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Abstract 
Purpose: To develop a mathematical model that incorporates the magnetic 

resonance relaxivities into the image reconstruction process in a single step. 

Materials and Methods: In magnetic resonance imaging, the complex-

valued measurements of the acquired signal at each point in frequency space 

are expressed as a Fourier transformation of the proton spin density weighted 

by Fourier encoding anomalies: T2*, T1, and a phase determined by magnetic 

field inhomogeneity (ΔB) according to the MR signal equation. Such anomalies 

alter the expected symmetry and the signal strength of the k-space 
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observations, resulting in images distorted by image warping, blurring, and 

loss in image intensity. Although T1 on tissue relaxation time provides 

valuable quantitative information characteristics, the T1 recovery term is 

typically neglected by assuming a long repetition time. In this study, the 

linear framework presented in the work of Rowe et al., 2007, and of Nencka 

et al., 2009 is extended to develop a Fourier reconstruction operation in 

terms of a real-valued isomorphism that incorporates the effects of T2*, ΔB, 

and T1. This framework provides a way to precisely quantify the statistical 

properties of the corrected image-space data by offering a linear relationship 

between the observed frequency space measurements and reconstructed 

corrected image-space measurements. The model is illustrated both on 

theoretical data generated by considering T2*, T1, and/or ΔB effects, and on 

experimentally acquired fMRI data by focusing on the incorporation of T1. A 

comparison is also made between the activation statistics computed from the 

reconstructed data with and without the incorporation of T1 effects. 

Result: Accounting for T1 effects in image reconstruction is shown to recover 

image contrast that exists prior to T1 equilibrium. The incorporation of T1 is 

also shown to induce negligible correlation in reconstructed images and 

preserve functional activations. 

Conclusion: With the use of the proposed method, the effects of T2* and ΔB 

can be corrected, and T1 can be incorporated into the time series image-space 

data during image reconstruction in a single step. Incorporation of T1 provides 

improved tissue segmentation over the course of time series and therefore 

can improve the precision of motion correction and image registration. 

 

Keywords: Magnetic resonance imaging (MRI), functional MRI (fMRI), MR 

relaxivities, longitudinal relaxation time (T1), image reconstruction, correction 

1. Introduction 

In magnetic resonance imaging (MRI), data is acquired in the 

spatial frequency domain and reconstructed through an inverse Fourier 

transform, into images of the object in the image domain. Thus, the 

measured k-space data, encoded in time, is generally expected to be 

the Fourier transform of the proton spin density. However, in the 

process of Fourier encoding in echo planar imaging (EPI), the detected 

MRI signal is subject to the MR relaxivities, T2* and T1, as well as 

magnetic field inhomogeneity, ΔB, commonly referred to as Fourier 

anomalies. The physical mechanisms behind the Fourier encoding 

process causes image artifacts or image distortions. One such effect is 

the one caused by acquiring measurements of k-space at different 

times after the RF excitation pulse. Due to the non-instantaneous 

acquisition of each k-space line, the first points sampled have a lower 

T2* weighting than the subsequent points. Considering that the “ideal” 

image would be reconstructed from the “ideal” k-space measurements, 
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in which every point is sampled with the exact same weighting, the 

“actual” acquired k-space measurements in practice are scaled 

according to the time by a factor determined by T2*.1,2 As such, the 

“actual” reconstructed image, which is obtained by an inverse Fourier 

transformation of the “actual” k-space measurements, has a blurring 

effect in the phase encoding direction as a result of the inverse Fourier 

transformation of this weighting pattern. Moreover, the differences in 

magnetic susceptibility between tissues or magnetic materials lead to 

incorrect sampling of k-space by introducing errors in the gradients. 

Thus, the point in k-space that is believed to be sampled is not the 

actual location. As such, magnetic field inhomogeneities incur spatial 

distortions including image warping and phase generation. Although 

the weighting through T1 is not affected by the non-instantaneous 

sampling of k-space, it can modulate the MR signal resulting in signal 

loss and image weighting that depend on the tissue characteristics. 

The artifacts resulting from T2* relaxation during sampling, the 

inhomogeneities in the magnetic field, and the alteration in the signal 

arising from the longitudinal relaxation can be considered as T2*, ΔB, 

and T1 effects, respectively, 

Correcting the image warping effects of both the static and 

dynamic magnetic field inhomogeneities,3-7 and the T2* blurring 

effect8-11 in EPI sequences have been active areas of research in brain 

imaging. Despite such efforts for correcting T2* and ΔB effects, 

conventional studies do not account for a recovery of the longitudinal 

relaxation time; instead they use the standard assumption of a long 

repetition time. However, this assumption is not always valid, and the 

signal amplitude becomes dependent on T1 when performing fast 

repetitive image excitations with incomplete recovery of the 

longitudinal magnetization. Moreover, T1 relaxation time provides a 

robust contrast mechanism for distinguishing tissue type.12 This 

quantitative knowledge of tissue characteristics, which can be 

extracted from the data acquired during the transient state prior to T1 

equilibrium, can be incorporated into the reconstructed image-space 

time series data. It has been suggested in previous studies that the 

image registration performance can be improved with increased tissue 

contrast.13-16 Therefore, T1 incorporated time series images, which 

would have appreciably higher tissue contrast, can potentially lead to 

improved image registration. 
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As noted before, the Fourier anomalies appear as exponential 

terms in the traditional signal equation, and therefore the observed k-

space measurements can be considered as the Fourier transform of 

the proton spin density, weighted by the Fourier anomalies. Since the 

k-space measurements are subject to the effects of such weighting 

during data acquisition, these effects can be accounted for separately 

or simultaneously in the process of Fourier reconstruction. 

