for sparse data handling, and its quick

learning and fast model exploration feature is due to its parallel and distributed

computing system. Due to these properties, XGBoost is said to be a ten times

speedier algorithm than its competitors. It can be implemented on datasets with

billions of entities on a distributed system [49].

2.2.2.7 Multi-layer Perceptron classifier (MLP) Algorithm

Multi-layer perceptron (MLP) is a feed-forward neural network composed of input,

output, and hidden layers. The input layer takes the required data to be processed,

and the output layer performs the required classification and prediction tasks. The

arbitrary number of hidden layers between the input and output layer increases the

model’s learning capability and enhances the overall model accuracy. The hidden

layers are said to be actual algorithm engines [50]. Unlike a single-layer perceptron,

a multi-layer perceptron solves non-linearly separable problems and can approximate

any continuous function [51]. The MLP algorithm flows data from the input to

the output layer. The neurons in each hidden layer are trained and tested using

the backpropagation of the algorithm. The usefulness of MLP is in the domain of

recognition, prediction, classification, and approximation.
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2.3 VeReMi Extension Dataset

Both the European Telecommunications Standards Institute (ETSI) and Institute of

Electrical and Electronics Engineers (IEEE) imposed vehicular Public Key Infrastruc-

ture (PKI) for digitally signing packets before sharing over vehicles in a Cooperative

Intelligent Transport Systems (C-ITS). The aforementioned cryptographic technique

ensures the sender’s authenticity but not message correctness [11]. As a result, many

published researchers have been developing a Misbehavior detection system for C-

ITS. But there is a shortage of publicly available reliable datasets, where the VeReMi

dataset bridged the gap. However, the original VeReMi dataset had shortcomings

and room for improvement in the number of attacks and physical error model. The

creators of the VeReMi extension dataset extend the original VeReMi dataset by

making several additions. They added a set of more complex and dynamic attacks,

implemented a realistic sensor error model to the vehicle’s physical layer, and im-

plemented a simple fusion detection technique with some local plausibility detectors.

Moreover, to create a benchmark for future researchers, the creators of this dataset

provided the results of running and verifying the new dataset on their misbehavior

fusion mechanism.

The dataset was generated using the VEINS extension framework called Frame-

work for Misbehavior Detection (F2MD). This framework is reproducible and de-

tectable for multiple MBD use cases. VEINS [52], the open-source simulator for

Inter-Vehicular Communication, is based on OMNET++ [53] and SUMO [54]. OM-

NeT++ is used for network simulator building and is a C++ simulation library. On

the other hand, SUMO is known for simulating road traffic.

Moreover, this dataset is built upon the open-source synthetic traffic scenario

Luxembourg SUMO Traffic (LuST) [55]. The LuST scenario is validated with actual

traffic data from the VehicularLab of the University of Luxembourg. The subsection

of the LuST network used in this research had a traffic size of 1.61 square kilometers

and a maximum density of 67.4 vehicles per square kilometer.

To provide a more realistic dataset with real-world field tests, the creators of this
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version of VeReMi add sensor error models to the primary data fields:

1. Position Error: Multiple position error detection systems have varying preci-

sion levels. Firstly, the Global Positioning System (GPS) has different precision

limits for the open sky and urban areas [56]. However, in this work, the re-

searchers implemented an internal correction system on the On-Board unit of

every vehicle [57].

2. Velocity Error: Error from velocity is proportional to the speed of the vehicles.

The error is calculated from the wheel spin of vehicles, having an average error

of 0.05 meters per second [58].

3. Acceleration Error: The acceleration error model is inferred from the error

readings of the vehicle’s velocity.

4. Heading Error: The vehicle’s heading can be calculated using a magnetic com-

pass or through inference from successive positions. The magnetic compass’s

accuracy depends on the device’s quality; conversely, inference from successive

positions depends on the vehicle’s velocity. Results show that when the vehicle

has a higher speed, successive position heading is more accurate and vice versa.

For the misbehavior model, the researchers expanded the original VeReMi dataset

by adding several threatening attacks to the model. Moreover, they distinguished

between malfunctions occurring from faulty infrastructures and sensors and actual

attacks, which are intended malicious behaviors of vehicles.

The JSON encoded generated dataset consists of the message’s type, receive and

send time, sender and receiver IDs, speed, position, acceleration, and heading infor-

mation of a BSM shared by a vehicle. The dataset was divided into two parts based

on hours of the day: The first being the Rush hour time (7 am to 9 am) and the

second being the Low traffic hour time (2 pm to 4 pm). Both the subsets are from

the Luxembourg network simulation and consist of ground truth files and files with

received message data. Moreover, they set the misbehavior attacker penetration rate

for all attacks to 30%.
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Lastly, to set a benchmark for future researchers, the creators of VeReMi ran their

newly generated dataset on a simple detection algorithm based on plausibility and

consistency checks of received messages. The checks are done on Position, Speed,

Heading, and Acceleration data fields is comprised of 1) Absolute plausibility, 2)

Temporal Consistency, 3) Relative consistency, 4) Consistency for Kalmar Filter,

5) Two vehicle’s overlap, 6) Beacon Frequency compliance, (7) Sudden appearance

plausibility and (8) Transmission range plausibility [59] [60].

Its plausibility check must reach a minimum threshold to be detected as a misbe-

having vehicle. The output of the detection mechanism is represented using Accuracy,

Precision, Recall, and F1-Score detection metrics. The results show that the outcome

is widely dependent on the type of attack rather than the time of the day and vehicle

density.

2.3.1 Attacks in VANET

The researchers of the VeReMi extension dataset incorporated and implemented their

developed dataset on several different types of attacks and malfunctions [61], such

as Position falsification attacks, Speed Offset attacks, Data Replay attacks, Denial

of Service attacks, and others. In this thesis, we focus specifically on speed offset

attacks, which are discussed in detail in section 2.3.1.1. Nonetheless, here we are

listing some common attacks faced by the VANET network:

1. Delayed Message Attack: In this attack, the message contents remain unal-

tered, but the time of receipt of the message is delayed either intentionally by

a misbehaving node or due to the malfunction of the network [62].

2. Data Replay Attack: In this attack, the malicious node replays an earlier

message to create an unwanted panic in the network [63]. It is difficult to

identify such attackers in cases like hit-and-run, especially if the attackers adapt

the Sybil mode [64].

3. Denial of Service Attack: In this attack, the attacker creates congestion by

flooding the network with messages exceeding the IEEE and ETSI standard
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limit [11]. Consequently, the whole network starts misbehaving and denies

services to legitimate users. Denial of service attacks is categorized as Network

Mode attacks (Fabrication attacks, Data Alteration attacks, and Data Replay

attacks) and Application Mode attacks (Sybil attacks and Message Suspension

attacks) [65].

4. Sybil Attack: It is one of the most harmful attacks, where the attacker creates

multiple pseudonyms and claims that each fake identity is a legitimate network

node. Through impersonation, the malicious nodes create an illusion in the

network by claiming to have different positions simultaneously [66].

5. Position Falsification Attack: It is one of the data alterations attacks where

the attacker node misleads the network by altering the existing data and sending

out incorrect position information. These attacks are generally generated by

authenticated vehicles of the network, and hence cryptographic techniques are

insufficient for detecting them [67].

2.3.1.1 Speed Attacks in VANET

This research primarily focuses on Speed Offset attacks in VANET. In the VANET

network, each node shares its updated whereabouts with its neighboring nodes within

a range. Nodes share this information in the form of Basic Safety Messages (BSMs),

which are transmitted periodically. Authenticated users digitally sign these BSMs

containing vehicle speed, position, direction, and transmission time. The authenti-

cated senders digitally sign these BSMs in order to make sure that they have not

been altered. However, the sender itself can send false messages in the BSM. Ma-

licious nodes populate the BSMs with incorrect speed information that can mislead

legitimate members and result in serious accidents. Speed attack is also considered

a malfunction that can occur from an erroneous OBU or failure in a physical sensor

[11]. Longitude and latitude fields of the BSMs are hampered due to such failures

in infrastructure, which can result in legitimate nodes receiving false speed vector

information. These attacks are known as Speed Attacks, in which incorrect speed
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information is populated in BSMs.

Speed attacks cannot be detected using cryptographic techniques as these tech-

niques cannot ensure message correctness. Additional misbehavior detection models

are needed to detect such attacks. Speed attacks hamper the message’s data integrity

by altering the actual speed information contained in each BSM. Speed attacks are

divided into four categories which are listed below:

1. Constant Speed Attack: In this attack, the malicious nodes send a constant

speed value in their BSMs to the neighboring vehicles. By doing so, the attacker

pretends to be moving with the same speed which misleads the neighboring

vehicles in the network.

