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ABSTRACT

A new time domain blind adaptive channel shortening algorithm for 

Discrete Multi Tone (DMT)-based multicarrier systems is first pro­

posed. It is computationally less expensive, and more robust to non- 

Gaussian impulsive noise environments than a recently reported Sum 

squared Autocorrelation Minimization (SAM) algorithm. A “left” ini­

tialization scheme is also suggested for Carrier Serving Area (CSA) 

loop Asymmetric Digital Subscriber Line (ADSL) channels. Simula­

tion studies show that by a proper selection of the learning parameter 

i.e., the step size, the bit rates achieved by the SAM algorithm when 

operating in an environment contaminated by Additive White Gaus­

sian Noise (AWGN) can be further improved.

Next a novel time domain low complexity blind adaptive channel short­

ening algorithm called Single Lag Autocorrelation Minimization (SLAM) 

is introduced. The algorithm is totally blind in the sense that it does 

not require a prior knowledge about the length of the channel impulse 

response. The proposed novel stopping criterion freezes the adaptation 

of the SLAM algorithm when the maximum amount of Inter Symbol 

Interference (ISI) is cancelled. As such, the stopping criterion can also 

be used with SAM.

An attractive alternate frequency domain equalization approach for 

multicarrier systems is Per Tone Equalization (PTEQ). This scheme en-
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ables true signal-to-noise ratio optimization to be implemented for each 

tone and it always achieves higher bit rates than Time domain Equalizer 

(TEQ) based channel shortening schemes but at the price of increased 

computational complexity and higher memory requirements. A low 

complexity (PTEQ) scheme is, therefore, finally proposed. The com­

plexity of the PTEQ can be traded off with the complexity of the timing 

synchronization within the system. In particular, it is shown that the 

use of more than one difference terms and hence a long equalizer in 

the PTEQ scheme is generally redundant. The PTEQ scheme assumes 

knowledge of the channel impulse response. In this case synchronization 

is trivial and it is possible to use only a length two PTEQ equalizer and 

attain essentially identical bit rate performance to a PTEQ equalizer 

with length matched to the cyclic prefix. This observation allows for a 

substantial reduction in computational complexity of the PTEQ scheme 

in both initialization and data transmission modes. For a reasonable 

range of values of synchronization error, <5, around the optimal value of 

8 =  0 , the performance of this length two equalizer is shown to remain 

relatively constant. For positive synchronization errors, however, the 

required PTEQ equalizer length is proportional to the synchronization 

error. A low complexity blind synchronization method is ultimately 

suggested which is based on the construction of the difference terms of 

the PTEQ scheme.
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Chapter 1

INTRODUCTION

1.1 Introduction and Motivation

Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier 

modulation scheme for wireless systems. OFDM systems efficiently 

deal with large channel delay spreads with a reasonable implementa­

tion complexity as compared to single carrier systems. The basic prin­

ciple of OFDM is to split a high-rate data stream into a number of 

lower rate streams that are transmitted simultaneously over a number 

of subcarriers or subchannels. Because the symbol duration increases 

for the lower rate parallel subcarriers, the relative amount of disper­

sion in time caused by multipath delay spread is decreased. ISI is 

eliminated almost completely by introducing a guard time equal to the 

order of the channel impulse response in every OFDM symbol. In the 

guard time, the OFDM symbol is cyclically extended to avoid Inter- 

carrier Interference (ICI). That is why the guard time is also called 

the cyclic prefix (CP). Due to ISI and ICI free transmission, the equal­

ization in OFDM is trivial and is performed by a bank of single tap 

Frequency domain Equalizers (FEQs) after the Fast Fourier Transform 

(FFT) to compensate for the amplitude and phase distortion within 

each subchannel. The complexity of an OFDM system is largely de­

1



Section 1.1. Introduction and Motivation 2

termined by the FFT in contrast to single-carrier systems where the 

implementation complexity is dominated by equalization. The process­

ing complexity of an OFDM system is significantly less than that of a 

single carrier system for the same amount of delay spread [1]. In the 

wireline counterparts of OFDM, the multicarrier modulation is named 

DMT. DMT modulation is standardized for ADSL and Very-high-bit- 

rate DSL (VDSL) systems. ADSL and VDSL provide high speed data 

service to residences and offices on the existing coppers wires of the tele­

phone network. The data rates of latest versions of ADSL systems are 

up to 10Mbps and 1Mbps for the downstream and upstream transmis­

sion respectively. VDSL systems provide data rates up to 13 Mbps and 

3 Mbps for the downstream and upstream transmission respectively [2]. 

Compared to OFDM, DMT modulation has an extra ability to perform 

bit loading due to the slow varying subchannel Signal to Noise Ratio 

(SNR) of the wireline channel [3]. The signal constellations used for 

different carriers can be independently selected in accordance with the 

channel attenuation and interference at the corresponding frequencies. 

The other difference is that, the transmitted signal is at baseband and 

must be real. The symmetry property of the FFT is exploited by using 

N /2  instead of N  inputs, and then conjugating and mirroring the first 

half of the tones such that the resulting N  IFFT inputs obey conjugate 

symmetry. This results in a real IFFT output [4].

If v is the length of CP and N  is the actual data symbol duration, the 

bandwidth loss due to the insertion of CP is v / N.  In order to minimize 

this bandwidth loss, it is desirable to have the symbol duration much 

larger than the CP. It cannot be arbitrarily large, as a large symbol 

duration means more carriers with a smaller carrier spacing reducing
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the tolerance to the channel time variations, a larger implementation 

complexity, and more sensitivity to phase noise and frequency offset, 

as well as an increased peak-to-average power ratio [1]. In practical 

applications, the CP is chosen to be equal to the channel impulse re­

sponse length minus 1, and the symbol duration is then selected so as 

to keep the bandwidth loss below 25%. The insertion of CP is shown in 

Figure (1.1) for the length of the channel 4 and the actual data symbol 

duration of 12.