In order to relate the signal and noise characteristics of k-space 

measurements to reconstructed voxel measurements, the complex-

valued matrix application of the inverse Fourier transformation was 

described through a real-valued isomorphism by Rowe et al.17 

Representing the Fourier reconstruction as a single matrix operator 

formed the basis for the study in18 where a mathematical framework, 

AMMUST-k (A Mathematical Model for Understanding the STatistical 

effects of k-space preprocessing), was developed to represent various 

spatial processing operations performed on acquired spatial 

frequencies in terms of real-valued linear isomorphisms. Representing 

the reconstruction and image processing operations in this way made 

it possible to directly compute the exact covariance structure, and 

ultimately correlation induced into the image-space data, which can 

result in misleading conclusions in fcMRI and fMRI studies.18-20 

In this manuscript, we expand upon the AMMUST-k framework 

by modifying the real-valued Fourier reconstruction (FR) operator in 

such a way that it can account for the effects of T2*, ΔB, and T1 on the 

image-space data. As noted before, the measured “actual” k-space 

data is scaled according to time that has elapsed since the RF 

excitation pulse and the factor determined by the terms include T2*, 

ΔB, and T1. As such, we first develop a real-valued Fourier encoding 

(FE) operator that considers such weighting, then, we create the 

modified FR operator by inverting the modified FE operator to account 

for the encoding effects in image space. The use of a modified FR 

operator within this framework makes it possible to more accurately 

reconstruct the image space voxel values from measured spatial 

frequencies, and also precisely quantify the statistical effects of such 

correction on the reconstructed data. 

The linear Fourier reconstruction operators are first developed 

by considering different combinations of the Fourier anomalies and 
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examples of each anomaly are shown on a small 8×8 data set. The 

Fourier operators are then used to theoretically examine the image 

space data associated with the effects of the Fourier anomalies on a 

96×96 digital phantom. The exact mean and induced correlations 

modified by the adjusted FR operators on both complex-valued and 

magnitude-squared data are also illustrated by using the proposed 

model. The results of the proposed FE anomaly correction framework 

is also illustrated on acquired experimental human subject fMRI data 

by focusing on the incorporation of the longitudinal relaxation time, T1. 

Finally, a comparison is made between the activation statistics 

computed from the reconstructed data with and without the 

incorporation of T1 effects with the use of both conventional 

magnitude-only21 and newer complex-valued fMRI activation models.22-

25 

2. Theory 

2.1. Complex-valued Image Reconstruction in fMRI 

In fMRI, complex-valued measurements are acquired discretely 

in time corresponding to two-dimensional spatial frequency 

measurements. The measurements are then reconstructed into a 

complex-valued image by applying the complex-valued inverse Fourier 

transformation. Although the original object, proton spin density, is 

real-valued, imperfections in the imaging process lead to a complex-

valued image. 

When the complex-valued Fourier reconstruction is described 

through a real-valued isomorphism,17 a vector of the reconstructed 

image, y, can be written as the product of a FR operator, Ω, with a 

vector of the observed k-space observation, s, by 

𝑦 = 𝛺𝑠. 
(1) 

Similarly, the vector of the k-space observation, s, can be written as 

the product of a FE operator, 𝛺̅  =  𝛺−1, with a vector of the 

reconstructed image, y, as 

http://dx.doi.org/10.1016/j.mri.2015.01.003
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𝑠 = 𝛺̅𝑦. 
(2) 

In Eqs. (1) and (2), y = (yR′, yI′)′ is a 2p×1 vector with the real parts 

of p image values, yR=(yR1,…,yRp)′, stacked above the imaginary parts 

of p image values, yI=(yI1,…,yIp)′, for an m×n image of p = mn voxels. 

Similarly, s = (sR′, sI′)′ is a 2p×1 vector with p real parts, 

sR=(sR1,…,sRp)′, stacked above p imaginary parts, sI=(sI1,…,sIp)′, for a 

Cartesian acquisition of k-space. Thus, the FR and FE operators, Ω and 

𝛺̅, have dimensions of 2p×2p. The Cartesian FR operator can be 

represented as 

Ω = (
Re(Ω𝐶)

Im(Ω𝐶)
 
−Im(Ω𝐶)
Re(Ω𝐶)

), 

(3) 

where Re(·) and Im(·) denote the real and imaginary parts of their 

respective arguments. The matrix ΩC is defined as the Kronecker 

product of the matrices, Ωx and Ωy, as ΩC=Ωx⊗Ωy, where the matrices 

Ωx and Ωy Fourier transform the columns and the rows of the acquired 

k-space measurements, respectively. The jkth element of the FR 

operator Ωx can be written as (Ωx)jk=w((−n/2)+(j−1))((−n/2)+(k−1)), where j 

and k are the indices from 1 to n and w=(1/n)exp(i2π/n). The matrix 

Ωy follows similarly with n replaced by m. The Fourier encoding 

operator, 𝛺̅, has a similar skew symmetric form to Ω where w=exp(-

i2π/n). The operators, Ω and 𝛺̅ , will be considered as the standard FR 

and FE operators as they do not account for any Fourier anomalies. 

As the real-valued spatial frequency vector, s, contains 

complex-values, the application of the FR operator in Eq. (1) produces 

a covariance between the real measurements, between the imaginary 

measurements, and between the real and imaginary measurements. If 

the k-space vector, s, has a covariance matrix, Γ, then the covariance 

matrix of the reconstructed image, y, becomes 

cov(𝑦) = ΩΓΩ′, 
(4) 

http://dx.doi.org/10.1016/j.mri.2015.01.003
http://epublications.marquette.edu/
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where the operator “′” denotes the transpose of a matrix. 

To produce the required k-space vector, s, the acquired k-space 

array, which is observed as a pairing of real and imaginary component 

of each frequency can be reordered by reversing the alternating rows 

of measurements and segregating real and imaginary observations 

through permutation matrices, PA and PS. Since the k-space data 

includes extra points acquired during the phase encoding blips in echo 

planar imaging, the acquired measurements also needs to be censored 

by the censoring matrix, PE. Additionally, Nyquist ghosting can be 

corrected through a series of linear operators that reorders to group 

the real and imaginary observations from each line together (PR), 

Fourier transform each row (ΩR), shift the phase of the each 

transformed row (ΦN), and finally apply the inverses of ΩR and PR. 