2. Random Speed Attack: Similar to Constant speed attacks, the attacker al-

ters the BSM’s actual speed data by entering random speed data simultaneously

in the network. The legitimate nodes get confused as each BSM contains a new

speed value.

3. Constant Speed Offset Attack: The malicious node adds a fixed offset value

with the actual speed data and transmits it to the network. This type of attack

is difficult to detect as a fixed amount and vehicle alter the speed data seems

to be behaving normally.

4. Random Speed Offset Attack: Attacker vehicle adds a random offset value

simultaneously to the actual speed information of each BSM. This type of at-

tack is difficult to detect, as the constant speed offset attacks slightly alter the

accurate speed information.

2.4 Literature Review

Several methods for anomaly-based intrusion detection were proposed in previous

works, such as hashing pseudonyms to common values, RSSI-based analysis, fuzzy

clustering, and Machine learning [68] [69]. Cryptographic techniques such as PKI are
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widely used to digitally sign packets before sharing in a Cooperative Intelligent Trans-

port Systems (C-ITS). Despite these cryptographic frameworks ensuring the message

is authenticated, message correctness is vulnerable to being altered by attackers [70].

An additional misbehavior detection technique is required to solve the message legit-

imacy issue. Recently, many researchers have used machine learning for misbehavior

detection in VANET. Machine learning is a data-centric approach that can optimize

a network by detecting misbehaving vehicles in a dynamic network such as VANET

[71]. Some implementation of machine learning approaches in detecting misbehavior

detection is discussed in the following section.

2.4.1 Machine Learning Based Misbehaviour Detection in

VANET

So et al. [72] proposed a model that extracted feature vectors from each BSM using

plausibility checks and combined them with Supervised Machine learning for classifi-

cation and detection of location spoofing attacks. The researchers aim to increase the

overall precision of the misbehavior detection system by integrating Machine learning

approaches with plausibility checks. Moreover, the researchers introduced a confu-

sion matrix for representing the similar misbehavior of five position forging attacks

using ML models. They addressed five different attacker types with three vehicle

densities of location spoofing attacks’ detection and classification problems using the

VeReMi dataset. They considered KNN and Support Vector Machine (SVM) classi-

fication algorithms for misbehavior detection using Machine learning. They initiated

the attack detection by creating sender-receiver pairs from the BSM data received

containing packets sent at different times by the sender. The researchers considered

six-dimension feature vectors, out of which the first two vectors are categorical fea-

tures: the location plausibility check and movement plausibility check. The remaining

four are quantitative data that describe the vehicle’s behavior. The overall results of

attack detection show that the proposed integrated model gave 20% better precision

than the detection with only plausibility checks. This research provided a framework
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with a better detection rate and classified the misbehaviors for better identification.

In their work, Ercan et al. [73] introduced two new features for classifying mis-

behaving vehicles in the network. Later the results of the proposed features are

compared with the existing standard features. The research is focused on catego-

rizing and detecting position falsification attacks from the VeReMi dataset. Two

sets of features were proposed for misbehavior detection in two separate approaches.

The researchers introduced two new features of the implemented features while the

others were existing common features. The features utilized in this work were the

received signal strength indicator (RSSI), the sender-receiver distance, the sender’s

position, the delta position, the angle of arrival (AoA), and the estimated distance

by the path loss model. Their first proposal consisted of all six features, whereas the

second approach did not contain the RSSI and delta position features. The authors

also pointed out that recent works with anomaly detection techniques consisted of

RSSI and distance between sender and receiver as the must-have features [74]. RSSI

is useful in detecting position discrepancy as it denotes the strength of the radio

signal that gets to the receiver. On the contrary, for keeping evidence of the signal

sender’s and receiver’s position in the network, the calculated distance between them

is used for detecting position falsification attacks. Another significant feature used in

this research for detecting false attacker positions is the delta position which signifies

the difference in the sender’s position between the last two BSMs. The introduced

features in this research are the angle of arrival (AoA) and the estimated distance

using the path loss model. AoA is calculated with the help of utilizing the arctangent

function on the sender and receiver distance for the x and y dimensions. On the

other hand, the estimated distance using the path loss model was calculated with

the assistance of the RSSI function from the dataset. After the features are prepared

and gathered, they are provided to KNN and RF machine learning algorithms for

misbehavior detection. The results obtained with the proposed feature sets were then

compared with existing similar works. A comparison of the results showed that both

the proposed feature sets outperformed the existing works in terms of KNN and RF

models.
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Similar to [73], Sharma et al. [75] in their work, proposed a data-centric misbehav-

ior detection model for detecting and classifying misbehavior in an Internet of Vehicles

(IoV) network by integrating supervised machine learning algorithms with plausibility

checks. The proposed model detects and classifies Position Falsification attacks from

the VeReMi dataset. Through this research, the authors aim to mitigate the gap in

ensuring the security of V2V communication using traditional misbehavior detection

techniques. The researchers propose implementing their model in the vehicles OBU

to ensure real-time misbehavior detection. The proposed model integrates plausi-

bility Location and Movement Plausibility checks. The location plausibility check

compares the GPS location of the BSM received with the predicted range [76], and

the Movement Plausibility check considers the velocities of received BSMs obtained

throughout the journey to verify the movement of a vehicle [77]. The implemented

model classifies and detects misbehavior using KNN, SVM, Näıve Bayes, Random

Forest, Ensemble-Boosting, and Ensemble Voting classification algorithms. For vali-

dating the model, it is evaluated in two approaches: Firstly, the detection rate of each

attack type for individual algorithms is evaluated. Secondly, the total detection rate

for each plausibility check and attack for each ML algorithm integrated with plausi-

bility checks are evaluated. Results of the proposed approach show that the overall

performance increased after integrating plausibility checks with ML algorithms. Al-

though after integrating plausibility checks, KNN, Näıve Bayes, and Random forest

performance increased. Specifically, combining the ensemble learning algorithms with

a location plausibility check gave the best recall and F1 score. The researchers cal-

culated the classification loss model to add a dimension to model evaluation. The

results of this evaluation demonstrated that Näıve Bayes had almost double the error

as KNN, and both the ensemble methods showed the lowest classification error for

their hyperparameter tuning. Overall, the integrated model presented 5% to 10%

higher precision and 15% higher Area Under Curve (AOC) value for the attack types

compared to the ML model alone.

In their work, Singh et al. [78] proposed a misbehavior detection model using

Machine learning for detecting Wormhole attacks in VANET’s multi-hop communi-
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cation. The research focused on unicast transmission, a multi-hop communication

system for data transfer between sender and receiver nodes. The wormhole attacks

detected are the attacks by the insider attackers on the topology-based AODV routing

protocol of the network. This work implemented the misbehavior detection model on

their traffic scenario data generated by SUMO [79] traffic simulator and NS3 network

simulator [80]. Trace files from Manhattan mobility generated by SUMO are provided

to the NS3 simulator, where the network is simulated numerous times with variable

attacking pair nodes. KNN and SVM algorithms are individually fed with the gener-

ated dataset to determine the detection accuracy. The final results demonstrate high

accuracy of around 99% for both the classifiers.

2.4.2 Detecting Speed Offset Attacks

Hsu et al. [61] proposed a misbehavior detection model integrating a Convolutional

Neural Network (CNN), Long short-term memory (LSTM) for reconstructing a po-

sition feature, and SVM for classifying and detecting misbehaving vehicles. The

proposed model uses the Vehicle to everything important safety messages (BSMs)

from the VeReMi extension dataset and evaluates the model’s performance on 19

faults included in the dataset, along with Speed offset attacks. The researchers aim

to utilize the proposed model on a vehicle’s OBU to get notified about a misbehav-

ing sender and inform the nearby RSU to take preventive measures. The authors

pointed out that integrating ML algorithms with Deep learning algorithms increases

the overall classification performance. Using a position reconstruction model, the au-

thors generate a new feature that will specify the magnitude of behavioral difference

between the tested vehicles and the standard pattern. For better quality of extracted

features, CNN is implemented, and LSTM is applied for time series analysis of se-

quential BSM data. This approach is that it uses the legitimate Vehicle’s information

for the training of the reconstruction model. This phase of the model is trained at

the RSU. Once the reconstructed position has been developed, the model calculates

the target features needed for the next stage’s classification using Mean Absolute Er-

ror (MAE). An SVM-based binary classifier is used for the classification phase with
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11 features of the following four classes: behavioral deviation, location plausibility

checks, velocity information, and comprehensive information. The authors evaluate

their model’s result with a few other works. The first is a CNN-4LSTM model with

a threshold classification algorithm [81], and the second is the SVM-based classifier

with features generated with plausibility checks [72]. Results show that the proposed

model demonstrates the best performance among the works mentioned above, with an

average misbehavior detection F1 score of 96.11%. Overall, the proposed misbehavior

detection model detects over 95.35% of vehicles causing various attacks.