Data

-4
C

Oi -2 -1 0 1 2 3

Data

4 5 6 7 8 9 1011121314

CP Data

161718 1920

F igure  1.1. Loss of throughput due to insertion of the CP.

For long impulse response channels, the insertion of the CP becomes 

prohibitive. The symbol duration has to be impractically large to keep 

bandwidth loss small. What is done instead, is that a small value of 

CP is chosen so that a practical value of symbol duration can be used 

to keep the bandwidth loss small. Further, TEQ, usually an FIR filter, 

is inserted at the receiver front end. The convolution of the TEQ and 

the actual channel yields an effective channel, having significant com­

ponents in a contiguous length window equal to the v + 1 length. In 

this way, ISI and ICI is combated while keeping the loss in bandwidth 

at a minimum whilst using a practical value of N.  Channel shortening
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in multicarrier systems should be termed as “partial equalization” as 

compared to equalization in single carrier communication systems, be­

cause here the channel impulse response need only be shortened to the 

(v +  1) length samples rather than to one sample [5].

noise v(n)

FFT FEQFFT
&S/P

&add

c=h*w

F igure  1.2. OFDM baseband system model. (I)FFT: (inverse) fast 
Fourier transform, P/S: parallel to serial, S/P: serial to parallel, CP: 
cyclic prefix, FEQ: Frequency domain Equalizer, w: TEQ

The baseband OFDM multicarrier model along with the TEQ is shown 

in Figure (1.2). The frequency-selective channel is divided into N  

subchannels. The input bits stream is first divided into blocks of N  

Quadrature Amplitude Modulation (QAM) symbols. These QAM sym­

bols are modulated onto N  subchannels. An efficient means of imple­

menting the modulation in discrete time is to use an inverse fast Fourier 

transform (IFFT). The output of the IFFT is converted from parallel 

to serial and CP is inserted. The data are then serially transmitted. 

At the receiver the ISI corrupted CP is discarded and an FFT is used 

to demodulate the signal. Because of the nature and length of the CP, 

the linear convolution between the effective channel c =  h  * w  and the 

transmitted signal becomes circular. Therefore, the output of the FFT 

at each subchannel is the multiplication of the symbol sent on that
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subchannel and the frequency response of the effective channel at the 

subchannel plus the noise at that subchannel. Finally, the transmit­

ted symbols are retrieved by dividing this output by the one-tap FEQs 

which are actually the frequency response of the effective channel at 

respective subcarriers.

Channel shortening was first used in the 1970’s to reduce the complexity 

of Maximum Likelihood Sequence Estimation (MLSE) in single carrier 

communication systems [6, 7]. For an alphabet size A  and effective 

channel length L c +  1, the complexity of an MLSE grows as A^Lc+1\  

The approach was to employ a prefilter to shorten the effective channel 

to a manageable length and then apply the MLSE algorithm.

Channel shortening has been proposed for use in multiuser detection [8] 

in Direct Sequence Code Division Multiple Access (DS-CDMA) sys­

tems. The complexity of the MLSE grows exponentially with the num­

ber of users. “Channel shortening” can be implemented to suppress 

L-K of the scalar channels and retain the other K channels, effectively 

reducing the number of users from L to K. Then the MLSE can be 

implemented to recover the signals of the remaining K users. In this 

context, “channel shortening” means reducing the number of scalar 

channels rather than reducing the number of channel taps, and the 

mathematical structure is similar to channel shortening for MLSE ap­

plications [9].

Channel shortening can be used to reduce the complexity of ultra wide­

band systems [10]. Yet another application is in acoustics. Psychoa­

coustics defines the D50-measure for intelligibility speech as the ratio 

of energy in a 50 ms window of the room impulse response to the total 

energy of the impulse response, and optimization of this measure can
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be performed by a channel shortener [11].

Channel shortening has found its revival and main use in multicar­

rier communication systems [12]. Examples of multicarrier commu­

nication systems include wireless local area networks (IEEE 802.11 

a/g, HIPERLAN/2) [13], wireless metropolitan area networks (IEEE 

802.16) [14], Digital Audio Broadcast (DAB) [15] and Digital Video 

Broadcast (DVB) [16] in Europe, satellite radio (Sirius and XM Ra­

dio) [17], and the proposed standard for multiband ultra wideband 

(IEEE 802.15.3a). Examples of wireline multicarrier systems include 

power line communications (HomePlug) [18] and digital subscriber lines 

(DSL) [19]. OFDM in combination with MIMO technology is also being 

investigated for the Fourth Generation (4G) mobile phone systems [20]. 

There has been extensive research in proposing the TEQ algorithms. A 

literature survey of TEQ design methods is given in Chapter 2. How­

ever there remains need for further work to reduce the computational 

complexity of previously proposed algorithms and also to mitigate the 

effects of impulsive noise for the channel shortening algorithms. This 

is the focus of the thesis. Channel shortening has also been used in the 

context of Multiple Input Multiple Output (MIMO) systems. However, 

these works only extend the channel shortening algorithms previously 

proposed for Single Input Single Output (SISO) system models to the 

MIMO case. Hence, this thesis considers only SISO systems, as the 

work can potentially be extended to MIMO systems.

1.2 Organization of the thesis

The remainder of the thesis is organized as follows. Chapter 2 presents 

a literature survey of the previous TEQ design methods for multicarrier
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systems.