These k-space operators together with additional operators that can 

include Fourier homodyne interpolation, H, zero-filling, F, apodization, 

A, and explicit image space smoothing operator, S, can be combined 

into a single operator, O, that signifies the series of all linear operators 

applied to s.18 Therefore, the reconstruction in Eq. (1) simplifies to 

y=Os, 
(5) 

where O represents a multiplication of operators applied throughout 

the image reconstruction process, 

O=SΩAFHPR−1ΩR−1ΦNΩRPRPSPAPE. 
(6) 

If E(s) = s0 and Γ=cov(s), then mean and covariance of the 

reconstructed image vector, y, are altered by the final operator, O, to 

become 

E(y)=Os0 

and 

cov(y)=OΓO′. 
(7) 

http://dx.doi.org/10.1016/j.mri.2015.01.003
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The correlation structure between voxels in y can be calculated from 

cov(y) by 

corr(y)=D−1/2OΓO′D−1/2, 
(8) 

where D is a diagonal matrix of the variances drawn from the diagonal 

of the covariance matrix, OΓO′, and the −1/2 superscript denotes that 

the diagonal elements are inverted after taking the square root. The 

covariance matrices of both the spatial frequencies and the 

reconstructed image-space values include the following covariance 

pairs: real by real, imaginary by imaginary, and real by imaginary 

components of s and y, respectively. 

An assumption of normality allows the derivation of the 

covariance of the square of the magnitude data from the covariance 

matrix, cov(y)=OΓO′.17,18 Both magnitude-squared and complex-

valued data can be used to analyze changes made to the acquired 

correlation structures as the correlation of magnitude-squared data is 

asymptotically equivalent to the magnitude-only correlation and linear 

in nature. 

2.2. Acquired k-space Signal and Fourier Anomalies 

Under the assumption that the complex-valued matrix of two 

dimensional spatial frequencies is measured instantaneously at the 

echo time, TE, the acquired k-space signal in an EPI sequence can be 

expressed through the MR signal equation, 

𝑠(𝑘𝑥 , 𝑘𝑦)

= ∫ ∫ 𝑀0(𝑥, 𝑦)

∞

−∞

∞

−∞

(1

− 𝑒−𝑇𝑅/𝑇1(𝑥,𝑦))𝑒−𝑇𝐸/𝑇2
∗(𝑥,𝑦)𝑒𝑖𝛾𝛥𝐵(𝑥,𝑦)𝑇𝐸𝑒−𝑖2𝜋(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑥𝑑𝑦, 

(9) 

where TR is the repetition time and M0(x,y) is the proton spin density. 
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Since the signal for different points in k-space is measured at 

different times, the k-space observation process occurs over a finite 

duration of time and the signal equation in Eq. (9) can be more 

accurately expressed as 

𝑠(𝑘𝑥 , 𝑘𝑦)

= ∫ ∫ 𝑀0(𝑥, 𝑦)

∞

−∞

∞

−∞

(1

− 𝑒−𝑇𝑅/𝑇1(𝑥,𝑦))𝑒−𝑡/𝑇2
∗(𝑥,𝑦)𝑒𝑖𝛾𝛥𝐵(𝑥,𝑦)𝑡𝑒−𝑖2𝜋(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑥𝑑𝑦, 

(10) 

where the k-space point (kx,ky) is sampled at time t=t(kx,ky). As the 

variable t=t(kx,ky) varies for each k-space measurement, both T2* and 

ΔB break the Hermitian symmetry of the k-space observations, and 

could therefore cause artifacts and distortions in the reconstructed 

images. Moreover, the longitudinal relaxation time, T1, causes changes 

in signal intensity depending on the tissue characteristics. 

In conventional studies, the term (1-exp(-TR/T1)) in Eq. (10) is 

assumed to be approximately 1, by choosing TR to be much greater 

than T1. This reduces Eq. (10) to depend only on T2* by 

𝑠(𝑘𝑥 , 𝑘𝑦)

= ∫ ∫ 𝑀0(𝑥, 𝑦)

∞

−∞

∞

−∞

𝑒−𝑡/𝑇2
∗(𝑥,𝑦)𝑒𝑖𝛾𝛥𝐵(𝑥,𝑦)𝑡𝑒−𝑖2𝜋(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑥𝑑𝑦, 

(11) 

and thus leads to T2*-weighted images. 

The assumption of an infinite TR however can never be reached 

directly since the goal is to image the brain as quickly as possible, thus 

fast acquisitions are needed. The neglected term, (1-exp(-TR/T1)), 

therefore takes non-negligible values with the parameter settings that 

are commonly used in fMRI experiments. Presented in Table 1 are the 

values that (1-exp(-TR/T1)) outputs when the relaxation parameter 

http://dx.doi.org/10.1016/j.mri.2015.01.003
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values of gray matter and white matter tissues measured at 3.0 T26 

and two commonly used TR values, 1000 ms and 2000 ms, are used. 

It is of note here that the value of (1-exp(-TR/T1)) is expected to be 

slightly lower at 7.0 T which has been widely used in high-field fMRI 

for study of the human brain. Furthermore, the variations in the value 

of TR have an essential effect on the control of image contrast 

characteristics. As such, accounting for T1 effects has the potential of 

retaining the image contrast over the time series that exists prior to T1 

equilibrium. The regular FR operator, Ω, is thus modified with the aim 

of analyzing and accounting for the effects of Fourier anomalies: T2*, 

ΔB, and T1. 

Table 1. T1 exponential term values at 3.0 T. 

1-exp(-TR/T1(x,y)) TR = 1000 ms TR = 2000 ms 

GM (T1 = 1331 ms.) 0.5283 0.7750 

WM (T1 = 832 ms.) 0.6994 0.9096 

 

2.3. Incorporating MR Relaxivities to Fourier 

Reconstruction Process 

In this section, we develop a modified Fourier image 

reconstruction operator that produces the “ideal” image space vector, 

yId, from the “actual” measured k-space vector, sAct, that is affected by 

the exponential terms for T2*, ΔB, and T1 during the Fourier encoding 

process. Consider that the “ideal” image space vector, yId, would be 

constructed from the “ideal” k-space vector, sId, that is not affected by 

FE anomalies and the “actual” measured signal, sAct, that we acquire in 

practice is scaled according to a weighting determined by FE 

anomalies. 