In a similar approach to [61], Alladi et al. [81] proposed a misbehavior detection

scheme based on a CNN-LSTM combined Deep neural network based on sequence

reconstruction. Further, they implemented a Thresholding algorithm for the final

classification of the attacks. According to the authors of this work, a deep neural

network provides the best performance for detecting a wide range of attacks and over

the shortcomings of traditional data security methods. The proposed model uses 19

different anomaly types, including Speed Offset attacks and one normal vehicle type

of the VeReMi Extension dataset. They used only the normal type data for training,

and the remaining 19 attack types were used for sequence creation and testing of the

model. Specifically, X and Y coordinates of position and speed data were considered

for developing the sequence reconstruction-based misbehavior detection scheme. The

model implemented CNN-LSTM and a stacked LSTMmodel and compared the results

obtained by their respective sequence reconstruction scheme. The CNN-LSTM model

was trained on time sequences generated by regular vehicles. After the training

phase, the potential thresholds of each attack were calculated using the thresholding

algorithm. The thresholds obtained using Mean Absolute Error (MAE) assisted in

getting the recall scores along with other evaluation metrics, which presented the final

comparison of the model’s performance. Results show that the proposed CNN-LSTM

model had an accuracy of 98%, which was better than the accuracy of 95.4% of the

stacked LSTM model. Not only in terms of accuracy but also for the other evaluation

metrics, the proposed CNN-LSTM model performed the best. Moreover, the authors

presented a reconstruction graph to show the detection performance of their model.
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The higher deviation indicated more MAE, signifying a better attack classification.

A comparative analysis of the researches discussed in this section is presented in

the table 2.4.1.

No. Paper

Machine

Learning

Model?

Dataset Used Attacks Detected Approach

1 So et al [72]. Yes VeReMi
Position Falsification

Attack

Plausibility checks

combined with KNN and

SVM Machine Learning

algorithms for classification

2 Ercan et al. [73] Yes VeReMi
Position Falsification

Attack

Introduced features: Estimated

arrival angle and distance

using path loss model. Classified using

KNN and RF Machine Learning models

3 Sharma et. al [75] Yes VeReMi
Position Falsification

Attack

Plausibility checks integrated with

KNN, SVM, Näıve Bayes,

RF, Ensemble-Boosting,

and Ensemble Voting

classification algorithms

4 Singh et al. [78] Yes

Own dataset

generated

using SUMO

and NS3 simulator

Wormhole Attack
KNN and SVM machine learning

algorithms for classification

5 Hsu et al. [61] Yes VeReMi Extension
Speed Offset and

many other attacks

Deep learning based approach

with a combination of LSTM and

CNN with SVM classifier

6 Alladi et al. [81] Yes VeReMi Extension
Speed Offset and

many other attacks

Deep learning based approach

with a combination of LSTM and

CNN on the time sequence data.

7 Proposed Model Yes VeReMi Extension Speed Offset attacks

Machine learning approach

with KNN, LR, AdaBoost,

XGBoost, Decision Tree,

RF and MLP classifiers with a time

metric for efficiency evaluation.

Table 2.4.1: Comparison table of Literature Review

30



CHAPTER 3

BSM Based Classification of

Speed Attacks in VANET

3.1 Introduction

VANET is a highly dynamic network that is prone to various types of attacks. Multi-

ple techniques are employed for identifying these attacks on a VANET network using

a misbehavior detection method. This study proposes developing a misbehavior de-

tection model using machine learning techniques to detect Speed offset attacks in

VANET. BSMs transmitted by the vehicles are crucial in identifying and forecasting

an attacker’s behaviors in the network, as the BSMs contain the network member’s

current status. The related information in the BSM includes the sender id, speed,

time, position, receiver id, and message-id of a vehicle. A vehicle’s BSM is transmit-

ted periodically to all the nearby vehicles and infrastructures of the network to inform

the network about its whereabouts. Moreover, it is essential to gather BSM-related

vehicle data from the network to attain the goal of this research. The proposed

methodology uses the VeReMi Extension dataset comprising a collection of network

BSMs under different traffic scenarios and attacker densities. In the proposed method,

we aim to:

• Provide a framework for Speed offset attacks detection.

• Provide an efficient machine learning-based approach for classifying network

vehicles as malicious or legitimate.
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3.2 Proposed Architecture

Authenticated nodes send out BSMs periodically to the network’s neighboring vehi-

cles, RSUs, and infrastructures by digitally signing them. The receivers can use the

public key to check the message’s authenticity. During registration to the network, the

vehicles are designated private and public keys by the Central authority. The vehicles

later use these keys for signing the messages transferred using the Digital Signature

algorithms. Although these cryptographic techniques preserve the authenticity of the

network by ensuring only registered vehicles take place in the BSM transfer process,

they cannot guarantee the message’s integrity. As demonstrated in figure 3.2.1, in

this research, we propose a misbehavior detection model that will work as an addi-

tional layer on top of the cryptographic techniques for ensuring message integrity.

The RSUs within the network range receive the periodic BSMs, which are classified

in the next phase using the model. The proposed framework can either be installed

in the RSUs or the vehicle’s OBU to detect and classify attackers.

As each vehicle is assigned a unique sender ID using registration, the RSUs will

verify each message received and mark the vehicle based on the unique ID. After

each BSM makes its way into the RSU, the proposed model applies machine learning

classifiers in the architecture to classify the incoming node as either malicious or

legitimate. If a sender is identified as malicious, the nearby RSUs and other nodes

can be aware of the misbehaving vehicle.

The proposed model will impose different operations on the infrastructures in

the network. Operations at the vehicles are as follows: The authorization authority

registers the vehicles before entering the network. Next, the vehicle’s OBUs send

periodic BSMs to the network and use Digital signatures to ensure no alterations of

the messages either on the way or after reaching the receiver. Finally, when an RSU

broadcasts a message about a malicious node, a vehicle must listen to the message and

act accordingly. On the contrary, the RSU carries out a different set of operations:

The periodic BSMs sent by vehicles are received by the RSUs, and used to classify the

sender as legitimate or malicious. Lastly, whenever an attacker vehicle is classified,
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it broadcasts the information to other vehicles and infrastructures in the network.

Fig. 3.2.1: Proposed Architecture

3.3 High-level Outline of Proposed Approach

The methodology comprises three levels: firstly, data extraction, followed by prepara-

tion of the collected data, and finally, utilizing the preprocessed data for classification

of the attacks. Details of these stages are as follows:

3.3.1 Data Extraction

Our work uses the VeReMi extension dataset, which is created by modifying the

VeReMi dataset. The extended dataset addresses 19 different types of attacks, which

resulted in 39 datasets. In each simulation, two subsets are created: one for low-

traffic hours and one for rush hours. These subsets consist of a Ground Truth file and

multiple log files. Every simulation has only one ground truth file containing infor-
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mation about the type of attacker, which assists in distinguishing between malicious

and legitimate nodes. On the contrary, every vehicle participating in a simulation

contributes with one log file containing the BSMs received from neighboring nodes.

The ground truth files work as a reference with original information for comparison.

In contrast, the log files can have incorrect data inserted by attackers, such as false

information about the speed parameters in the speed offset attacks. The logs derived

from the dataset are JavaScript Object Notation (JSON) files merged and combined

into a comma-separated values (CSV) file. The combined log file is labeled using the

unique sender ID to proceed toward the preprocessing stage.

3.3.2 Data Preparation

Data preparation is the second stage in which the data is prepared for fitting into the

classifiers. Data within the combined log files are cleaned to remove non-contributing

features and repetitive data. Each vehicle generates a log file, due to which the same

BSM might be generated from multiple vehicles, resulting in redundant BSM data.

Therefore, the first pre-processing stage was removing the redundant data points for

better classification of attacks. The next step involved determining the more minor

and non-contributing features and removing them from the dataset. Through this

process, we decided the contribution capacity of each element in the classification

process. Moreover, keeping features with lesser contributions will result in a reduc-

tion in model efficiency. At this level, we used our knowledge and experience in this

domain to select the essential features and remove the unnecessary ones. We elimi-

nated the noise features from our domain knowledge as their relevance to our goal is

insignificant. Moreover, we removed all the ’Z’ coordinate features as they contained

a value of ’0’. The message type and density level feature repeated the same value

for all the entries; thus, we removed them.

Out of 34 features presented in the Speed offset attack dataset, we finalized the

15 most important and impactful features (including the dependant feature) for our

classification model, as shown in Table 3.3.1. The finalized feature set’s independent

variables included the following: speed, acceleration, heading, and position vectors,
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send and receive time of a message, ID and Pseudonym value of a sender, receiver ID,

and lastly, the ID of the message being transferred. On the other hand, the dependent

variable was the parameter of attack detection.