Chapter 3 proposes a robust blind adaptive channel shortening al­

gorithm. The algorithm is based on the Sum-Absolute Autocorrela­

tion Minimization (SAAM) of the effective channel outside the window 

of desired length. The algorithm approaches the Maximum Shorten­

ing Signal to Noise Ratio (MSSNR) solution of [21] in AWGN condi­

tions. It is computationally less expensive, and more robust to non- 

Gaussian impulsive noise environments than a recently reported SAM 

algorithm [22]. The non-Gaussian impulsive noise has been modeled as 

Gaussian-mixture and as a-stable distributions. Due to the quasi min­

imum phase nature of the channel impulse response of ADSL, a “left” 

initialization scheme is suggested which further enhances the conver­

gence performance of SAAM. Additional studies have been undertaken 

showing that by a proper selection of parameters e.g., the step size, the 

bit rates achieved by SAM in AWGN conditions can be improved as 

well.

Chapter 4 addresses the complexity reduction and convergence issues 

with SAM [22]. The drawback with SAM is that it has a significantly 

higher computational complexity and it does not have any stopping 

criterion to freeze the TEQ when the shortening signal to noise ratio 

(SSNR) of the effective channel reaches its maximum. The main argu­

ment of this chapter is that identical channel shortening can be achieved 

by minimizing a single autocorrelation. The proposed SLAM algorithm 

has, therefore, relatively low complexity and unlike SAM, it does not 

require, a priori, the knowledge of the length of the original channel. 

The novel stopping criterion freezes the adaptation of the TEQ when 

maximum SSNR has been achieved. As such, the stopping criterion
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can be used with SAM as well.

Chapter 5 discusses the alternate equalization scheme called PTEQ for 

multicarrier systems. Van Acker et al. [23] proposed PTEQ, where 

equalization is performed with a T-tap equalizer after the FFT- 

demodulation for each tone separately. This scheme enables true signal- 

to-noise ratio optimization to be implemented for each tone. The result­

ing capacity of the PTEQ scheme is always higher and a smoother func­

tion of the synchronization delay as compared to the TEQ scheme [23]. 

Although the complexities of the PTEQ and the TEQ schemes are ap­

proximately the same during data transmission modes [23], the PTEQ 

scheme has very large complexity during the initialization mode. This 

problem is addressed in this chapter. A low complexity PTEQ scheme 

for DMT-based systems is, therefore, proposed. It is shown that the 

use of more than one difference term in the PTEQ scheme is generally 

redundant. The PTEQ scheme assumes knowledge of the channel im­

pulse response. In this case synchronization is trivial and it is possible 

to use only a length two PTEQ equalizer and attain essentially iden­

tical bit rate performance as a PTEQ equalizer with length matched 

to the cyclic prefix. This observation allows for a substantial reduction 

in computational complexity of the PTEQ scheme in both initializa­

tion and data transmission modes. Simulations also show that for a 

reasonable range of values of synchronization error, 5 around the op­

timal values of <5 = 0, the performance of this length two equalizer is 

relatively insensitive. For positive synchronization errors, however, the 

required PTEQ equalizer length is proportional to the synchronization 

error, which is a consequence of strong intercarrier interference ICI in 

the received signal. A low complexity blind synchronization method
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is also suggested which is intuitively based on the construction of the 

difference terms of the PTEQ scheme.

Chapter 6 concludes this thesis and points out possible areas for further 

research.



Chapter 2

LITERATURE SURVEY

This chapter surveys different TEQ design structures.

2.1 Minimum Mean-Squared Error M ethod

noise v(n)

F igure  2 .1 . MMSE channel shortening

In [24] the Minimum Mean Squared Error (MMSE) TEQ design method 

is proposed. Its block diagram is shown in Figure (2.1). Here b is 

a (v +  1) tap long Target Impulse Response (TIR). The TEQ w is 

designed to minimize the mean squared error between its output and 

the A delayed output of b. In [25] an iterative implementation of 

the MMSE channel shortening algorithm is detailed. The error as in 

Equation (2.1.1) is defined in [26] and also includes the signal and noise

10
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autocorrelation matrices in the MMSE channel shortening framework

£[e2] =  E  (w Tr — brx )2

=  wrR ,rw +  br R„:b — 2wr R rxb (211)

where R xa;, R ^  and R rr are the transmitted signal auto-correlation, 

channel input-output cross-correlation and the channel output auto­

correlations matrices, respectively. For a given A, the optimal TEQ is 

given by

w  opt =  R^Rrxb (2.1.2)

Substituting Equation (2.1.2) into Equation (2.1.1)

E\e2] = br .(R*i -  R £  ( R '1)r RTX).b = bT.O.b (2.1.3)

Minimizing this expression, the target impulse response b is calculated,

which is the eigenvector corresponding to the minimum eigenvalue of 

the matrix O then the TEQ w is designed using Equation (2.1.2). A 

unit tap or unit norm constraint is imposed on b to avoid the trivial 

solution w =  0 . There has been a flurry of research in designing MMSE 

TEQ. In [27] a good literature survey of the MMSE TEQ design meth­

ods is given. Most of these approaches try to minimize the complexity 

of the MMSE channel shortening.

The TEQ design for Frequency Division Multiplexed ADSL (FDM- 

ADSL) is somewhat different than that for Echo Cancelled ADSL (EC- 

ADSL). The FDM-ADSL allocates separate frequency bands for the 

down- and upstream transmission. To achieve this, it uses sharp fil­

ters at the analogue front end of the receiver. The EC-ADSL uses
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overlapping spectra for up-and downstream transmission and applies 

Echo-Canceling [5]. The authors in [28] note that the MMSE TEQ can 

have high gain in the FDM-ADSL stopband region i.e., the upstream 

transmission band. The Discrete Fourier Transform which comes af­

ter the TEQ, has relatively high spectral sidelobes [5]. Due to these 

sidelobes, spreading of noise or leakage occurs at the receiver. A TEQ, 

that boosts the stop band noise or the near end cross talk from the 

local upstream transmission, significantly drops the SNR of the used 

subcarriers. The authors modify the MMSE cost function to include 

suppression of the TEQ energy in the stop band. Their simulations 

demonstrate a 35% increase in the bit rate of the system.

