5 research outputs found

    Efficient Simulation and Parametrization of Stochastic Petri Nets in SystemC: A Case study from Systems Biology

    Get PDF
    Stochastic Petri nets (SPN) are a form of Petri net where the transitions fire after a probabilistic and randomly determined delay. They are adopted in a wide range of appli- cations thanks to their capability of incorporating randomness in the models and taking into account possible fluctuations and environmental noise. In Systems Biology, they are becoming a reference formalism to model metabolic networks, in which the noise due to molecule interactions in the environment plays a crucial role. Some frameworks have been proposed to implement and dynamically simulate SPN. Nevertheless, they do not allow for automatic model parametrization, which is a crucial task to identify the network configurations that lead the model to satisfy temporal properties of the model. This paper presents a framework that synthesizes the SPN models into SystemC code. The framework allows the user to formally define the network properties to be observed and to automatically extrapolate, thorough Assertion-based Verification (ABV), the parameter configurations that lead the network to satisfy such properties. We applied the framework to implement and simulate a complex biological network, i.e., the purine metabolism, with the aim of reproducing the metabolomics data obtained in-vitro from naive lymphocytes and autoreactive T cells implicated in the induction of experimental autoimmune disorders

    Petri Net modelling approach for analysing the behaviour of Wnt/[inline-formula removed] -catenin and Wnt/Ca 2+ signalling pathways in arrhythmogenic right ventricular cardiomyopathy.

    Get PDF
    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease that may result in arrhythmia, heart failure and sudden death. The hallmark pathological findings are progressive myocyte loss and fibro fatty replacement, with a predilection for the right ventricle. This study focuses on the adipose tissue formation in cardiomyocyte by considering the signal transduction pathways including Wnt/[inline-formula removed]-catenin and Wnt/Ca2+ regulation system. These pathways are modelled and analysed using stochastic petri nets (SPN) in order to increase our comprehension of ARVC and in turn its treatment regimen. The Wnt/[inline-formula removed]-catenin model predicts that the dysregulation or absence of Wnt signalling, inhibition of dishevelled and elevation of glycogen synthase kinase 3 along with casein kinase I are key cytotoxic events resulting in apoptosis. Moreover, the Wnt/Ca2+ SPN model demonstrates that the Bcl2 gene inhibited by c-Jun N-terminal kinase protein in the event of endoplasmic reticulum stress due to action potential and increased amount of intracellular Ca2+ which recovers the Ca2+homeostasis by phospholipase C, this event positively regulates the Bcl2 to suppress the mitochondrial apoptosis which causes ARVC
    corecore