Next, we determined the final features’ importance scores using the decision tree

approach [82] to determine the most impactful features. Figure 3.3.1 and figure 3.3.2

graphically demonstrate the feature importance scores of each feature for the low

traffic scenario for the Constant Speed offset and Random Speed offset datasets,

respectively. The results showed that the sender ID, sender Pseudo and Message ID

features had a minor contribution to our model. Moreover, the feature importance

scores demonstrated that Speed in the x-direction and Heading in the x-direction was

the most impactful feature for both datasets. After selecting the final features, the

dataset went through standardization and normalization, which will be discussed in

chapter 4.

From previous similar works on other attacks, we learned that sender ID, sender

Pseudo and message ID significantly influence the overall model detection for certain

attacks, e.g., replay attacks. But, this did not seem to be the case for speed offset

attacks, as shown in the feature importance graphs. However, to eliminate the pos-

sibility of overfitting on these parameters, we created three versions of the prepared

dataset for the classification stage as demonstrated in Figure 3.3.3:

1. Scenario 1: All 14 independent features.

2. Scenario 2: All independent features except Receive Time, Send Time, Re-

ceiver ID, sender ID, Sender Pseudo, and Message ID.

3. Scenario 3: All independent features except Send Time, Receiver ID, sender

ID, Sender Pseudo, and Message ID.

3.3.3 Hyperparameter Tuning for Classification

Hyperparameters are parameters that are responsible for controlling the learning

of a model. Before the learning process of a machine learning algorithm begins,

35



3. BSM BASED CLASSIFICATION OF SPEED ATTACKS IN VANET

Fig. 3.3.1: Constant Speed Offset Feature Importance Score

its hyperparameters must be customized according to the dataset. Each dataset

adapts and performs best with different combinations of hyperparameters. Before

the model starts learning, different combinations of hyperparameters are tried on

the model. The group of parameters giving the best results is determined as the

hyperparameters for the particular dataset. Hyperparameter tuning is the process

of customizing and determining a model’s most suitable set of hyperparameters for

getting the best results. Moreover, hyperparameter tuning is a way of preventing the

model from over-fitting and under-fitting. Several techniques can be used to find the

optimal set of hyperparameters for a problem. In this research, we used Grid Search

CV, which evaluates the algorithm for a range of hyperparameters defined in a grid

and determines the best one [83]. We implemented hyperparameter tuning on the

following algorithms:

K-Nearest Neighbor: For KNN, we implemented hyperparameter tuning on

various parameters. The parameter grid for hyperparameter tuning consisted of the

range of ’n-neighbours’: [1, 3, 5, 7, 9, 11, 13, 15]. The ’weights’ parameter had

options of either ’uniform’ or ’distance’, and finally, the choice of ’metric’ was

between ’Minkowski’, ’euclidean’, and ’manhattan’. The best set of
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Fig. 3.3.2: Random Speed Offset Feature Importance Score

hyperparameters for the dataset of this research were: ’n-neighbours’ = 3, ’weights’

= ’uniform’, and finally the ’metric’ selected was ’Minkowski’. To further test our

model, we tried implementing it with higher neighbors’ values, but it was seen that

’k=3’ gave the best result throughout.

Multi-layer Perceptron: After a rigorous hyperparameter tuning for MLP, out of

the option of one, two, and three hidden layers, our model selected three hidden

layers with 45, 30, and 15 neurons, respectively. Out of the ’tanh’ and ’relu’, we

found ’relu’ to be a more suitable ’activation function’, and finally, out of ’128’ and

’256’, ’128’ was the more desirable ’batch size’ for classification.

XGBoost: For this algorithm, the ’booster’ parameter was chosen as ’gbtree’ and

’objective’ was ’multi: softprob’.

Random Forest: The estimator is one of the most crucial parameters for a

Random Forest tree. Hence, we fitted our dataset for the following range of

estimators: 10, 30, 50, 60, 80, 100, 130, 150, 170, and 200. The results showed that

the highest accuracy obtained was for the estimator of 80. We kept the ’max-depth’

at ’6,’ and the ’criterion’ was set to ’entropy’.

Decision Tree: Before starting the learning process, we determined the maximum
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Fig. 3.3.3: Scenarios of Datasets

depth for each dataset’s scenarios. The depth value for binary classification varied

between ’40’ and ’41’ for the Random speed offset dataset, and for the Constant

Speed offset dataset, it was between ’29’ and ’31’. And for the multiclass

classification, the maximum depth value was between ’43’ to ’45’.

3.3.4 Cross Validation for Classification

K-fold cross-validation is a process of resampling the given data and splitting it in K

folds for evaluating a machine learning model. The dataset is divided into K

fragments, where one sample is the validation or test set, and the remaining ’K-1’

fragments work for training the model. In the next iteration, the testing group and

the training group change. In the end, the average evaluation score of each group is

considered to evaluate the model’s performance [83]. Unlike train-test split, K-fold

cross-validation generates a less biased result. Moreover, it prevents the model from

over-fitting and measures the accuracy efficiently. However, this process requires
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more operation time than the train-test split but yields more optimistic results. For

this research, we selected a value of ’k=5’ for generating classification results.

3.4 Classification

The final stage of the methodology is applying the machine learning algorithms to

the prepared dataset for classification. In this stage, the attacker vehicles of the

network and identified. We propose detecting the attackers in two separate datasets

of two attack types: Constant speed offset and Random Speed Offset. In our work,

we will implement both binary and multiclass classification. The two types of

attacks will be identified separately for the binary classification. And for the

multiclass attacks, the dataset will be combined, and classification will be performed

to determine the attacks together. For classifying attackers performing Speed offset

attacks, we used the following machine learning algorithms: K-Nearest Neighbor,

Logistic Regression, Adaptive Boost, XGBoost, Decision Tree, Random Forest, and

the deep-learning classifier: Multi-layer Perceptron. We implemented the classifiers

for the three dataset versions mentioned in section 3.3.2. We implemented three

different versions to compare the concerning features’ contribution to the overall

classification performance. Before the final classification stage, the dataset will be

divided into the train (80%), and test (20%) sets. Furthermore, the training set will

be cross-validated to strengthen the ground of the results. Our misbehavior

detection model will finally use the classifier with the best performance.

3.4.1 Binary Classification

The binary classification works with individual datasets of positive or negative

classes. The classification is based on predefined classes [84]. For our thesis, we plan

to implement binary classification on two datasets separately: Constant Speed offset

attacks and Random speed offset attacks. Each of these two datasets contains labels

of legitimate and malicious nodes. In binary classification, the model learns patterns

from individual training data and predicts for one dataset at a time.
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3.4.2 Multiclass Classification

In multiclass classification, each test datapoint can indicate any of the multiple

classes [85]. Multiclass classification is performed in a combined dataset with two or

more categories. For our work, we combined the two types of speed offset attacks

and implemented multiclass classification on them. Through this approach, the

model could train and learn the two attack types and classify them accordingly.

After the model is trained for such classification, one giving an input data point, the

model will first detect if it’s an attacker datapoint. Next, it will determine the class

of speed offset attack this data point belongs to. Compared to binary classification,

multiclass classification is efficient and versatile for its ability to learn and detect

multiple attacks simultaneously.
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SL No. All features Eliminated Features Selected Features for classification

1 Message Type Message Type

2 Receive Time Receive Time

3 Send Time Send Time

4 Sender ID Sender ID

5 Sender Pseudo Sender Pseudo

6 Receiver ID Receiver ID

7 Message ID Message ID

8 File Name File Name

9 Density Level Density Level

10 Position X Position X

11 Position Y Position Y

12 Position Z Position Z

13 Position Noise X Position Noise X

14 Position Noise Y Position Noise Y

15 Position Noise Z Position Noise Z

16 Speed X Speed X

17 Speed Y Speed Y

18 Speed Z Speed Z

19 Speed Noise X Speed Noise X

20 Speed Noise Y Speed Noise Y

21 Speed Noise Z Speed Noise Z

22 Acceleration X Acceleration X

23 Acceleration Y Acceleration Y

24 Acceleration Z Acceleration Z

25 Acceleration Noise X Acceleration Noise X

26 Acceleration Noise Y Acceleration Noise Y

27 Acceleration Noise Z Acceleration Noise Z

28 Header X Header X

29 Header Y Header Y

30 Header Z Header Z

31 Header Noise X Header Noise X

32 Header Noise X Header Noise Y

33 Header Noise Z Header Noise Z

34 Attack? Attack?

Table 3.3.1: Table of Features
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CHAPTER 4

Results

Although deploying and testing the proposed model in a real-world scenario is more

pertinent, attempting to do so is hazardous and troublesome. Conducting

experiments to test the proposed model’s efficiency in the real world brings high

safety measures, unreasonable infrastructure costs, and excessive resource

requirements. Consequently, we considered running the experiments on a digital

scale using simulation tools more reasonable. This chapter is divided into multiple

subsections: where section 4.1 reviews the setup discussion of the simulation tools,

the parameters used in the VeReMi extension datasets, experimental setup toolkits,

parameters used in the classification process, and finally, details of the evaluation

metrics for evaluating the performance of each of the classification algorithms.