A detailed comment in [29] about MMSE channel shortening is worth 

highlighting. The MMSE method minimizes the difference between the 

TIR and the effective impulse response. It minimizes both the differ­

ence inside the target window and outside the target window. However, 

the difference between the effective impulse response and TIR inside the 

target window does not cause any ISI. Furthermore, the TIR and ef­

fective impulse responses generally have larger magnitude inside the 

target window than outside, which means that the difference between 

them inside the window causes the major part of the error. This means 

that the MMSE method primarily tries to minimize the difference in­

side the window, which does not cause ISI, than outside the window, 

which causes ISI. Therefore, minimizing the MSE to remove ISI is not 

a good choice to design a TEQ for discrete multitone modulation.
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2.2 Maximum Shortening Signal-to-Noise Ratio Method

It is generally not possible to shorten the impulse response perfectly. 

Some energy will lie outside the largest v +1 consecutive samples of the 

effective channel. What is required is to force as much of the effective 

channel’s impulse response as possible to lie in v+1 consecutive samples. 

The MSSNR TEQ design method of [21] maximizes the ratio of the 

effective channel impulse response energy within a target window length 

v +1 samples to the energy of the channel outside of the window. With 

reference to Figure (1.2), the effective channel impulse response is given 

by

hef f  = c =  h * w (2-2.1)

where * denotes linear convolution. The shape of the resulting impulse 

response of the effective channel hef f  is usually unimportant; what 

is important is that the SSNR be maximized. The MSSNR channel 

shortening is shown in Figure (2.2).

If H denotes the convolution matrix of the original channel h, then the

I
Channel Impulse 

Response
0 5

Effective Channel 
Impulse Response

|  -0.5

- i

so to o
tap number

150 200

Figure 2 .2 . MSSNR channel shortening, showing original (blue) and 
the effective (pink) channel impulse responses

effective channel hef f  = Hw [21]. In [21], the effective channel has
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been partitioned into two parts. (1) The part of the channel samples 

lying within the desired (v +  1) window are denoted by h^n  =  H ^ w .  

(2) The part of the channel samples lying outside this desired window 

are denoted by hwaa = H wauv/. consists of (v +  1) rows of H

starting from position A where A is the transmission delay, and H waii 

consists of the remaining rows of H. The SSNR is defined as

w t H t  - H  ■ w  w t B w
S S N R  = (2.2.2)

w ^ ^ H ^ hw  w ' A w

The shortening is achieved by minimizing the wall energy ( the denomi­

nator) while keeping the window energy ( the numerator) equal to unity. 

If the length of the TEQ is smaller than (v +  1), matrix B is positive 

definite and can be decomposed by Cholesky decomposition [30]

B  =  QAQr  

= (QA1/2)(A1/2Qr ) 

= (QA1/2)(QA1/2)t

= (B 1/2)(Bt ) 1/2 (2.2.3)

where A is a diagonal matrix of eigenvalues of B and Q is a matrix of 

orthogonal eigenvectors vectors. Let us denote

>T\ 1/2(B ) w (2.2.4)

then

w =  (Br) 1/2 s (2.2.5)
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Then substituting Equation (2.2.5) into Equation (2.2.2)

S S N R = ^ - s (2.2.6)

where C =  (B -1/2)A (BT) - 1/2. The MSSNR TEQ method minimizes 

the denominator of Equation (2.2.6) while setting its numerator equal 

to unity. This minimization gives the eigenvector smin corresponding to 

the minimum eigenvalue of the matrix C. The resulting TEQ is given 

by Equation (2.2.5)

w opt = (BT)~1/2smin (2.2.7)

The MSSNR method requires the knowledge of the channel and it does 

not take into account the noise present in the channel. Maximizing 

SSNR does not necessarily maximize the data rate [21]. The choice of 

the transmission delay, A which gives the best SSNR is computation­

ally very expensive. There is a difference between the MMSE method 

and the MSSNR method. As mentioned before, the error definition in 

MMSE method also includes the difference between the effective chan­

nel and the target channel inside the window of interest. Therefore 

minimizing the MSE does not necessarily minimize the wall energy of 

the effective channel.

When the length of w exceeds the length of the cyclic prefix, the matrix 

B becomes singular and (B )-1/2 does not exist. In [31] it was suggested 

to maximize the energy inside the window i.e., w TBw  while keeping 

the energy outside the window i.e., wTAw equal to unity. The ma­

trix A is always positive definite and the arbitrary length TEQ can be 

designed to obtain performance gains. The authors of [32] investigate 

further the work of [31] in the presence of white Gaussian and near-
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and far-end crosstalk. Though their simulations show that a longer 

length TEQ increases the SSNR; it may not necessarily improve the 

subchannel SNR which is proportional to the data rate. It again shows 

the inadequacy of increasing the SSNR to maximize the bit rate of the 

system.

A low complexity sub-optimal divide and conquer TEQ design algo­

rithm is proposed in [33]. This method separates the designing of a 

long length TEQ into a series of two-tap TEQs. The cost function at 

each iteration is the energy of the channel outside the window of inter­

est and is changed at each iteration by the two-tap TEQ designed at 

the previous iteration [27]. This cost function is the same as the de­

nominator of SSNR. The final TEQ is the convolution of all the TEQs 

designed at each step. This method eliminates the need for matrix in­

version as in the MSSNR method and hence is less complex.

According to [34], the part of the channel response exceeding the CP 

length which causes ISI and ICI depends not only on its energy but 

also on its distance from the guard interval. Therefore, their cost func­

tion not only includes the energy of the taps of the channel outside 

the window of interest but also their distances from the time center 

of the original channel impulse response. They use the term “delay 

spread equalizer” as opposed to calling the MSSNR method as “energy 

equalizer” . Their simulations show improvement in that the SNR dis­

tribution and the noise shaping by the TEQ at the subchannels does 

not have notches. The delay spread “equalizer” also has less sensitivity 

to the symbol synchronization errors. However, there is no explicit de­

pendency on the inclusion of the channel-induced additive noise or the 

synchronization error in their design framework.



Section 2.2. Maximum Shortening Signal-to-Noise Ratio Method 17

In [35] the algorithm of [34] is extended. Their formulation of a TEQ al­

gorithm explicitly includes the noise and gives new penalizing functions 

for the delay spread of the effective channel. The objective function J  

is a combination of the channel shortening objective and noise-to-signal 

objective i.e.,

J  ~  Q-Jshort T (1 O t)Jnoise

Y , n f ( n - n r n i d ) \ h e f f \ 2
=  a -

Z)n \h eff\

+ ( 1 _ a ) ^ ---- f l h  12 (2-2'8)signal I ef f  I

Here Timid is the time center of h e// .  f (n)  is a penalty function which 

penalizes the effective channel taps away from the time center nmid• The 

shortening cost function penalizes all of the taps and not only the taps 

outside the window. The simulations show some improvement in the 

achievable data rates over those of [34] but there again appear notches 

in the subchannel SNR plot. In [36] the authors extend their work to 

MIMO implementation and the penalizing function is also changed to 

take into account only the taps outside the window.

The spectral flatness of the TEQ in the MSSNR cost function is in­

cluded in [37]. The implicit flatness measure is the distance of the 

effective channel impulse response h ef f  from the original channel im­

pulse response h. It seems strange though; one would not expect the 

effective channel to be the same as the original channel. The TEQ 

so designed does not have nulls in the frequency domain. Although 

this method shows lower SSNRs achieved as compared to the original 

MSSNR method, it results in higher data rates. The authors also sug­

gest that the selection of the transmission delay should be to maximize
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the SSNR rather than to maximize the SSNR as well as the flatness. 

In [38] a blind adaptive channel shortening algorithm based on the re­

dundancy due to the CP in the transmitted signal is proposed. The 

algorithm is called MERRY (Multicarrier Equalization by Restoration 

of Redundancy). The following is true for the transmitted OFDM sym­

bol in Figure (1.2)

x[(N +  v) ■ k +  i] =  x[(N +  v ) ' k +  N  +  i] i 6  {1,2, . . . ,  t;} (2.2.9) 

where k is the symbol index. The input of the TEQ, r(n) is given by

where Lh +  1 is the length of the channel impulse response. v(n) is the 

noise sample at index n. The output of the TEQ, y(n), is given by

Here Lw + 1  is the length of the TEQ. The ISI destroys the relationship 

in Equation (2.2.9) because a channel that is longer than v samples will 

introduce energy into the sample x[(N +  v) • k +  v] at the receiver that 

is not equal to the energy received by its dual x[(N + v) -k + v + N] at 

the end of the DMT frame. Ignoring the symbol index k for simplicity, 

the cost function is defined as

(2 .2 .10)

L,
(2 .2 .11)

j=o

J m e r r y (  A) — E  (l/(v +  A) —  y(v +  N  +  A ))2 (2 .2 .12)
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Here A is the transmission delay. MERRY only updates once per 

symbol and its cost function depends on A. It shortens the channel to 

v rather than v + 1  samples. That is not a problem though; the ISI free 

transmission is guaranteed as long as the effective channel is smaller 

than or equal to v +  1. The cost function analysis of the MERRY 

algorithm given in [38] shows that it minimizes the energy outside of a 

length v window plus the energy of the filtered noise. In contrast, the 

MSSNR design minimizes the energy of the combined impulse response 

outside of a window of length v+\  without taking into account the noise. 

MERRY is generalized to the so called FRODO (Forced Redundancy 

with Optional Data Omission) [39] algorithm. FRODO uses more than 

one sample in the update rule and allows for channel shortening of 

variable window lengths. The cost function is given by

Jfrodo( A) =  Y ,  E  (»(* + A ) - y ( i  + N  + A ))2 (2.2.13)
i £Sf

where S f C {1, . . . ,  v}. For MERRY Sf = {v}. The MERRY cost func­

tion analysis in [9] shows that it represents the effective channel energy 

outside a window of length v starting from the transmission delay A. 

It has been further suggested that if the number of comparisons made 

is more than one (the basic MERRY algorithm), say equal to the value 

of CP, then this “full” FRODO algorithm tries to suppress all of the 

channel taps except one. This is against the very idea of channel short­

ening to a desired window and actually tries to shorten the channel 

to an impulse. Their simulation results also show that although us­

ing more than one term increases the convergence rate of the FRODO 

algorithm, it degrades its asymptotic performance. The MERRY and
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FRODO algorithms have also been applied to the MIMO case in [39]. 

Both MERRY and FRODO cost functions depend upon the choice of 

the transmission delay A which the authors suggest to calculate by the 

following heuristic i.e.,

A  =  A,**,* +  ^  (2.2.14)

A peak is the delay which maximizes the energy of the (unshortened) 

channel in a window of length v +  1. As was mentioned earlier, the 

MERRY cost function represents the energy of the effective channel 

outside a window of length v. If there is no TEQ used, the cost function 

will represent the energy of the original channel outside a window of 

length v. The index A peak in which the energy of the channel inside the 

window is maximum is the index in which the energy of the channel 

outside the window will be minimum. Therefore Apeak can be estimated 

by transmitting K, symbols and calculating [39]

K
Apeak = min (r(k • s + v +  d) — r(k • s +  v +  N  +  d))2 (2.2.15)

*=i

where s = N  + v is the OFDM symbol duration. Substitution of Equa­

tion (2.2.15) in Equation (2.2.14) gives an estimate for the transmission 

delay A for MERRY and FRODO algorithms. This is a low complexity 

method to avoid the global search over the transmission delay param­

eter A and can be used for other TEQ methods as well.

My experience with other TEQ design methods e.g., the MSSNR [21] 

method shows that A stays in the vicinity of A peak- It has also been 

shown in [37] that A within ±10  taps from A peak proved sufficient to 

give good results to maximize the SSNR. I will elaborate more on A peak
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in multicarrier systems later in this chapter and in chapter 5.

The authors in [22] propose a blind, adaptive channel shortening al­

gorithm SAM. SAM is based on minimizing the autocorrelation of the 

signal outside a window of length v at the output of the TEQ. The cost 

function is given by

where Ryy{l) is the autocorrelation of the output of TEQ at lag I and 

Lc is the length of the effective channel (c =  h  * w) minus one. Assum­

ing an uncorrelated transmitted signal at the output of the IFFT block 

in Figure (1.2), if the channel is short the autocorrelation of the out-

are, it is blind, adaptive and independent of the transmission delay A. 

SAM converges faster than MERRY. SAM can track channel variations 

within a symbol because it can update once per sample while MERRY 

updates once every symbol. However, SAM has higher complexity than 

MERRY [22]. I shall discuss the SAM algorithm in detail in chapter 3 

and 4.

In [29,40] a subchannel SNR model is proposed

where Hr̂ 5naZ, H™xse and H[SI are the fcth coefficients of the N  point 

FFT of hu,jn, and the TEQ w respectively and SXtk and SUjk are 

the kth  subchannel power spectral densities of the signal and the noise 

before the equalizer. The numerator contains the portion of the result­

ing transmission channel that contributes to the useful signal and the 

denominator includes the contribution of the ISI noise of the shortened

E  (*»(*))sa m (2.2.16)

put of the channel should also be short. The good things about SAM

S n , k \ H r “ ?  +  S * , k \ H l S I \
(2.2.17)
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channel impulse response outside of the desired window.

Define the following

j js ig n a l  =  q H Q H w

HlSI =  q fD H w

f f r “  =  q f Fw (2.2.18)

where the TV x T  matrix H is the first TV rows of the convolutional 

matrix of the transmission channel, T  denotes here the length of the 

TEQ. TV x TV diagonal matrices G and D give the rows of the vector Hw  

corresponding to the desired v+1  window and outside of it, respectively, 

and TV x T  matrix F when multiplied with w gives the TEQ vector w  

plus padding it with TV — T  zeros. Multiplication with the vector q f  

gives the k-th coefficient of the TV point FFT. The subchannel SNR 

would then be

o ¥f? wTHTGTqfcS'Xifcq f  GHw
O iV  rifc rr,„T  ^  't’- t T t \Tw ^ q *  S ^ q f  Fw + *qf DHw

w TA*.w
wTB*;W

The bit rate of the DMT system is given by

(2.2.19)

bdmt =  log2 ^1 +  (2 .2 .20)
k=usedtone  '  '

-  E bs* (■ + (Ssi)
k—useatone x '

Here T denotes SNR gap of the system and is assumed to be constant 

over all subchannels. The subchannel SNR model of Equation (2.2.17) 

and the Equation (2.2.20) are used to evaluate the performance of the
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channel shortening algorithms presented in chapter 3 and 4.

The Maximum Bit Rate (MBR) algorithm [29] maximizes the non­

linear bit rate Equation (2.2.21) using Matlab’s optimization toolbox 

and achieves the Matched Filter Bound (MFB). However, the authors 

conclude that the MBR method is computationally very expensive. 

Therefore they propose a low complexity near optimal min-ISI method. 

The min-ISI method [29] introduces the idea of frequency weighting in 

the form of subchannels. It shapes the frequency response of the TEQ. 

Specifically, it results in increased minimization of ISI noise on the 

subchannels with higher SNRs. The simulations show that the min-ISI 

method achieves almost the same data rates as that of MBR method. 

The min-ISI TEQ is given by

H ' D 7X  D H wmm
:w t H t G t G H w =1

(2 .2 .22)

The value of the cost function increases in favor of the subchannels with 

higher SNRs. A small reduction in ISI power in these subchannels will 

increase the bit rate. While in low SNR subchannels, the noise is so 

dominant that decrease of ISI power does not have a big effect on the bit 

rate. The min-ISI method is a generalization of the MSSNR method. 

The min-ISI method takes into account the frequency response of the 

h waii while the MSSNR method only looks at its energy.

Another interesting point to note is that the min-ISI method achieves 

almost 96% of the matched filter bound data (MFB) rates with a TEQ 

length of only 3 taps. The authors then get maximum data rates with 

the min-ISI method using a small value of the CP and a longer TEQ. In 

this way they are successful in trading off the reduction in the through­
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put of the system due to CP with the complexity of the TEQ. The 

initial review of the TEQ is complete and I progress to the frequency 

domain equalization methods.

2.3 Per Tone Equalization Scheme

In [23] an alternate equalization structure for multicarrier systems is 

proposed where equalization is performed with a T-tap equalizer after 

the FFT for each tone/subcarrier separately, hence the name Per Tone 

Equalization (PTEQ). A TEQ equalizes all the tones of a multicarrier 

system in a combined fashion. The PTEQ scheme enables true signal- 

to-noise ratio (SNR) optimization to be implemented for each tone. 

Their simulation results have compared the performance of the PTEQ 

scheme with the MMSE TEQ scheme. The achievable data rates are 

always higher and a smoother function of the transmission delay A as 

compared to the MMSE TEQ scheme. Therefore, PTEQ is not that 

sensitive to the symbol timing synchronization (A peak estimation) error. 

The PTEQ scheme has very large complexity during the initialization 

mode. For DMT-based systems, this scheme requires initialization of 

T  x N /2  filter taps instead of only T  taps as in the TEQ scheme. This 

also increases the memory requirements of the PTEQ scheme as com­

pared to the TEQ scheme. The symbol timing synchronization in TEQ 

schemes involves searching for the optimal delay around A peak while it 

is equal to Apeak In the PTEQ scheme. Chapter 5 addresses the com­

plexity problem and contains more on estimation of the symbol timing 

synchronization as well. The PTEQ scheme is generalized to MIMO 

in [41]. PTEQ has been considered for channel shortening and equal­

ization over doubly selective OFDM channels in [42]. The non-adaptive
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implementation of the PTEQ scheme in [23] requires knowledge of the 

channel and the signal and noise statistics. Recursive Least Squares 

(RLS) and Least Mean Square (LMS) adaptive implementations of the 

PTEQ scheme, which need training, have been suggested in [43]. The 

blind, adaptive version of the PTEQ scheme is discussed in [44] by us­

ing the Constant Modulus Algorithm (CMA) and the Decision-Directed 

LMS (DD-LMS) algorithm. For example the per tone DD-LMS algo­

rithm is given in [9] as

Z i ( k )  =  v J { k ) Y i v { k )

ei(k) =  Q[zi(k)] -  Z i ( k )

\ i {k  +  1) =  Vi(fc) +  fiei(k)F*r*(k)

where i =  1, . . . ,  N  is the subchannel index, k  =  1, 2 , 3 . . .  is the symbol 

index, and Q[-] is the quantization or decision device. Z i ( k )  is the equal­

ized output for subchannel i. v f  =  [ v i j - i . . .  v̂ o] is the T-tap reversed 

PTEQ equalizer for the subchannel i. The vector F* • r ( k )  contains 

in reverse order (T — 1) required difference terms extracted from the 

received vector r ( k )  in its first (T — 1) entries, and the zth value of 

the FFT in its last entry. For more details of the variables definitions 

please refer to chapter 5. The authors of [44] suggest to use first the 

CMA PTEQ and then the DD-LMS PTEQ during the initialization 

of the equalizer. The simulations show the characteristics of the SNR 

distribution on one of the subchannels as a function of the symbol tim­

ing synchronization error. The SNR distribution is relatively constant 

over a range of negative synchronization error 5 values and drops in 

magnitude for the positive synchronization errors. The results are very
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much in agreement to the ones presented in chapter 5.

The SNR improvement by the PTEQ scheme over TEQ schemes is more 

pronounced at higher SNR subchannels of the unequalized channel. To 

find a better tradeoff between complexity and bit rate, [45] propose a 

dual-path TEQ scheme. Two TEQ filters are designed such that one 

TEQ equalizes over the entire bandwidth while the other one optimizes 

over a selected frequency band. The dual-path TEQ structure passes 

the received data through two paths instead of one path. Each path 

have its own TEQ, FFT and the one-tap FEQ. The selective band TEQ 

is focused on the subchannels with higher initial pre-TEQ SNR. The 

TEQ that equalizes over the entire bandwidth can be designed using 

any of the TEQ design methods such as MMSE or MSSNR. The selec­

tive band TEQ would need to be designed using a method that allows 

frequency selective weighting such as Min-ISI. The simulations show a 

4% increase in bit rates over a single path TEQ.

The TEQ-Filter Bank (TEQ-FB) of [46] is another algorithm similar 

to the PTEQ scheme where each subchannel has its own filter but in 

the time domain. After the TEQs, the transfer to the frequency do­

main is performed using a bank of Goertzel filters, each one tuned to 

the frequency of the desired subchannel and computing a single point 

DFT coefficient. This method may have lower memory needs than 

the PTEQ scheme but its computational requirements are significantly 

higher during data transmission mode [46]. Their simulations show a 

slightly better performance than PTEQ. I restrict my thesis to channel 

shortening in the applications using the FFT block approach instead 

of a bank of Goertzel filters.

In [47] a blind adaptive equalization algorithm for OFDM systems
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which exploits the null carriers present in the system is proposed. This 

carrier nulling algorithm is based on minimizing a quadratic criterion 

based on the energy of the null carriers.

where Y* is the received signal after the FFT in the i subchannel. A unit 

norm constraint is imposed on the equalizer to avoid the trivial solution. 

It shortens the channel to a single spike i.e., complete equalization. The 

algorithm does not require the transmission of CP. The use of the blind 

term for this algorithm is debatable; as transmission of zeros on certain 

carriers could be thought of as training signal consisting of zeros [22]. 

This concludes the literature review and I continue to my contributions 

to the field.

i= n u llc a r r ie r s

(2.3.1)



Chapter 3

ROBUST BLIND ADAPTIVE 

CHANNEL SHORTENING 

FOR IMPULSIVE NOISE 

ENVIRONMENTS

As noted in the previous chapter, the good things about the SAM al­

gorithm are, it is blind, adaptive and does not depend on the choice 

of the transmission delay A. It converges faster than another blind 

adaptive algorithm MERRY and can track channel variations within a 

symbol because it can update once every sample. This chapter proposes 

a blind adaptive channel shortening algorithm, SAAM, for multicarrier 

modulation systems. The algorithm is based on the sum-absolute au­

tocorrelation minimization (SAAM) of the effective channel outside a 

window of desired length. The algorithm is robust to impulsive noise 

impairment found in the ADSL channels. The algorithm is computa­

tionally less expensive as well. Due to the quasi minimum phase na­

ture of the channel impulse response of Asymmetric Digital Subscriber 

Digital Lines (ADSL), a “left” initialization scheme is suggested for 

blind adaptive channel shortening equalizers which further enhances

28
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the convergence performance of SAAM. Additional studies have also 

been undertaken showing that by a proper selection of parameters e.g., 

the step size, the bit rates achieved by SAM in AWGN conditions can 

be improved.

3.1 Gaussian Noise Model

The Gaussian noise model [48] has widespread use in the design and 

analysis of signal processing systems. The probability density function 

of a zero mean Gaussian random variable is given by

form, the Gaussian assumption for additive noise in signal processing 

and communication systems greatly simplifies the design and analysis 

of receiver structures. The Gaussian noise assumption can be justified 

by the following theorem [49].