As each k-space measurement is approximately expressed as 

the forward Fourier transform of the spin density, weighted by the MR 

relaxivities and the magnetic field inhomogeneities at a single point in 

k-space, we can first incorporate the exponential terms for T2*, T1, and 

ΔB into the FE operator, Ω̅ . Then, we construct the modified FR 

operator by taking the inverse of the modified FE operator matrix. 

http://dx.doi.org/10.1016/j.mri.2015.01.003
http://epublications.marquette.edu/
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As with the Cartesian Fourier reconstruction operator given in 

Eq. (3), the Cartesian FE operator is expressed as 

Ω = (
Re(Ω̅𝐶)

Im(Ω̅𝐶)
 
−Im(Ω̅𝐶)

Re(Ω̅𝐶)
), 

 (12) 

where Ω̅C is defined as Ω̅ C = Ω̅ x⊗Ω̅ y, and the jkth element of Ω̅ x can be 

written as (Ω̅ x)jk = w((−n/2)+(j−1))((−n/2)+(k−1)) where j and k are the indices 

from 1 to n when w=exp(-i2π/n). 

Regardless of the relaxation times or ΔB that cause the 

weighting difference, in the general case, we can describe the 

weighting of the MR signal at each point with a two-dimensional array, 

W, as 

𝑊(𝑘𝑥 , 𝑘𝑦 , 𝑥, 𝑦)

= (1

− 𝑒−𝑇𝑅/𝑇1(𝑥,𝑦))𝑒−𝑡(𝑘𝑥,𝑘𝑦)/𝑇2
∗(𝑥,𝑦)𝑒𝑖𝛾𝛥𝐵(𝑥,𝑦)𝑡(𝑘𝑥,𝑘𝑦). 

(13) 

Two dimensional FE anomaly weighting function, W, can be 

constructed as 

𝑊(𝑘𝑥 , 𝑘𝑦 , 𝑥, 𝑦) = [
𝑊(1,1,1,1) ⋯ 𝑊(𝑚, 𝑛, 1,1)

⋮ ⋱ ⋮
𝑊(1,1, 𝑚, 𝑛) ⋯ 𝑊(𝑚, 𝑛, 𝑚, 𝑛)

], 

for an m×n image. 

In order to achieve the ideal image space vector, yId, after 

reconstruction, we first modify 𝛺̅ in Eq. (12), by including W into the 

real-valued isomorphism. The modified FE operator, 𝛺̅ a, can be 

created by first performing an element-wise multiplication of the 

Kronecker product, 𝛺̅ a, by the FE anomaly weighting function as 

http://dx.doi.org/10.1016/j.mri.2015.01.003
http://epublications.marquette.edu/
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Ω̅𝐶,𝑎 = (Ω̅𝑥 ⊗ Ω̅𝑦) ∘ 𝑊(𝑘𝑥 , 𝑘𝑦 , 𝑥, 𝑦), 
(14) 

where ◦ represents an element-wise Hadamard product. Finally, the 

modified FE operator, 𝛺̅ a, can be expressed as 

Ω̅a = (
Re(Ω̅𝐶,a) −Im(Ω̅𝐶,a)

Im(Ω̅𝐶,a) Re(Ω̅𝐶,a)
). 

(15) 

The modified FR operator, Ωa, can then be calculated by Ωa = 𝛺̅ a-1. 

With the modified FR operator that accounts for the effects of 

the FE anomalies, the operator, O, in Eq. (6) can be updated to 

𝑂𝑎 = 𝑆Ω𝑎AFH𝑃𝑅
−1Ω𝑅

−1𝛷𝑁Ω𝑅𝑃𝑅𝑃𝑆𝑃𝐴𝑃𝐸 . 
(16) 

The complete process given in Eq. (5) can be written in such a way 

that the operator, Oa, reconstructs the “actual” measured k-space 

vector, sAct, into the “ideal” corrected image space vector, yId, as 

𝑦𝐼𝑑 = 𝑂𝑎𝑠𝐴𝑐𝑡 . 
(17) 

The inclusion of T2*, ΔB, and T1 finely alters the structure of the 

standard FE and FR operators, Ω̅  and Ω to arrive at Ω̅ a and Ωa. The 

alterations caused by the FE anomalies in the FE operator, and in the 

FR operator that accounts for such alterations can be better seen in a 

low-dimensional example than a real size data set. Presented for an 

8×8 example, the 128×128 arrays in Figs. 1(a) and 1(c) are the FE 

and FR operators that either do not account for any terms (standard 

operators), or separately accounts for the T2* decay, ΔB in the 

frequency encoding direction, and the T1 recovery term. T2* and T1 

maps were considered in the example map which were scaled to 

values from 80 to 100 ms and 800 to 1000 ms inside the phantom, 

respectively. The ΔB term was modeled as a linear gradient ranging 

http://dx.doi.org/10.1016/j.mri.2015.01.003
http://epublications.marquette.edu/
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from 0 to 2.5×10-6 T. It can be seen in the second and third panels of 

Figs. 1(a) and 1(c) that the incorporation of T2* and T1 recovery 

causes amplitude change in the modified FE and FR operators for the 

considered TR and TE values. One can observe that the modified FE 

operator that includes T2* and T1, given in the second and third panels 

of Fig. 1(a), are visually different from the standard FE operator. Since 

exp(-t/T2*) in Eq. (13) converges to 0 for the voxels that have small 

T2* values, the element values of the modified FE operator in the 

second panel tend toward zero in the portions that correspond to these 

voxels with low T2* value. Moreover, the operators that incorporate ΔB 

effects that are given in the fourth panel of Fig. 1(a) and 1(c) appear 

to be clearly different than the standard arrays as a result of the linear 

gradient change in magnetic field. 

 

http://dx.doi.org/10.1016/j.mri.2015.01.003
http://epublications.marquette.edu/
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Fig.1. a) and c) Standard FE and FR operators, Ω̅  and Ω, in the first panel; modified 

FE and FR operators, Ω̅ a and Ωa, that separately accounts for the effects of T2*, T1, or 

ΔB in the second, third, and fourth panels, respectively. Absolute difference maps 
between Ω̅  and Ω̅ a and between Ω and Ωa are given in b) and d) for the cases of T2*, 

T1, or ΔB incorporation in the first, second, and third panels, respectively. 

For a better illustration of the effects of the anomalies on the FE 

and FR operators, the difference maps of the standard FE and FR 

operators with their modified versions that separately accounts for the 

effects of T2*, T1, and ΔB are given in Figs. 1(b) and 1(d), 

respectively. It can be observed from the first and second panels of 

Figs. 1(b) and 1(d) that most noticeable difference occurs from the T2* 

and T1 weighting of the voxels that have low T2* and high T1 values. 