Next, section 4.2 presents a review, analysis, and discussion of the results obtained

by our proposed model for binary classification, section 4.3 presents the review and

analysis of the results obtained through multiclass classification, and lastly, section

4.4 compares results with the existing approaches.

4.1 Setup Discussion

In this research, we focus on the low attacker and vehicle density of the Speed

Offset attack datasets of the VeReMi extension dataset. The Speed Offset attack

dataset implemented in this research comprises two types of attack datasets:

Random Speed Offset attack and Constant Speed Offset attack. Each dataset

consisted of around 820097 entries, and the merged dataset for multiclass
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classification contained around 1640000 data entries. After the data pre-processing

step, where non-contributing features are eliminated, we considered three scenarios

for each attack type, as follows:

• Scenario 1: Models are trained with all 14 selected features listed in Table

3.3.1.

• Scenario 2: In this case, the models are trained with all features except

Receive Time, Send Time, Receiver ID, Sender ID, Sender Pseudo, and

Message ID.

• Scenario 3: For the last scenario, we trained the models on the dataset except

for Send Time, Receiver ID, sender ID, Sender Pseudo, and Message ID. The

major difference between scenarios 2 and 3 is the message received time.

To evaluate the performance of the proposed approach, we selected the following

machine learning and deep learning classifiers for detecting speed offset attacks:

• Machine learning classifiers: K-Nearest Neighbor, Logistic Regression,

Adaptive Boost, XGBoost, Decision Tree and Random Forest.

• Deep learning classifier: Multi-layer Perceptron classifier.

4.1.1 Evaluation Metrics

The Speed Offset attacks datasets derived from the VeReMi Extension dataset is an

imbalanced dataset with an unequal number of legitimate and attacker vehicle data.

The two classes of the dataset are not evenly distributed, which results in an

imbalanced classification. For such imbalanced datasets, it cannot be solely relied

upon accuracy to act as a good performance metric. Hence, we derive each

classifier’s F1-score, precision, and recall values using a confusion matrix. For our

dataset, the positive values of the contribution matrix denote attacker vehicles, and

the negative indicates legitimate nodes. A confusion matrix represents a summary of
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the prediction results of a classification algorithm. As demonstrated in table 4.1.1, a

confusion matrix provides four outcomes for a binary classification problem like ours.

True Positive: A node is correctly identified as an attacker.

False Positive: A node is legitimate but is predicted as an attacker by the

classifier.

True Negative: A node is correctly identified as a legitimate.

False Negative: A node is an attacker but incorrectly predicted as a legitimate

node by the classifier.

Predicted Negative Predicted Positive

Actual Negative True Negative False Positive

Actual Positive False Negative True Positive

Table 4.1.1: Confusion Matrix

Precision

Using precision, we get the proportion of all accurate positive classifications out of

all positive ones. Precision is also known as a positive predicted value. Equation (1)

breaks down the concept of precision.

Precision =
CorrectPositivePredictions

TotalPositivePredictions
=

TruePositive

TruePositive+ FalsePositive
(1)

Recall

Recall accounts for the proportion of true positive classifications out of all positive

predictions. The recall is also known as sensitivity, and recall details are provided in

equation (2).

Recall =
CorrectPositivePredictions

TotalActualPredictions
=

TruePositive

TruePositive+ FalseNegative
(2)
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F1-Score

The perfect trade-off between precision and recall is accumulated using F1-Score. It

is the harmonic mean of precision and recall, which is expressed in equation (3). A

high F1 score means a high precision and recall value.

F1− score = 2 ∗ Precision ∗Recall

Precision ∗Recall
(3)

4.1.2 Implementation Environment and Toolkit

Experiments, research and implementation for this research were conducted in the

following environment configuration:

• Operating system: Windows 10

• Processor: 2.40 GHz [Octa-Core] Core i5

• Memory: 8 GB

Tools and libraries used for the implementation

• Programming language: Python 3.9

• Integrated Development Environment: Jupyter Notebook, Google Colab

• Libraries: Scikit-learn, matplotlib, NumPy, pandas

4.2 Binary Classification

For binary classification of each attack-type dataset, we implemented the six

machine learning algorithms (K-Nearest Neighbor, Logistic Regression, AdaBoost,

XGBoost, Decision Tree, and Random Forest) and one deep learning algorithm

(Multilayer Perceptron) on our proposed framework. For our research, we

implemented the classifiers on the low-density Random Speed offset and Constant

Speed offset dataset, each containing around 820097 data entries. Tables 4.2.1 -
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4.2.3, and 4.2.4 - 4.2.6 show the performance of the classifiers for binary

classification for constant and random speed offset attacks respectively. We have

also reported the time taken for training and testing the datasets. The training time

was the time taken for training the whole dataset for each classifier. We considered

testing time to be the time to predict each sample as malicious or legitimate after

the model was trained with the dataset. In addition to the evaluation metrics, the

training and prediction times are important factors to consider when evaluating the

ML/DL models. A detailed discussion of the proposed model’s classification results

is presented below.

4.2.1 Constant Speed Offset Classification

Scenario 1: Table 4.2.1 portrays that in terms of accuracy, the Decision tree (with

a max depth of 29) gave the best result of around 98.5% followed by MLP with an

accuracy score of 98.20%. Most classifiers could correctly detect the attacker

vehicles for this dataset scenario with high evaluation metric scores. In terms of the

time metrics, Logistic Regression performed the best with a per sample testing time

of around 0.00054 milliseconds, followed by the Decision tree with a time count of

0.00067 milliseconds. On the contrary, KNN presented the worst accuracy score of

around 88% and took the highest to train and test (approximately 0.80

milliseconds) for this scenario. Analyzing the results, we can conclude that for this

scenario Decision tree gave the best trade-off of time and accuracy.

Scenario 2: Table 4.2.2 shows an overall improvement in the overall

performance of all the classifiers for this scenario. Although Decision Tree (with a

max depth of 30) and KNN gave a high performance with an accuracy of around

99%, MLP gave the highest accuracy score of approximately 99.5%.

In terms of time, both MLP (0.0009 milliseconds) and Logistic regression

(0.00043) performed well. Still, considering the time and accuracy tradeoff, we can

conclude that MLP was the best classifier for this scenario.

Scenario 3: This scenario portrayed similar overall results to scenario 1.

Results from table 4.2.3 show that the Decision tree (with a max depth of 31) and
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Constant Speed Offset (Scenario 1)

Algorithms Accuracy Precision Recall F1 Score

Training time

{whole sample}

(in ms)

Testing Time

{per sample}

(in ms)

KNN 88.38 88.00 88.00 88.00 2589980.00 0.78

Logistic Regression 90.55 90.00 91.00 90.00 126.00 0.00054

AdaBoost 95.65 96.00 96.00 96.00 5401.00 0.0021

XGBoost 97.64 98.00 98.00 98.00 2058.00 0.0011

Random Forest 94.88 95.00 95.00 95.00 3592.00 0.00152

Decision Tree (Depth=29) 98.50 99.00 99.00 99.00 142.00 0.0005

MLP 98.20 98.00 98.00 98.00 913.00 0.00070

Table 4.2.1: Binary Classification results for Constant Speed Offset (Scenario 1)

Constant Speed Offset (Scenario 2)

Algorithms Accuracy Precision Recall F1 Score

Training time

{whole sample}

(in ms)

Testing Time

{per sample}

(in ms)

KNN 99.13 99.00 99.00 99.00 2377139.00 0.731

Logistic Regression 90.46 90.00 90.00 90.00 114.00 0.00043

AdaBoost 95.51 96.00 96.00 95.00 5048.00 0.00197

XGBoost 97.71 98.00 98.00 98.00 2025.00 0.00108

Random Forest 95.81 96.00 96.00 96.00 3675.00 0.00155

Decision Tree (Depth=30) 99.02 99.00 99.00 99.00 199.00 0.00122

MLP 99.45 99.00 99.00 99.00 1249.00 0.00089

Table 4.2.2: Binary Classification results for Constant Speed Offset (Scenario 2)

MLP performed the best, where the Decision tree had an accuracy of around 98.7%.

On the contrary, although Logistic regression had the best test time per sample of

approximately 0.0004 milliseconds, it gave the worst accuracy score of around 89%.

