254 research outputs found

    Lukasiewicz logic and Riesz spaces

    Full text link
    We initiate a deep study of {\em Riesz MV-algebras} which are MV-algebras endowed with a scalar multiplication with scalars from [0,1][0,1]. Extending Mundici's equivalence between MV-algebras and ℓ\ell-groups, we prove that Riesz MV-algebras are categorically equivalent with unit intervals in Riesz spaces with strong unit. Moreover, the subclass of norm-complete Riesz MV-algebras is equivalent with the class of commutative unital C∗^*-algebras. The propositional calculus RL{\mathbb R}{\cal L} that has Riesz MV-algebras as models is a conservative extension of \L ukasiewicz ∞\infty-valued propositional calculus and it is complete with respect to evaluations in the standard model [0,1][0,1]. We prove a normal form theorem for this logic, extending McNaughton theorem for \L ukasiewicz logic. We define the notions of quasi-linear combination and quasi-linear span for formulas in RL{\mathbb R}{\cal L} and we relate them with the analogue of de Finetti's coherence criterion for RL{\mathbb R}{\cal L}.Comment: To appear in Soft Computin

    Semiring and semimodule issues in MV-algebras

    Full text link
    In this paper we propose a semiring-theoretic approach to MV-algebras based on the connection between such algebras and idempotent semirings - such an approach naturally imposing the introduction and study of a suitable corresponding class of semimodules, called MV-semimodules. We present several results addressed toward a semiring theory for MV-algebras. In particular we show a representation of MV-algebras as a subsemiring of the endomorphism semiring of a semilattice, the construction of the Grothendieck group of a semiring and its functorial nature, and the effect of Mundici categorical equivalence between MV-algebras and lattice-ordered Abelian groups with a distinguished strong order unit upon the relationship between MV-semimodules and semimodules over idempotent semifields.Comment: This version contains some corrections to some results at the end of Section

    Sheaf representations of MV-algebras and lattice-ordered abelian groups via duality

    Full text link
    We study representations of MV-algebras -- equivalently, unital lattice-ordered abelian groups -- through the lens of Stone-Priestley duality, using canonical extensions as an essential tool. Specifically, the theory of canonical extensions implies that the (Stone-Priestley) dual spaces of MV-algebras carry the structure of topological partial commutative ordered semigroups. We use this structure to obtain two different decompositions of such spaces, one indexed over the prime MV-spectrum, the other over the maximal MV-spectrum. These decompositions yield sheaf representations of MV-algebras, using a new and purely duality-theoretic result that relates certain sheaf representations of distributive lattices to decompositions of their dual spaces. Importantly, the proofs of the MV-algebraic representation theorems that we obtain in this way are distinguished from the existing work on this topic by the following features: (1) we use only basic algebraic facts about MV-algebras; (2) we show that the two aforementioned sheaf representations are special cases of a common result, with potential for generalizations; and (3) we show that these results are strongly related to the structure of the Stone-Priestley duals of MV-algebras. In addition, using our analysis of these decompositions, we prove that MV-algebras with isomorphic underlying lattices have homeomorphic maximal MV-spectra. This result is an MV-algebraic generalization of a classical theorem by Kaplansky stating that two compact Hausdorff spaces are homeomorphic if, and only if, the lattices of continuous [0, 1]-valued functions on the spaces are isomorphic.Comment: 36 pages, 1 tabl

    Operators on GMVGMV-algebras

    Get PDF
    summary:Closure GMVGMV-algebras are introduced as a commutative generalization of closure MVMV-algebras, which were studied as a natural generalization of topological Boolean algebras

    Priestley duality for MV-algebras and beyond

    Get PDF
    We provide a new perspective on extended Priestley duality for a large class of distributive lattices equipped with binary double quasioperators. Under this approach, non-lattice binary operations are each presented as a pair of partial binary operations on dual spaces. In this enriched environment, equational conditions on the algebraic side of the duality may more often be rendered as first-order conditions on dual spaces. In particular, we specialize our general results to the variety of MV-algebras, obtaining a duality for these in which the equations axiomatizing MV-algebras are dualized as first-order conditions
    • 

    corecore