This appears as horizontal and vertical bands in the difference maps of 

the FE and FR operators, respectively. The third panel of Fig. 1(b) 

show that the linear gradient changes in magnetic field causes 

changes in every element of the standard FE operator as its effect is 

not voxel-dependent. A similar modification can also be observed in 

the FR operator that accounts for the ΔB effect given in the third panel 

of Fig. 1(d). 

3. Methods 

3.1. Theoretical Illustration 

To theoretically illustrate the performances of the developed 

Fourier reconstruction operators, a single-slice of data was generated 

from a noiseless digital brain phantom. In order to replicate the 

process of acquiring data from an MRI scanner with a standard EPI 

pulse sequence, a single time point complex-valued spatial frequency 

data, s(kx,ky), was generated using the MR signal equation given in Eq. 

(10) under various cases in which T2*, T1, and/or ΔB is considered. 

Simulated at 3 T, the proton spin density, M0, in a 96×96 phantom in 

Fig. 2(a) was used with model T2* and T1 values that vary from 42 to 

2200 ms for T2* and from 832 to 4000 ms for T1, as given in Figs. 2(b) 

and 2(c).26 The ΔB was considered as a left to right gradient from 0 to 

2.5×10-6 T, as shown in Fig. 2(d). The timing of the k-space sampling 

scheme was as in a standard EPI pulse sequence for a 96×96 

acquisition matrix, with a bandwidth of 250 kHz, an effective echo 

spacing of 0.72 ms, an echo time of 50 ms, and a TR of 1 s. The phase 
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encoding direction was assumed to be oriented as posterior to anterior 

(bottom to top in images). 

 
Fig. 2. Parameters considered in theoretical calculations. a) Proton spin density, M0, 
(GM:0.83, WM:0.71, CSF:1), b) intra-acquisition decay, T2* (GM:0.042 s, WM:0.049 

s, CSF:2.2s), c) longitudinal relaxation time, T1 (GM:1.331 s, WM:0.832 s, CSF:4s), d) 
B-field inhomogeneity, ΔB (left to right linear gradient changing from 0 to 2.5×10-6 
Tesla). 

In our calculations for the theoretical illustration, we consider 

the k-space operators: PE, PA, PS, PR, ΩR, ΦN, ΩR
-1, PR

-1 and the FR 

operator, Ω or Ωa, depending on our analysis. Thus, the altered mean 

and the induced covariance matrix by the applied operators can be 

calculated according to Eq. (7) by 

𝐸(𝑦𝐼𝑑) = Ω𝑎𝑃𝑅
−1Ω𝑅

−1Φ𝑁Ω𝑅𝑃𝑅𝑃𝑆𝑃𝐴𝑃𝐸𝑠𝐴𝑐𝑡 

and 

cov(𝑦𝐼𝑑) 

= (Ω𝑎𝑃𝑅
−1Ω𝑅

−1Φ𝑁Ω𝑅𝑃𝑅𝑃𝑆𝑃𝐴𝑃𝐸)Γ 

(𝑃𝐸′𝑃𝐴′𝑃𝑆′𝑃𝑅′Ω𝑅′Φ𝑁′(Ω𝑅
−1)′(𝑃𝑅

−1)′Ω𝑎′). 
(18) 

It should be noted that if Γ = I, then Eq. (18) reduces to 

cov(yId)=ΩaΩ′a, 
(19) 

since when each of the operators, except Ωa, in Eq. (18) are multiplied 

by their transposes, the products yield identity matrices. Therefore, 
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the altered covariance and correlations will only result from the use of 

the modified FR operator, Ωa. 

In order to examine the effects of FE anomalies on the 

reconstructed image space data, we use the data that is generated by 

considering the individual and sequential effects of T2*, ΔB, and T1 in 

the frequency space. Then, we perform the Fourier reconstruction with 

the use of the standard FR operator, Ω, to visually illustrate the 

alterations that are caused by the FE anomalies if they are not 

accounted for. Finally, we perform the Fourier reconstruction with the 

use of the proposed modified FR operator, Ωa, on the same data set in 

order to present the performance of Ωa in accounting for such effects. 

Presented in Fig. 3 are the magnitude, phase, real, and imaginary 

images that are reconstructed from the data sets generated with the 

effects of T2* in Figs. 3(a1), and 3(a2), the effects of ΔB in Figs. 3(b1), 

and 3(b2), the effects of T1 in Figs. 3(c1), and 3(c2), and finally the 

combined effects of T2*, ΔB, and T1 in Figs. 3(d1), and 3(d2). Figs. 

3(a1), 3(b1), 3(c1), and 3(d1) show the images that are reconstructed 

with the use of the standard FR operator, Ω, whereas Figs. 3(a2), 

3(b2), 3(c2), and 3(d2) illustrate the images that are reconstructed with 

the use of the modified FR operator, Ωa. In this manuscript, we denote 

the images as “standard-reconstructed” when the standard FR 

operator is used for reconstruction while we denote images as 

“modified-reconstructed” when the FR operator, modified to correct 

the effects of the respective FE anomaly, is used. When generating 

data for the results presented in Fig. 3, the “true” magnitude of each 

image is assumed to be the proton spin density as given in Fig. 2(a), 

and the phase is originally assumed to be zero throughout the image. 
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Fig.3. Reconstructed magnitude, phase, real, and imaginary images from the 
frequency space data that is generated with the effects of the following FE anomalies: 

T2* in a1 and a2, ΔB in b1 and b2, T1 in c1 and c2, and T2*, ΔB, and T1 in d1 and d2. The 
images on the rows of a1, b1, c1, and d1 are standard-reconstructed whereas the 
images on the rows of a2, b2, c2, and d2 are modified-reconstructed from the data. 

The reconstructed image results that are presented in Figs. 

