39 research outputs found

    Bit-Error-Rate-Minimizing Channel Shortening Using Post-FEQ Diversity Combining and a Genetic Algorithm

    Get PDF
    In advanced wireline or wireless communication systems, i.e., DSL, IEEE 802.11a/g, HIPERLAN/2, etc., a cyclic prefix which is proportional to the channel impulse response is needed to append a multicarrier modulation (MCM) frame for operating the MCM accurately. This prefix is used to combat inter symbol interference (ISI). In some cases, the channel impulse response can be longer than the cyclic prefix (CP). One of the most useful techniques to mitigate this problem is reuse of a Channel Shortening Equalizer (CSE) as a linear preprocessor before the MCM receiver in order to shorten the effective channel length. Channel shortening filter design is a widely examined topic in the literature. Most channel shortening equalizer proposals depend on perfect channel state information (CSI). However, this information may not be available in all situations. In cases where channel state information is not needed, blind adaptive equalization techniques are appropriate. In wireline communication systems (such as DMT), the CSE design is based on maximizing the bit rate, but in wireless systems (OFDM), there is a fixed bit loading algorithm, and the performance metric is Bit Error Rate (BER) minimization. In this work, a CSE is developed for multicarrier and single-carrier cyclic prefixed (SCCP) systems which attempts to minimize the BER. To minimize the BER, a Genetic Algorithm (GA), which is an optimization method based on the principles of natural selection and genetics, is used. If the CSI is shorter than the CP, the equalization can be done by a frequency domain equalizer (FEQ), which is a bank of complex scalars. However, in the literature the adaptive FEQ design has not been well examined. The second phase of this thesis focuses on different types of algorithms for adapting the FEQ and modifying the FEQ architecture to obtain a lower BER. Simulation results show that this modified architecture yields a 20 dB improvement in BER

    Single-Frequency Network Terrestrial Broadcasting with 5GNR Numerology

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Estimation and detection techniques for doubly-selective channels in wireless communications

    Get PDF
    A fundamental problem in communications is the estimation of the channel. The signal transmitted through a communications channel undergoes distortions so that it is often received in an unrecognizable form at the receiver. The receiver must expend significant signal processing effort in order to be able to decode the transmit signal from this received signal. This signal processing requires knowledge of how the channel distorts the transmit signal, i.e. channel knowledge. To maintain a reliable link, the channel must be estimated and tracked by the receiver. The estimation of the channel at the receiver often proceeds by transmission of a signal called the 'pilot' which is known a priori to the receiver. The receiver forms its estimate of the transmitted signal based on how this known signal is distorted by the channel, i.e. it estimates the channel from the received signal and the pilot. This design of the pilot is a function of the modulation, the type of training and the channel. [Continues.