Following LR, the Decision tree also had quite a low time count of about 0.0007

milliseconds. Therefore, it is evident that the Decision tree was again the best

performer as it not only had the most excellent detection rate but also detected the

attackers in the least amount of time.
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Comparing the overall results of scenarios 2 and 3, it is evident that the removal

of message receive time from the dataset improved the overall performance of the

classifiers. Furthermore, KNN dramatically performed better for scenario two than

for the other two.

Constant Speed Offset (Scenario 3)

Algorithms Accuracy Precision Recall F1 Score

Training time

{whole sample}

(in ms)

Testing Time

{per sample}

(in ms)

KNN 94.28 94.00 94.00 94.00 1824186.00 0.579

Logistic Regression 89.80 90.00 90.00 90.00 99.00 0.00041

AdaBoost 94.59 95.00 95.00 94.00 6025.00 0.00187

XGBoost 97.62 98.00 98.00 98.00 2055.00 0.00106

Random Forest 96.40 97.00 96.00 96.00 3596.00 0.0015

Decision Tree (Depth=31) 98.76 99.00 99.00 99.00 182.00 0.00071

MLP 98.64 99.00 99.00 99.00 204.00 0.0011

Table 4.2.3: Binary Classification results for Constant Speed Offset (Scenario 3)

4.2.2 Random Speed Offset Classification

Scenario 1: From the results presented in table 4.2.4 for scenario 1 (all features),

we can observe that in terms of accuracy MLP again dominated the other classifiers

with an accuracy score of 98.3%. However, the Decision tree with a maximum depth

of 41 followed MLP with a very close score of 97.8% Logistic regression performed

the worst in accuracy, with shallow precision scores. Moreover, the Random forest’s

performance seemed lower than usual for this case. Considering the time metrics,

Logistic regression and Decision tree were the fastest classifiers to detect the

malicious nodes, and KNN took the longest to train and test the model. We can

conclude that in terms of accuracy, solely MLP performed the best, but considering

the accuracy and time trade-off, the Decision tree is again the best classifier.

Scenario 2: From table 4.2.5 we can see that MLP and Decision tree (with a

maximum depth of 40) performed significantly better than the others. However,
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Random Speed Offset (Scenario 1)

Algorithms Accuracy Precision Recall F1 Score

Training time

{whole sample}

(in ms)

Testing Time

{per sample}

(in ms)

KNN 85.41 85.00 85.00 85.00 2028042.00 0.590

Logistic Regression 70.33 49.00 70.00 58.00 114.00 0.00050

AdaBoost 85.40 86.00 85.00 84.00 6011.00 0.00200

XGBoost 94.50 95.00 94.00 94.00 2176.00 0.00113

Random Forest 83.94 87.00 84.00 82.00 3311.00 0.00145

Decision Tree (Depth=41) 97.79 98.00 98.00 98.00 172.00 0.00050

MLP 98.30 98.00 98.00 98.00 1187.00 0.00077

Table 4.2.4: Binary Classification results for Random Speed Offset (Scenario 1)

MLP’s score of 99.16% slightly exceeded that of the Decision tree. However,

surprisingly, due to the removal of receive time from the dataset, KNN performed

significantly well compared to the first scenario, with an accuracy score of around

98.5%. Logistic regression presented the worst accuracy of around 70%. Regarding

the time metric, Logistic regression and Decision tree gave the fastest detection

rate, and KNN had the slowest one. Analyzing the overall results, in terms of

accuracy solely, MLP performed the best, but considering the time and accuracy

trade-off, the Decision tree again surpassed the others.

Scenario 3: Table 4.2.6 represents the results for scenario 3 of the Random

Speed offset attack dataset. The results were similar to that of the first scenario,

where MLP and Decision tree (max depth of 41) gave the best accuracy scores, with

the dominance of MLP with a score of around 98.4%. With the addition of receive

time to the dataset, KNN’s performance deteriorated from that of the second

scenario. Logistic regression again presented the worst accuracy score. Moreover,

the evaluation metrics scores of XGBoost and Random forest seemed to improve

from the last scenarios. Considering the time metrics, again, Logistic regression

along with the Decision tree performed the fastest detection with around 0.00063

milliseconds and 0.00051 milliseconds, respectively, and KNN had the slowest
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Random Speed Offset (Scenario 2)

Algorithms Accuracy Precision Recall F1 Score

Training time

{whole sample}

(in ms)

Testing Time

{per sample}

(in ms)

KNN 98.52 99.00 99.00 99.00 2348642.00 0.661

Logistic Regression 70.33 49.00 70.00 58.00 113.00 0.00050

AdaBoost 86.10 86.00 86.00 85.00 4769.00 0.00190

XGBoost 95.13 95.00 95.00 95.00 2075.00 0.0011

Random Forest 88.24 90.00 88.00 87.00 3593.00 0.00154

Decision Tree (Depth=40) 98.35 98.00 98.00 98.00 164.00 0.00050

MLP 99.20 99.00 99.00 99.00 9151.00 0.00068

Table 4.2.5: Binary Classification results for Random Speed Offset (Scenario 2)

detection. Although in terms of accuracy, MLP had the highest score but

considering the accuracy and time trade-off, the Decision tree was the constant best

performer.

Random Speed Offset (Scenario 3)

Algorithms Accuracy Precision Recall F1 Score

Training time

{whole sample}

(in ms)

Testing Time

{per sample}

(in ms)

KNN 91.82 92.00 92.00 92.00 2352601.00 0.720

Logistic Regression 70.33 49.00 70.00 58.00 112.00 0.00063

AdaBoost 86.25 87.00 86.00 85.00 4832.00 0.00180

XGBoost 94.72 95.00 95.00 95.00 2079.00 0.00113

Random Forest 90.30 91.00 90.00 90.00 3551.00 0.00150

Decision Tree (Depth=41) 97.91 98.00 98.00 98.00 161.30 0.00051

MLP 98.40 98.00 98.00 98.00 1265.00 0.00070

Table 4.2.6: Binary Classification results for Random Speed Offset (Scenario 3)

Overall Analysis: From figure 4.2.1, comparing the accuracy performance in

the three scenarios indicates that the overall accuracy and other evaluation metrics

scores were highest for the second scenario, in which receive time along with a few

other features were removed from the feature set in the preprocessing stage. This
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signifies the impact of receive time on our dataset. However, the low deviation in

the results between the first and third scenarios represented the shallow mark of the

sender ID, sender Pseudo, message ID, send time, and receiver ID in the overall

performance of the dataset.

Furthermore, comparing the results of the two datasets for the scenarios, we

observe that our proposed model could better identify and classify the constant

speed offset attacks than the random speed offset attacks.

However, comparing the prediction times from figure 4.2.2, it was noticed that

the timing values were comparable for the dataset scenarios.

Fig. 4.2.1: Binary Classification Accuracy Comparison

4.2.3 Visualizing the results for Binary Classification

We used a precision-recall curve [86] to visualize the results obtained for both the

Random Speed and Constant Speed offset datasets. The precision-recall curve is a

valuable medium for visualizing prediction success for an imbalanced dataset like

ours. We use the precision-recall curve for our binary classification to study and

compare the attack detection performance of each classifier. In a classification

model, precision depicts how much the results obtained are relevant to the dataset,
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Fig. 4.2.2: Binary Classification Prediction time Comparison

and recall shows the amount of genuinely classified results. Using the

precision-recall curve, we get the tradeoff between precision and recall for different

parameters. A larger area under the curve represents a classifier’s high recall and

precision values. The high values of precision and recall denote low false positive

and low false negative rates, respectively. Therefore, the higher the area under the

curve, the classifier returns a more significant number of accurate results while

correctly classifying the dataset with higher positive outcomes. Now, in cases with

high recall but low precision, the system generates many results, but most of them

are incorrectly classified. On the contrary, for higher precision and lower recall, the

number of predictions is lower but primarily correct. In an ideal scenario with high

recall and precision values, the model results in many prophecies, of which the

majority are correctly classified.

We generate six visualization graphs for the three scenarios of the Constant

Speed offset (figure 4.2.3) and Random Speed offset (figure 4.2.4) datasets. Each

diagram depicts the combined performance of all the classifiers. The classifiers used

for the precision-recall curves are K-Nearest neighbor, Logistic regression,

AdaBoost, XG Boost, Random Forest, Decision Tree, and Multilayer perceptron.

Moreover, these classifiers’ parameters are kept the same for obtaining the binary
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classification results. The overall results show that more vehicles were correctly

classified for the Constant Speed offset dataset than for the Random Speed Offset

attacks. MLP, Decision Tree, and XGBoost show remarkably good results for the

constant speed offset dataset with smooth lines signifying high recall and precision

scores. In contrast, Logistic regression performed the worst with noisy lines for all

three scenarios. Such noisy lines represent low recall scores, hence less number of

attacker vehicles were identified. Moreover, the performance of KNN seemed to be

the best for scenario two, where we removed the message received from the dataset.