3(a1) and 3(a2) are obtained from the frequency space data that is 

generated by incorporating only the exponential term, exp(-

t(kx,ky)/T2*(x,y)), in such a way that the FE anomaly weighting 

function, introduced in Eq. (13), is assumed to be W(kx,ky,x,y)=exp(-

t(kx,ky)/T2*(x,y)). It can be seen in Fig. 3(a1) that the magnitude and 

real images show blurring and loss of image intensity effect that T2* 

causes on the edges of the phantom when the considered T2* effect is 

not corrected. The standard-reconstructed imaginary image shows 

some artificial imaginary data mostly at the edges of the tissues in the 

phantom. The modified-reconstructed magnitude, phase, real and 

imaginary images, that are given in Fig. 3(a2), appear to be exactly 
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the same as the true magnitude, phase, real and imaginary images. 

This outcome illustrates that Ωa successfully corrects the T2* effect on 

the reconstructed images. 

Fig. 3.3b1 illustrates the standard-reconstructed images whereas 

Fig. 3(b2) presents the modified-reconstructed images from the data 

generated with only B-field inhomogeneity effects. The frequency 

space data is generated by considering only the exponential term, 

exp(-iγΔB(x,y)t(kx,ky)), in such a way that the FE anomaly weighting 

function in Eq. (13) is assumed to be W(kx,ky,x,y)=exp(-

iγΔB(x,y)t(kx,ky)). The B-field inhomogeneity, ΔB, is known to produce 

image warping and bulk shift in the phase encoding direction in 

magnitude and real images, as it can be seen in Fig. 3(b1). Slight 

warping can also be observed in the vertical frequency encoding 

direction because of the higher sampling width. As it can be seen in 

Fig. 3(b1), B-field inhomogeneity introduces artificial imaginary data. It 

can also be observed that the phase, real, and imaginary images are 

not uniform as a result of the sinusoidal oscillation due to the linear 

field map. As seen in the case that we examine T2* effects, the 

modified-reconstructed images, that are given in Fig. 3(b1) have been 

successfully corrected through Ωa. 

Presented in Fig. 3(c1) and Fig. 3(c2) the standard- and 

modified-reconstructed images from the data generated with only T1 

recovery term effects. As explained in previous cases, the frequency 

data generation is performed by assuming that the FE anomaly 

weighting function in Eq. (13) is W(kx,ky,x,y)=(1-exp(-TR/T1(x,y)). The 

standard-reconstructed magnitude and real images in Fig. 3(c1) exhibit 

decreased image intensity throughout the phantom. The expected 

increase in tissue contrast, when the images are modified-

reconstructed by the operator, Ωa, are not observable in this 

simulation since the assumed proton spin density already has 

significant contrast information. Similarly with the previous results, the 

modified-reconstructed images have successfully been corrected 

compared to a standard reconstruction as it is apparent in Fig. 3(c1). 

Figs. 3(d1) and 3(d2) illustrate the standard- and modified-

reconstructed images from frequency space data that is generated 

with a combination of T2*, ΔB, and T1. The effects of all three terms 

(blurring, image warping and loss of image intensity) can be observed 
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in the standard-reconstructed images in Fig. 3(d1) while the modified-

reconstructed images in Fig. 3(d2) are same as the true maps. 

The correction of FE anomalies can be considered as a means of 

data processing, and thus could potentially induce artificial 

correlations. Our proposed model allows one not only to account for 

their effects but also to compute the exact image-space statistics 

(mean, variance and correlation). As explained in section 2.1, the 

correlation matrix produced by Eq. (7) is partitioned into the quadrants 

that include the correlation between the real components (real/real), 

between the imaginary components (imaginary/imaginary), and 

between the real and imaginary components (real/imaginary) of the 

reconstructed image. Furthermore, the correlations of the magnitude-

squared data (square of the magnitude-only data) can be derived from 

the computed complex-valued correlation matrix and can be 

considered in the analysis of the correlation structure induced by FE 

anomaly correction during image reconstruction. In order to present 

the computed correlation structure, we choose the voxel located in the 

center of the image as the seed voxel and show the correlation 

between the measurements of the center voxel, and those from all 

other voxels. The center voxel's induced magnitude-squared, real/real, 

imaginary/imaginary, and real/imaginary correlations by the modified 

FR operator, that are illustrated in Figs. 4(a) and 4(b), are produced 

by superimposing the computed correlation structure of the center 

voxel on a gray-scale anatomical phantom image. Presented in Fig. 

4(a) are the induced correlation maps for the center voxel when T2* is 

incorporated. Since we have found that separately accounting for ΔB 

and T1 effects yield the same results, the maps presented in Fig. 4(b) 

represents the correlation structure induced by ΔB or T1 incorporation. 

It can be seen that the process of accounting for FE anomalies induces 

a very small amount of correlation in the maps in Fig. 4(a) and no 

visible correlation in Fig. 4(b). Since little to no correlation is induced, 

this FE anomaly correction method is ideal for use in experimental 

human experiments. 
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Fig.4. Presented on a magnitude brain phantom underlay are theoretical image-space 
magnitude-squared, real/real, imaginary/imaginary, and real/imaginary correlations 

about the center voxel induced by the modified Fourier reconstruction operator, Ωa, 
that accounts for a) T2* effects, b) ΔB or T1 effects. The correlation maps are 
computed by the linear model, corr(y)=D-1/2ΩaΓΩa′D-1/2, with the assumption of an 
identity initial spatial covariance, Γ=I, between voxels. 

3.2. Experimental Illustration 

A set of human data from a bilateral finger tapping fMRI block 

design experiment was acquired for a series of 510 time points with a 

3.0 T General Electric Signa LX magnetic resonance imager to further 

illustrate the performance of the proposed modified FR operator. The 

data set was comprised of seven 2.5 mm thick axial slices that are 

96×96 in dimension for a 24.0 cm FOV, with the phase encoding 

direction oriented as posterior to anterior (bottom to top in images). 

The data set had an effective echo spacing of 0.72 ms, a flip angle of 

90°, and an acquisition bandwidth of 250 kHz. A time varying TE array 

was constructed to utilize the resulting signal change that allows for 

the estimation of the relaxation parameters.27 The echo time was fixed 

at 42.7 ms for the first 10 and the last 490 time points, i.e. 1≤t≤10 

and 21≤t≤510. TE values were then equispaced in the interval of 

[42.7 ms, 52.7 ms] for 11≤t≤15 and 16≤t≤20. 