    Low complexity channel shortening and equalization for multi-carrier systems

    Get PDF
    A new time domain blind adaptive channel shortening algorithm for Discrete Multi Tone (DMT)-based multicarrier systems is first proposed. It is computationally less expensive, and more robust to non- Gaussian impulsive noise environments than a recently reported Sum squared Autocorrelation Minimization (SAM) algorithm. A "left" initialization scheme is also suggested for Carrier Serving Area (CSA) loop Asymmetric Digital Subscriber Line (ADSL) channels. Simulation studies show that by a proper selection of the learning parameter i.e., the step size, the bit rates achieved by the SAM algorithm when operating in an environment contaminated by Additive White Gaussian Noise (AWGN) can be further improved. Next a novel time domain low complexity blind adaptive channel short ening algorithm called Single Lag Autocorrelation Minimization (SLAM) is introduced. The algorithm is totally blind in the sense that it does not require a prior knowledge about the length of the channel impulse response. The proposed novel stopping criterion freezes the adaptation of the SLAM algorithm when the maximum amount of Inter Symbol Interference (ISI) is cancelled. As such, the stopping criterion can also be used with SAM. An attractive alternate frequency domain equalization approach for multicarrier systems is Per Tone Equalization (PTEQ). This scheme en- ables true signal-tonoise ratio optimization to be implemented for each tone and it always achieves higher bit rates than Time domain Equalizer (TEQ) based channel shortening schemes but at the price of increased computational complexity and higher memory requirements. A low complexity (PTEQ) scheme is, therefore, finally proposed. The com plexity of the PTEQ can be traded off with the complexity of the timing synchronization within the system. In particular, it is shown that the use of more than one difference terms and hence a long equalizer in the PTEQ scheme is generally redundant. The PTEQ scheme assumes knowledge of the channel impulse response. In this case synchronization is trivial and it is possible to use only a length two PTEQ equalizer and attain essentially identical bit rate performance to a PTEQ equalizer with length matched to the cyclic prefix. This observation allows for a substantial reduction in computational complexity of the PTEQ scheme in both initialization and data transmission modes. For a reasonable range of values of synchronization error, <5, around the optimal value of 5 = 0, the performance of this length two equalizer is shown to remain relatively constant. For positive synchronization errors, however, the required PTEQ equalizer length is proportional to the synchronization error. A low complexity blind synchronization method is ultimately suggested which is based on the construction of the difference terms of the PTEQ scheme

    Semi Blind Time Domain Equalization for MIMO-OFDM Systems

    Get PDF
    In this thesis, a semi-blind time-domain equalization technique is proposed for general MIMO OFDM systems. The received OFDM symbols are shifted by more than or equal to the cyclic prefix (CP) length, and a blind equalizer is designed to completely suppress both inter-carrier interference (ICI) and inter-symbol interference (ISI) using second-order statistics of the shifted received OFDM symbols. Only a one-tap equalizer is needed to detect the time domain signals from the blind equalizer output, and one pilot OFDM symbol is utilized to estimate the required channel state information for the design of the one-tap equalizer. Simulation results show that this technique is robust against the number of shifts in excess of the CP length

    Per tone equalization for DMT-based systems

    Full text link

    Equalization of doubly selective channels using iterative and recursive methods

    Get PDF
    Novel iterative and recursive schemes for the equalization of time-varying frequency selective channels are proposed. Such doubly selective channels are shown to be common place in mobile communication systems, for example in second generation systems based on time division multiple access (TDMA) and so-called beyond third generation systems most probably utilizing orthogonal frequency division multiplexing (OFDM). A new maximum likelihood approach for the estimation of the complex multipath gains (MGs) and the real Doppler spreads (DSs) of a parametrically modelled doubly selective single input single output (SISO) channel is derived. Considerable complexity reduction is achieved by exploiting the statistical properties of the training sequence in a TDMA system. The Cramer-Rao lower bound for the resulting estimator is derived and simulation studies are employed to confirm the statistical efficiency of the scheme. A similar estimation scheme is derived for the MGs and DSs in the context of a multiple input multiple output (MIMO) TDMA system. A computationally efficient recursive equalization scheme for both a SISO and MIMO TDMA system which exploits the estimated MGs and DSs is derived on the basis of repeated application of the matrix inversion lemma. Bit error rate (BER) simulations confirm the advantage of this scheme over equalizers which have limited knowledge of such parameters. For OFDM transmission over a general random doubly selective SISO channel, the time selectivity is mitigated with an innovative relatively low complexity iterative method. Equalization is in effect split into two stages: one which exploits the sparsity in the associated channel convolution matrix and a second which performs a posteriori detection of the frequency domain symbols. These two procedures interact in an iterative manner, exchanging information between the time and frequency domains. Simulation studies show that the performance of the scheme approaches the matched filter bound when interleaving is also introduced to aid in decorrelation. Finally, to overcome the peak to average power problem in conventional OFDM transmission, the iterative approach is extended for single carrier with cyclic prefix (SCCP) systems. The resulting scheme has particularly low complexity and is shown by simulation to have robust performance.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore