5,180 research outputs found

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Incorporating Relaxivities to More Accurately Reconstruct MR Images

    Get PDF
    Purpose To develop a mathematical model that incorporates the magnetic resonance relaxivities into the image reconstruction process in a single step. Materials and methods In magnetic resonance imaging, the complex-valued measurements of the acquired signal at each point in frequency space are expressed as a Fourier transformation of the proton spin density weighted by Fourier encoding anomalies: T2⁎, T1, and a phase determined by magnetic field inhomogeneity (∆B) according to the MR signal equation. Such anomalies alter the expected symmetry and the signal strength of the k-space observations, resulting in images distorted by image warping, blurring, and loss in image intensity. Although T1 on tissue relaxation time provides valuable quantitative information on tissue characteristics, the T1 recovery term is typically neglected by assuming a long repetition time. In this study, the linear framework presented in the work of Rowe et al., 2007, and of Nencka et al., 2009 is extended to develop a Fourier reconstruction operation in terms of a real-valued isomorphism that incorporates the effects of T2⁎, ∆B, and T1. This framework provides a way to precisely quantify the statistical properties of the corrected image-space data by offering a linear relationship between the observed frequency space measurements and reconstructed corrected image-space measurements. The model is illustrated both on theoretical data generated by considering T2⁎, T1, and/or ∆B effects, and on experimentally acquired fMRI data by focusing on the incorporation of T1. A comparison is also made between the activation statistics computed from the reconstructed data with and without the incorporation of T1 effects. Result Accounting for T1 effects in image reconstruction is shown to recover image contrast that exists prior to T1 equilibrium. The incorporation of T1 is also shown to induce negligible correlation in reconstructed images and preserve functional activations. Conclusion With the use of the proposed method, the effects of T2⁎ and ∆B can be corrected, and T1 can be incorporated into the time series image-space data during image reconstruction in a single step. Incorporation of T1 provides improved tissue segmentation over the course of time series and therefore can improve the precision of motion correction and image registration

    Restoration of the cantilever bowing distortion in Atomic Force Microscopy

    Get PDF
    Due to the mechanics of the Atomic Force Microscope (AFM), there is a curvature distortion (bowing effect) present in the acquired images. At present, flattening such images requires human intervention to manually segment object data from the background, which is time consuming and highly inaccurate. In this paper, an automated algorithm to flatten lines from AFM images is presented. The proposed method classifies the data into objects and background, and fits convex lines in an iterative fashion. Results on real images from DNA wrapped carbon nanotubes (DNACNTs) and synthetic experiments are presented, demonstrating the effectiveness of the proposed algorithm in increasing the resolution of the surface topography. In addition a link between the flattening problem and MRI inhomogeneity (shading) is given and the proposed method is compared to an entropy based MRI inhomogeniety correction method

    Unsupervised Multi Class Segmentation of 3D Images with Intensity Inhomogeneities

    Full text link
    Intensity inhomogeneities in images constitute a considerable challenge in image segmentation. In this paper we propose a novel biconvex variational model to tackle this task. We combine a total variation approach for multi class segmentation with a multiplicative model to handle the inhomogeneities. Our method assumes that the image intensity is the product of a smoothly varying part and a component which resembles important image structures such as edges. Therefore, we penalize in addition to the total variation of the label assignment matrix a quadratic difference term to cope with the smoothly varying factor. A critical point of our biconvex functional is computed by a modified proximal alternating linearized minimization method (PALM). We show that the assumptions for the convergence of the algorithm are fulfilled by our model. Various numerical examples demonstrate the very good performance of our method. Particular attention is paid to the segmentation of 3D FIB tomographical images which was indeed the motivation of our work

    Segmentation of brain MRI during early childhood

    No full text
    The objective of this thesis is the development of automatic methods to measure the changes in volume and growth of brain structures in prematurely born infants. Automatic tools for accurate tissue quantification from magnetic resonance images can provide means for understanding how the neurodevelopmental effects of the premature birth, such as cognitive, neurological or behavioural impairment, are related to underlying changes in brain anatomy. Understanding these changes forms a basis for development of suitable treatments to improve the outcomes of premature birth. In this thesis we focus on the segmentation of brain structures from magnetic resonance images during early childhood. Most of the current brain segmentation techniques have been focused on the segmentation of adult or neonatal brains. As a result of rapid development, the brain anatomy during early childhood differs from anatomy of both adult and neonatal brains and therefore requires adaptations of available techniques to produce good results. To address the issue of anatomical differences of the brain during early childhood compared to other age-groups, population-specific deformable and probabilistic atlases are introduced. A method for generation of population-specific prior information in form of a probabilistic atlas is proposed and used to enhance existing segmentation algorithms. The evaluation of registration-based and intensity-based approaches shows the techniques to be complementary in the quality of automatic segmentation in different parts of the brain. We propose a novel robust segmentation method combining the advantages of both approaches. The method is based on multiple label propagation using B-spline non-rigid registration followed by EM segmentation. Intensity inhomogeneity is a shading artefact resulting from the acquisition process, which significantly affects modern high resolution MR data acquired at higher magnetic field strengths. A novel template based method focused on correcting the intensity inhomogeneity in data acquired at higher magnetic field strengths is therefore proposed. The proposed segmentation method combined with proposed intensity inhomogeneity correction method offers a robust tool for quantification of volumes and growth of brain structures during early childhood. The tool have been applied to 67 T1-weigted images of subject at one and two years of age

    Automatic Spatial Calibration of Ultra-Low-Field MRI for High-Accuracy Hybrid MEG--MRI

    Full text link
    With a hybrid MEG--MRI device that uses the same sensors for both modalities, the co-registration of MRI and MEG data can be replaced by an automatic calibration step. Based on the highly accurate signal model of ultra-low-field (ULF) MRI, we introduce a calibration method that eliminates the error sources of traditional co-registration. The signal model includes complex sensitivity profiles of the superconducting pickup coils. In ULF MRI, the profiles are independent of the sample and therefore well-defined. In the most basic form, the spatial information of the profiles, captured in parallel ULF-MR acquisitions, is used to find the exact coordinate transformation required. We assessed our calibration method by simulations assuming a helmet-shaped pickup-coil-array geometry. Using a carefully constructed objective function and sufficient approximations, even with low-SNR images, sub-voxel and sub-millimeter calibration accuracy was achieved. After the calibration, distortion-free MRI and high spatial accuracy for MEG source localization can be achieved. For an accurate sensor-array geometry, the co-registration and associated errors are eliminated, and the positional error can be reduced to a negligible level.Comment: 11 pages, 8 figures. This work is part of the BREAKBEN project and has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 68686
    corecore