The random speed offset dataset generated disappointing results compared to the

constant speed offset. Except for MLP, the overall performance of all the classifiers

was lower. Random Forest and AdaBoost produced noisy lines signifying low recall

rates. Moreover, Logistic regression showed the worst performance with shallow

precision values depicting the scarcity of accurately identified attacker vehicles.

Furthermore, AdaBoost’s performance significantly deteriorated compared to the

constant dataset. However, a similarity was found between the performance pattern

of KNN, where the removal of receive time greatly enhanced the precision and recall

values.

Fig. 4.2.3: Precision-Recall curves for Constant Speed offset for scenarios 1,2 & 3
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Fig. 4.2.4: Precision-Recall curves for Random Speed offset for scenarios 1,2 & 3

4.3 Multiclass Classification

Using multiclass classification, datasets containing more than two classes/labels are

identified. To serve the cause, we created a new dataset by combining the Random

Speed Offset and Constant Speed Offset datasets. The merged dataset contained

two types of attacker data and one legitimate vehicle data. Both the individual

datasets had a similar ratio of the attacker to legitimate nodes data, making the

merged dataset fair. However, the proportion of total legitimate to attacker data

was still imbalanced. The advantage of multiclass classification being it can train

the models for all the classes at once and depict their contribution to the classifier’s

performance. Based on results obtained from binary classification, we selected and

ran the multiclass classification on the top 5 classifiers: K-Nearest Neighbor,

XGBoost, Random Forests, Decision Tree, and Multilayer perceptron. Tables 4.3.1,

4.3.2, and 4.3.3 portrays the multiclass classification on the merged dataset for the

three scenarios mentioned in section 4.1. We used the same hyperparameter tuning

obtained parameters for each classifier as binary classification.

Multiclass classification Scenario 1: Through analysis of the first scenario

results from table 4.3.1, we can deduce that in terms of accuracy, XGBoost

surpassed other classifiers with an accuracy of around 90.5%. Like binary

classification with all features, KNN gave relatively low accuracy scores in this case.

Regarding detection time, the Decision tree was the fastest, with a testing time of
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around 0.0002 milliseconds, followed by MLP. However, compared to the binary

classification, the Decision tree was a poor performer in terms of evaluation metrics

in this scenario. Overall, due to the high detection time of XGBoost, MLP served

the best trade-off between accuracy and time for this scenario of multiclass

classification.

Multiclass Classification (Scenario 1)

Algorithms Accuracy Precision Recall F1 Score

Training time

{whole sample}

(in ms)

Testing Time

{per sample}

(in ms)

XGBoost 90.52 91.00 91.00 90.00 12018.00 0.00394

KNN 78.12 80.00 78.00 79.00 68226.00 0.062

Random Forest 81.63 84.00 82.00 77.00 6909.00 0.00142

Decision Tree(D=45) 78.98 85.00 79.00 80.00 282.00 0.00020

MLP 87.15 88.00 87.00 88.00 5468.00 0.00080

Table 4.3.1: Multiclass Classification results Scenario 1

Multiclass classification Scenario 2: Table 4.3.2 represents the results

obtained for the second scenario of multiclass classification. Similar to the binary

classification, KNN’s performance drastically improved from around 78% to around

91% between the first and second scenario due to the removal of message receive

time. However, the best accuracy score was presented by MLP of around 94%.

Furthermore, for this scenario, the accuracy of the Decision tree (maximum depth of

42) and Random forest improved. MLP provided the best trade-off between time

and accuracy considering the time metric.

Multiclass classification Scenario 3: From table 4.3.3, we can deduce that

similar to the binary classification, the first and third scenarios performed relatively

equally. XGBoost had the highest accuracy score of around 90%, followed by MLP’s

score of around 88%. However, there was an improvement from the first scenario in

the evaluation metrics score for KNN, Random Forest, and Decision tree (maximum

depth of 43). Nonetheless, the best trade-off was presented by the MLP classifier for

this scenario with a per sample detection time of 0.000724 milliseconds.
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Multiclass Classification (Scenario 2)

Algorithms Accuracy Precision Recall F1 Score

Training time

{whole sample}

(in ms)

Testing Time

{per sample}

(in ms)

XGBoost 90.50 91.00 90.00 90.00 11826.00 0.0038

KNN 91.20 91.00 91.00 91.00 43259.00 0.0130

Random Forest 83.93 86.00 84.00 81.00 7433.00 0.00135

Decision Tree(D=42) 89.62 90.00 90.00 89.00 354.00 0.00024

MLP 94.10 94.00 94.00 94.00 3571.00 0.00070

Table 4.3.2: Multiclass Classification results Scenario 2

Multiclass Classification (Scenario 3)

Algorithms Accuracy Precision Recall F1 Score

Training time

{whole sample}

(in ms)

Testing Time

{per sample}

(in ms)

XGBoost 90.27 91.00 90.00 90.00 11702.00 0.00374

KNN 84.43 85.00 84.00 84.00 48033.00 0.0303

Random Forest 88.00 89.00 88.00 86.00 6973.00 0.00134

Decision Tree(D=43) 85.22 87.00 85.00 85.00 413.00 0.000324

MLP 88.04 90.00 88.00 89.00 3564.00 0.00072

Table 4.3.3: Multiclass Classification results Scenario 3

On graphically comparing the accuracy scores from figure 4.3.1 for each scenario

for Multiclass classification, we observe that accuracy scores were slightly better for

Scenario 2 than the other two. Moreover, KNN had a noticeable improvement in the

score for the second scenario. On the contrary, similar to binary classification,

scenarios 1 and 3 had comparable results.

Moreover, on comparing the prediction time from figure 4.3.2, we notice that

prediction times were the lowest for scenario 2. This again signifies that this scenario

had a better trade-off between time and accuracy than the other two scenarios.

Figure 4.3.3 to figure 4.3.7 present a normalized confusion matrix with attack

misclassification rates for each of the 5 algorithms considered in this section. The
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Fig. 4.3.1: Multiclass Classification Accuracy Comparison

predicted labels are on the horizontal axis, and the True labels are on the vertical.

The left to right diagonal boxes in each matrix figure represented the correct

classifications, whereas the boxes around them denote the misclassifications. Here,

Label 0 denotes a legitimate vehicle, Label 1 denotes the random speed offset

attack, and Label 2 represents the constant speed offset attack.

4.4 Comparison with Existing Approaches

Although considerable work has been done on detecting position falsification

attacks, few existing approaches address speed offset attack detection. In this

section, we compare the results obtained by the VeReMi Extension dataset and the

current works with our proposed model. Based on the performance of the machine

learning and deep learning algorithms implemented for binary classification of our

model, the decision tree (DT) and Multilayer Perceptron (MLP) based models

achieved the best results, and we have used these values in Table 4.4.1 for the

proposed approach.

Table 4.4.1 compares the evaluation metric scores for the existing approaches
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Fig. 4.3.2: Multiclass Classification Prediction time Comparison

Fig. 4.3.3: Confusion Matrix for XGBoost for Scenarios 1,2 & 3

Fig. 4.3.4: Confusion Matrix for KNN for Scenarios 1,2 & 3

with our proposed model. The VeReMi extension paper had good scores for

precision; the accuracy scores exceeded 80% but were significantly lower than other

approaches and yielded unsatisfactory recall and F1 scores. In terms of the scores
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Fig. 4.3.5: Confusion Matrix for Random Forest for Scenarios 1,2 & 3

Fig. 4.3.6: Confusion Matrix for Decision Tree for Scenarios 1,2 & 3

Fig. 4.3.7: Confusion Matrix for MLP for Scenarios 1,2 & and 3

for the Constant Speed offset dataset, Paper 1 [61] outperformed our model’s results

by a slight margin. However, our proposed model classified Random Speed offset

attacks with an accuracy of around 99.20%, which was higher than Paper 1. Based

on our results, we expect the proposed DT model will have the best overall

performance when both accuracy and time are considered. Although, it had slightly

lower scores than the MLP and Paper 1, tables 4.2.2 and 4.2.5 show that it was

significantly faster compared to MLP. For random speed offset attacks, the proposed

DT model’s precision, recall, and F1 scores were similar to Paper 1, and the
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proposed MLP model had better scores than Paper 1. Although Paper 2 [81]

presented an excellent recall value of 100% for both types of attacks, in their limited

work, they did provide results for any other evaluation metrics. Therefore, making a

meaningful overall comparison with this approach was impossible.