The application of the proposed linear framework on the 

acquired data sets is a two-step process, involving the estimation of 

T2*, T1, and/or ΔB followed by the incorporation of the estimates 

during the image reconstruction with the use of the modified FR 
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operator. The framework works well when the estimated T2*, ΔB, and 

T1 maps are close to the actual maps. The use of underestimated or 

overestimated parameter maps in the proposed framework can 

potentially cause undesired artifacts in the reconstructed images. For 

instance, overcorrection of longer T2* values results in considerable 

edge enhancements; and the shorter T2* values can suffer from noise 

amplification [1]. As such, for the experimental illustration of the 

proposed framework, we focus on incorporation of only T1 into the FR 

process since T1 map can be easily estimated from the measurements 

acquired during the transient state prior to T1 equilibrium.28 However, 

with accurate estimates of T2* and static ΔB maps, the proposed 

framework can be utilized to incorporate the other Fourier encoding 

anomalies. 

MRI pulse sequences consist of repeated excitation pulses and 

the magnetization changes in the same way during each repetition. 

After a number of excitation pulses, the magnetization reaches a 

steady-state, where the amount of the magnetization at some point in 

the sequence is the same from one repetition to the next. After 

reaching the steady-state, the magnetization begins at equilibrium on 

each repetition. With an assumption of a 90° flip angle, the estimation 

of T1 map can be performed from the ratio of the first echo planar 

imaging time course image and the average steady state image by 

using a fast T1 mapping technique introduced in.28 The steady-state 

signal for a 90° flip angle is 

𝑀𝑠𝑠 = 𝑀0(1 − 𝑒−𝑇𝑅/𝑇1)𝑒−𝑇𝐸/𝑇2
∗
, 

(20) 

whereas the signal for the first echo planar imaging volume is 

𝑀1 = 𝑀0𝑒−𝑇𝐸/𝑇2
∗
. 

(21) 

By using the ratio of M1 in Eq. (21) over Mss in Eq. (20), R = M1/Mss, 

the value of T1 for one voxel can be calculated by 
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𝑇1 =
𝑇𝑅

ln (
𝑅

𝑅 − 1
)

. 

(22) 

For the estimation of T1 map from the acquired data set that we 

use in our experimental illustration, the steady state signal, Mss, is 

computed as the average magnitude images at 6≤t≤10 over five time 

points for each voxel. The estimated T1 map that is computed by Eq. 

(22) is shown in Fig. 5. In order to reduce the errors in the final 

modified-reconstructed images that could result from the T1 estimation 

process, the region outside of the brain is masked out in the presented 

T1 map. First, the magnitude images at 21≤t≤510 are averaged over 

the last 490 points of the time series since the data was acquired with 

a time varying TE in the first 20 time points. In order to generate the 

binary two-dimensional brain mask that identifies the outside of the 

brain, the average magnitude image is used as reference. The voxels 

whose average magnitude values are larger than the threshold value, 

which is set as the 26% of the maximum value in the average 

magnitude image, are given a value of 1 (denoting being in the brain) 

while the voxels whose values are smaller than or equal to this 

threshold are set to 10-6 (denoting being outside the brain) in the 

binary mask. The estimated T1 map is then multiplied by the binary 

mask image on a voxel-by-voxel basis to mask out the voxels in the 

region outside the brain. 
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Fig. 5. Estimated T1 map (in s) from the ratio of the first time course image and the 
average steady state image. The voxel values outside of the brain region are set to  
10-6 s. 

In order to illustrate the benefits of the incorporation of T1 into 

the FR process, we show the magnitude, phase, real and imaginary 

images that are acquired at the 21st time point, and reconstructed 

both with the standard FR operator, Ω, and the modified FR operator, 

Ωa. Fig. 6(a) shows the standard-reconstructed magnitude, phase, real 

and imaginary images whereas Fig. 6(b) shows the modified-

reconstructed images. It can be observed from Fig. 6 that the 

incorporation of T1 leads to an increase in image intensity as well as 

significantly improved tissue contrast in the magnitude images. Such 

correction does not alter the phase image while increasing the 

intensity of the magnitude, real, and imaginary images. 
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Fig. 6. Reconstructed magnitude, phase, real, and imaginary images at time point 
n=21. a) Images that are reconstructed with the standard FR operator, Ω, b) Images 

that are reconstructed with the modified FR operator, Ωa. 

The increase in image contrast provided by T1 incorporation can 

be better observed in Figs. 7(a) and 7(b) in which the histogram plots 

of the magnitude values from gray matter and white matter voxels 

that were computed before and after incorporation of T1 are given, 

respectively. The plots were generated from the voxel values in the 

magnitude images in the first panels of Figs. 6(a) and 6(b). For the 

segmentation, the estimated T1 map in Fig. 5 was used, and T1 ranges 

were defined predominantly for white matter and gray matter as (0.1 

s–1.2 s) and (>1.2 s), respectively. This segmentation resulted in nWM 

= 885 white matter and nGM = 942 gray matter voxels. By comparing 

Figs. 7(a) and 7(b), one can observe that the contrast between gray 

matter and white matter regions is significantly improved by the 

incorporation of T1 as the white matter and gray matter voxels are 

more clearly separated in Fig. 7(b) than in Fig. 7(a). This observation 

is supported by a hypothesis testing analysis for a difference in gray 

matter and white matter voxel means before and after T1 

incorporation. The test statistic value, t*, before T1 incorporation was 

found to be 3.29 (p-value = 0.0012) whereas it was found to be 31.62 

(p-value < 10-10) after T1 incorporation. This strongly implies that the 

gray-white matter contrast is improved with the use of the proposed 

method. 
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Fig. 7. Histogram plots of the magnitude values from gray matter and white matter 
voxels that are computed a) before incorporation of T1 and b) after incorporation of T1. 
The plots were generated from the images at time point n=21 that were reconstructed 
with the standard FR operator, Ω, in a) and with the modified FR operator, Ωa, in b). 

The contrast enhancement achieved by the proposed method 

can also be quantitatively indicated by comparing the gray-white 

matter contrast-to-noise ratio (CNR) computed before and after T1 

incorporation. The gray-white matter CNRs were separately computed 

from the magnitude images at time point n=21 that were 

reconstructed with the standard FR operator (given in Fig. 6(a)) and 

with the modified FR operator that incorporates T1 (given in Fig. 6(b)). 

