4 research outputs found

    A Detailed Study of Channel Estimation and BER Optimization in presence of AWGN and Rayleigh Channel of OFDM System

    Full text link
    Orthogonal Frequency Division Multiplexing is an important one field communication and that uses parallel information series. Contrast and single carrier adjustment are basic aspects of this technique where OFDM has many favourable circumstances are risky to work on this technique. It is robust, easy to use, and strength to safe the processing channel from distortions. It provides safety from multipath, much lesser computational many-sided characteristic. OFDM has some significant to execute it in commonly using media transmission frameworks. OFDM standard tolerate Packet misfortune, Bit trouble, Bit Error Rate (BER), Signal to Noise Ratio (SNR), Calculation of PAPR, Power Spectrum estimation. This dissertation is targeted to show the comparison of AWGN and Rayleigh channel by using fading process for particularity in superior performance with individual values of spectrums as well as by their scattering plots. In this dissertation each and every signal of these terms are examined and all the four parameters are thought about utilizing AWGN and Rayleigh fading channel by changing the period of a portion of the subcarriers utilizing QPSK in OFDM regulation. The representation of outputs is finished through MATLAB programming

    MMSE interference suppression in MIMO frequency selective and time-varying fading channels

    No full text
    Multiple-input/multiple-output (MIMO) frequency selective fading channels introduce both the intersymbol interference (ISI) and the inter-(sub)channel interference (ICI) that are the major performance limiting factors for MIMO wireless data communications. This paper focuses on joint suppression of such two interferences in receiver design under the criterion of the minimum mean-squared error (MMSE). The well-known Kalman filtering arises as a natural design tool to achieve the optimum joint suppression of the ISI and ICI in the sense of MMSE that results in a two-stage design method that suppresses the ISI and ICI in series. Specifically, a state-space solution is derived for the optimum decision-feedback equalizer (DFE) based on temporal Kalman filtering, and is shown to be equivalent to a conventional finite length DFE for ISI suppression. A novel spatial Kalman filtering scheme is proposed as the second stage to successively cancel the ICI. It is shown that the proposed two-stage method yields the realizable and optimum joint ISI and ICI suppression, while it admits lower computational complexity than the conventional finite length DFE for ISI suppression and the MMSE V-BLAST receiver for ICI suppression. The results are applicable to any linear channels that admit state-space realizations, including MIMO frequency selective time-varying channels, and are thus the most general. Simulation results show the effectiveness of the proposed two-stage method and its robustness to channel estimation uncertainties that may arise in practical systems. © 2008 IEEE

    MMSE Interference Suppression in MIMO Frequency Selective and Time-Varying Fading Channels

    No full text
    corecore