Papers
Constant Speed Offset Random Speed Offset

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

VeReMi Extension [11] 81.57 99.57 39.69 56.76 89.28 99.72 65.0 78.70

Paper 1 [61] 99.85 99.82 99.82 99.82 98.67 98.14 98.73 98.44

Paper 2 [81] - - 100 - - - 100 -

Proposed Model (DT) 99.02 99.00 99.00 99.00 98.35 98.00 98.00 98.00

Proposed Model (MLP) 99.50 99.00 99.00 99.00 99.20 99.00 99.00 99.00

Table 4.4.1: Comparison of proposed model with existing approaches
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CHAPTER 5

Conclusion and Future Work

5.1 Conclusion

This thesis proposes a novel Machine-learning and Deep-learning based approach for

detecting Speed Offset attacks in VANET. We implemented the proposed

misbehavior detection model on the low-density Constant Speed offset and Random

Speed offset attack datasets from the VeReMi extension dataset. Based on our

domain knowledge, each dataset consisted of the 14 most essential independent

features of each BSM received by the network. After the required preprocessing, the

datasets were fed into different classifiers to evaluate the classifier’s performance.

We performed binary classification for each dataset and multiclass classification by

merging the Random speed offset, and Constant speed offset attack datasets.

Moreover, we completed the implementation in three different scenarios to

determine the impact of certain features on the classifiers’ detection performance.

In the first scenario, we considered all the selected features; in the second scenario,

we excluded the message received and sent time, receiver and sender ID, sender

Pseudo, and message ID. Lastly, for the third scenario, we returned the message’s

receive time into the dataset from the features selected for the second scenario. Our

research implemented the machine learning algorithms: K-Nearest neighbor,

XGBoost, Logistic regression, AdaBoost, Decision tree, Random forest; and the

Deep learning classifier: Multi-layer perceptron. We compared the overall

performance of all the classifiers mentioned above based on accuracy and the overall

detection efficiency. Analyzing the results obtained from our implementation for
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both datasets, we depicted that in the case of binary classification, the Decision tree

and MLP mostly yielded the best results in terms of accuracy. Regarding the time

and accuracy trade-off, the Decision Tree outperformed the others. Overall we

observed that the implementations for the second scenario yielded the best results

for binary classification compared to the other two scenarios. However, in terms of

Multiclass classification, XGBoost, KNN, and MLP outperformed the other

classifiers in terms of accuracy.

The overall performance of our binary classification was compared with existing

approaches discussed in the Literature Survey that used the VeReMi extension

dataset for identifying Speed offset attacks. The results showed that our proposed

misbehavior detection model could improve existing approaches in classifying the

Random Speed Offset attacks and is the first to report multiclass classification

results. Finally, our research evaluated each classifier’s prediction time, which was

missing in the compared works.

5.2 Future Work

Our research only focused on the low-density Speed offset attack dataset. As

prospective future work, we also want to run our proposed model on high-density

datasets and make a comparative analysis of the model’s performance. Moreover,

we want to explore the Constant Speed and Random Speed attack datasets with our

proposed architecture. Some models used in this research did not go through

hyperparameter tuning; we would like to overcome this shortcoming in finding the

optimal parameters for classification. In this part, we mainly concentrated on the

Machine learning models. In the future, we plan to expand our scope by

incorporating more deep learning models like Convolutional Neural Networks (CNN)

and Artificial Neural Networks models like Long short-term memory (LSTM).

Furthermore, we would like to create new features by combining the existing ones

and compare the classification performance by incorporating them into the dataset.
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macroscopic traffic model-based approach for sybil attack detection in vanets.

Ad Hoc Networks, 90:101845, 2019.

[70] Maxim Raya and Jean-Pierre Hubaux. Securing vehicular ad hoc networks.

Journal of computer security, 15(1):39–68, 2007.

[71] Jyoti Grover, Vijay Laxmi, and Manoj Singh Gaur. Misbehavior detection

based on ensemble learning in vanet. In International Conference on Advanced

Computing, Networking and Security, pages 602–611. Springer, 2011.

[72] Steven So, Prinkle Sharma, and Jonathan Petit. Integrating plausibility checks

and machine learning for misbehavior detection in vanet. In 2018 17th IEEE

International Conference on Machine Learning and Applications (ICMLA),

pages 564–571. IEEE, 2018.

[73] Secil Ercan, Marwane Ayaida, and Nadhir Messai. New features for position

falsification detection in vanets using machine learning. In ICC 2021-IEEE

International Conference on Communications, pages 1–6. IEEE, 2021.

[74] Steven So, Jonathan Petit, and David Starobinski. Physical layer plausibility

checks for misbehavior detection in v2x networks. In Proceedings of the 12th

conference on security and privacy in wireless and mobile networks, pages

84–93, 2019.

[75] Prinkle Sharma and Hong Liu. A machine-learning-based data-centric

71



REFERENCES

misbehavior detection model for internet of vehicles. IEEE Internet of Things

Journal, 8(6):4991–4999, 2020.

[76] Benedikt Brecht and Thorsten Hehn. A security credential management system

for v2x communications. In Connected Vehicles, pages 83–115. Springer, 2019.

[77] Rens Wouter van der Heijden, Stefan Dietzel, Tim Leinmüller, and Frank

Kargl. Survey on misbehavior detection in cooperative intelligent

transportation systems. IEEE Communications Surveys & Tutorials,

21(1):779–811, 2018.

[78] Pranav Kumar Singh, Rahul Raj Gupta, Sunit Kumar Nandi, and Sukumar

Nandi. Machine learning based approach to detect wormhole attack in vanets.

In Workshops of the international conference on advanced information

networking and applications, pages 651–661. Springer, 2019.

[79] Michael Behrisch, Laura Bieker, Jakob Erdmann, and Daniel Krajzewicz.

Sumo–simulation of urban mobility: an overview. In Proceedings of SIMUL

2011, The Third International Conference on Advances in System Simulation.

ThinkMind, 2011.

[80] Thomas R Henderson, Mathieu Lacage, George F Riley, Craig Dowell, and

Joseph Kopena. Network simulations with the ns-3 simulator. SIGCOMM

demonstration, 14(14):527, 2008.

[81] Tejasvi Alladi, Ayush Agrawal, Bhavya Gera, Vinay Chamola, Biplab Sikdar,

and Mohsen Guizani. Deep neural networks for securing iot enabled vehicular

ad-hoc networks. In ICC 2021-IEEE International Conference on

Communications, pages 1–6. IEEE, 2021.

[82] MD Ridwan Al Iqbal, Saiedur Rahman, Syed Irfan Nabil, and Ijaz Ul Amin

Chowdhury. Knowledge based decision tree construction with feature

importance domain knowledge. In 2012 7th international conference on

electrical and computer engineering, pages 659–662. IEEE, 2012.

72



REFERENCES

[83] GSK Ranjan, Amar Kumar Verma, and Sudha Radhika. K-nearest neighbors

and grid search cv based real time fault monitoring system for industries. In

2019 IEEE 5th international conference for convergence in technology (I2CT),

pages 1–5. IEEE, 2019.

[84] Roshan Kumari and Saurabh Kr Srivastava. Machine learning: A review on

binary classification. International Journal of Computer Applications, 160(7),

2017.

[85] Ryan Rifkin. Multiclass classification. Lecture Notes, Spring08. MIT, USA,

page 59, 2008.

[86] Kendrick Boyd, Kevin H Eng, and C David Page. Area under the

precision-recall curve: point estimates and confidence intervals. In Joint

European conference on machine learning and knowledge discovery in

databases, pages 451–466. Springer, 2013.

[87] Parul Tyagi and Deepak Dembla. A taxonomy of security attacks and issues in

vehicular ad-hoc networks (vanets). International Journal of Computer

Applications, 91(7), 2014.

[88] SAE V2X Core Technical Committee et al. Dedicated short range

communications (dsrc) message set dictionary: A march 2016 update.

J2735 201603, https://saemobilus. sae. org/content/j2735 201603, accessed:

October, 2019.

[89] Jyoti Grover, Manoj Singh Gaur, and Vijay Laxmi. A novel defense mechanism

against sybil attacks in vanet. In Proceedings of the 3rd international

conference on Security of information and networks, pages 249–255, 2010.

[90] Jaydip Kamani and Dhaval Parikh. A review on sybil attack detection

techniques. J Res, 1(01), 2015.

73



VITA AUCTORIS

NAME: Bhuiyan Mustafa Tawheed

PLACE OF BIRTH: Sylhet, Bangladesh

YEAR OF BIRTH: 1996

EDUCATION: BRAC University, B.Sc in Computer Science and Engi-
neering, Dhaka, Bangladesh, 2018

University of Windsor, M.Sc in Computer Science,
Windsor, Ontario, 2022.

74


	Speed Offset Attack Detection in Vehicular Ad-Hoc Networks (VANETs) Using Machine Learning
	Recommended Citation

	tmp.1690919515.pdf.CfLcG