The CNRs were computed from this single image by CNRGM-WM =|mGM–

mWM|/σ0, where mGM and mWM are the mean magnitude values of the 

gray matter and white matter areas, and σ0 is the standard deviation 

of the outside region. A significant increase in CNRGM-WM was observed 

(before: 0.30 and after: 6.08) with the use of our method for T1 

incorporation. 

Furthermore, the application of the proposed method for 

incorporating T1 was found to yield an increase in signal-to-noise ratios 

(SNRs) in whole brain as well as gray and white matter areas as 

presented in Table 2. The SNR values in Table 2 were computed by 

SNR =mROI/σ0, where mROI is the mean magnitude value of the region 

of interest (whole brain, gray matter or white matter in the table). Our 

results show that T1 incorporation increases the SNR by 83%, 105%, 

and 60% in whole brain, gray matter, and white matter areas, 

respectively for the single image that was chosen for the analysis. 
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Table 2. Signal-to-noise ratios of the whole-brain, gray matter, and white 

matter areas before and after T1 incorporation 

 Whole-brain Gray Matter White Matter 

Before T1 Incorporation 8.06 8.20 8.00 

After T1 Incorporation 14.76 16.82 12.83 

In order to analyze the possible effects of such correction on the 

functional activations computed from T1 incorporated reconstructed 

images, we show the activation statistics of both standard-

reconstructed and modified-reconstructed images in Figs. 8(a), 8(c) 

and 8(b), 8(d), respectively. Figs. 8(a) and 8(b) show the activation t-

statistics computed by using the likelihood ratio tests from the MO 

Model.21 Illustrated in Figs. 8(c) and 8(d) are the activation Z-statistics 

computed by using the CV Model.22-25 The activation maps shown in 

Fig. 8 were thresholded at a 5% per comparison error rate29 and 

presented with a color bar that ranges between -6.5 and 6.5. It can be 

observed that the activation statistics that are computed from the 

standard-reconstructed and the modified-reconstructed image space 

measurements are identical for both the CV and MO Models. It can be 

concluded that T1 incorporation into the Fourier image reconstruction 

process preserves the functional activations. This result is expected 

since the estimated T1 map that is incorporated during the image 

reconstruction is constant over the time series and therefore the 

activation information is preserved with the proposed framework. 

 
Fig.8. Activation statistics that are computed from a) standard-reconstructed images 
with the use of the MO Model, b) modified-reconstructed with the use of the MO 
Model, c) standard-reconstructed images with the use of the CV Model, d) modified-

reconstructed with the use of the CV Model. The activation maps are thresholded at a 
5% per comparison error rate. 
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4. Conclusion 

The model developed in this work is based upon the 

mathematical linear framework for Fourier image reconstruction in a 

real-valued isomorphism presented in17 and expanded to the AMMUST-

k framework in order to include frequency space processing operations 

in.18 We further expand this framework to account for the effects of 

relaxation parameters, T2* and T1, and magnetic field 

inhomogeneities, ΔB, that alters the observed MR signal in the process 

of Fourier encoding. We develop a modified FR operator that accounts 

for such effects in image space by first generating the modified FE 

operator that considers the terms of these anomalies as they appear in 

the signal equation, and then inverting. Although the effects of T2* and 

ΔB have been aimed to be corrected prior to the final analysis of fMRI 

data in previous studies, the T1 recovery term has been ignored with 

the assumption of long repetition time, which is not always met, 

especially when performing fast repetitive excitations. Furthermore, 

the T1 estimates have the potential to detect tissue characteristics of 

the acquired MRI data. 

We present theoretical results for accounting for the effects of 

T2*, ΔB, and T1 during the Fourier reconstruction process, and focus on 

incorporating T1 in acquired echo planar data. The experimental results 

presented in this manuscript have shown that the images 

reconstructed through the use of the reconstruction operator adjusted 

for estimated static T1 appear to be brighter and have increased tissue 

contrast. The method presented in this work can provide improved 

tissue segmentation over the course of time series, and as suggested 

in prior studies,13-16 this increased gray/white matter contrast can 

improve the precision of motion correction and image registration. 

Furthermore, our experimental results show that such correction does 

not alter the activation results in an EPI based BOLD fMRI experiment. 

Even though we incorporate only T1 into the reconstruction process in 

experimental analysis, the model can be utilized to account for T2* and 

ΔB effects once their estimated maps are obtained. 

The proposed framework makes it possible to precisely quantify 

any potential induced correlations by the process of accounting for FE 

anomalies. It has been shown that ΔB and T1 incorporation do not 
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induce any image space correlations whereas accounting for T2* effect 

induces negligible correlation in the phase encoding direction. The FA 

correction methods introduced in this manuscript can be used on a 

regular basis in every fMRI and fcMRI experiment. 

As noted before, the proposed method requires an additional 

step of estimating T1, T2*, and/or ΔB before performing the 

incorporation of the anomalies into the reconstruction process. 

Variations in the RF transmit field can cause non-uniform B1 field 

strengths creating flip angle variations over the field of view that can 

lead to non-uniformities across the MRI image and thus errors in 

image-based quantitative measurements, including T1 estimation. 

Inaccuracy of the estimated T1 map as a result of non-uniformity in B1 

field, especially at high field strength, could potentially reduce the 

benefit of the proposed method as the T1 incorporated reconstructed 

images could be inaccurate. One possible solution to this problem is to 

produce an accurate map of the non-uniform B1 field map and correct 

the intensity inhomogeneities that arise from B1 non-uniformity30-33 

before performing T1 estimation. 

Recovering image contrast in EPI acquisitions by incorporating 

T1 with the use of the proposed framework can be specifically useful 

for 3D EPI fMRI acquisitions which provide higher temporal SNR and 

stronger statistical power in activation detection. As 3D EPI yields 

increased T1 contrast between tissue types due to the short TR and 

thus more accurate T1 estimation, the benefits of our proposed method 

can be significantly observed in 3D EPI experiments. The method 

provides higher signal characteristics, such as increased SNR and 

gray-white matter CNR, more detailed structural information in the 

reconstructed images, and ultimately reduction in the registration 

errors in one step from a single pulse sequence as it does not require 

the acquisition of the anatomical T1-weighted data. 
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