Theorem  3.1.1. (Central L im it Theorem, CLT)

Given x\, £2, • • • ,  x n  cl sequence of independent identically distributed 

(i.i.d.) random variables with mean p and variance a2. Then, as N  —► 

00, the distribution of the normalized sum

converges almost surely to a Gaussian process with the same mean and 

variance as X j.

Therefore, many of the theorems of communication, estimation and

where a2 is the variance of the distribution. Due to its mathematical
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detection theory have been formulated based on the Gaussian noise 

assumption [50]. This is appropriate in Gaussian noise environments 

but even mild deviations from the Gaussian assumption have detrimen­

tal effects [51-53]. Noise sources encountered in physical environments 

e.g., underwater acoustic noise, urban and man-made RF noise, at­

mospheric noise, radar clutter noise and telephone circuit noise are 

decidedly non-Gaussian. They are impulsive, i.e., having higher prob­

ability of producing outliers than predicted by an additive Gaussian 

noise model [54-57].

3.2 Impulse noise in ADSL

Impulse noise is generated in ADSL systems from nonstationary crosstalk 

due to temporary electromagnetic events in the vicinity of telephone 

lines. Examples of impulse generators are as diverse as the opening 

of the refrigerator door, control voltages to elevators, and ringing of 

phones on lines sharing the same binder. Numerous studies of impulses 

have resulted in analytical models based on the statistical analysis of 

over 100,000 impulses by various groups [19]. The most widely used 

analytical model is the Cook pulse [58]. In [59] a method to simulate 

the amplitude, length, inter arrival times and the spectral characteris­

tics of the impulses was proposed. The parameters of their model were 

based on the statistics derived from observations of impulse noise on 

the telephone networks of British Telecom (BT) and Deutsche Telekom 

(DT). It is noteworthy that it has also been argued that impulses defy 

analysis and people sometimes use representative worst case waveforms 

e.g., the ADSL standard [60] itself uses two measured impulses. How­

ever, in common with other researchers, Gaussian mixture and a-stable
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distributions are considered appropriate in this thesis for modelling the 

impulsive noise.

3.2.1 Gaussian-mixture noise model

An analytically simple impulse noise model is the Gaussian mixture 

model [52,61,62]. It is popular due to its mathematical tractability. 

The probability density function has the form

f n(x) =  (1 ~ P)fv{x) + Pfi(x)

where f v represents the nominal Gaussian pdf with variance > 0 

and fi is also a Gaussian pdf with higher variance k2a2. The parameter 

p e[0, 1] is the probability of contribution of the components from this 

high variance distribution. The parameter k > 1 is the ratio of the 

standard deviations of the two variances. By varying p and k, the effect 

of different shapes of Gaussian mixture noise density can be simulated 

to evaluate the algorithm performance.

3.2.2 Properties of Stable processes

The impulsive noise can be represented by another model called the a- 

stable distribution [63]. This distribution also shares several desirable 

properties with the Gaussian model, such as the stability property and 

generalized form of the Central Limit Theorem [50]. In fact a-stable 

distributions include the Gaussian density as a special case and have 

other useful properties as explained below.

A random variable x  is said to have a stable distribution, denoted by 

x  ~  6^(7 ,/?, a), if the Fourier Transform of its pdf, also called its
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characteristic function, has the following form [64].

(p{t) = exp{jat -  i \ t \a[l +  j(3sign{t)w(t, a)]} (3.2.1)

where
/

tan^f ,  i f  a  ^  1
w(ty a) = <

sign(t) =  <

1, i f  t > 0

0, i f  t = 0 (3.2.2)

- 1, i f  t < 0

Thus the four parameters —oo < a < o o ,  7 > 0 , 0 < a  < 2 , — 1 < 

(3 < 1 describing the stable distribution are [64]

• a  which is called the characteristic exponent and determines the 

thickness of the tails of the distribution. Smaller values of a 

correspond to heavier tailed distributions and vice versa. An 

a  =  2 corresponds to a Gaussian distribution. Another special 

case is the Cauchy distribution when a  = 1 and /3 = 0.

•  7  which is a scale parameter called the dispersion. It is similar to 

variance of a Gaussian distribution and equals half the variance 

in the Gaussian case.

• (3 which is a symmetry parameter. When (3 =  0, it corresponds 

to a symmetric distribution. The resulting distribution is called 

a Symmetric a-Stable (SaS) distribution.

• a which is the location parameter. It is the mean if 1 < a < 2 

and the median if 0 < a < 1.
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The pdf of a stable distribution is obtained by taking the inverse Fourier 

transform of the characteristic function in Equation (3.2.1). No closed 

form expression exists for the stable density, except for Gaussian (a =  

2), Cauchy (a =  1,/? =  0), and Pearson(a =  1/2, (3 =  —1) [50].

If it is assumed that SctS distributions have a zero location parameter 

i.e., a = 0 , the resulting characteristic function only depends on a  and 

7 , i.e.

(p(t) =exp(- ' y \ t \a)

whose pdf is given by

5„(7 ,0 ,0 )

k  E £ i  ^ ( a k  + 1 )sin  ( i f )  ( ^ )
-ak—l

7T7

,0 < a < 1 

7
7t ( x 2 + 7 2 )

 1
7TQ7

a

pi)Tr (2̂ 1) ( ^ )  1 < a  < 2

^ e x p ( - ^ ) a  = 2

where T(-) is the usual gamma function defined by

r(x) = f
JO

tx~1e~tdt (3.2.3)

The pdfs of zero-mean SaS distributions with different values of a  are 

shown in Figure (3.1) [65]. The value of the dispersion 7  is equal to 

unity. It is clear that the non-Gaussian stable density functions differ 

from the corresponding Gaussian density in the following ways. For 

small values of x, the SaS densities are more peaked than the Normal 

densities. For intermediate ranges of |x|, the SoS distributions have 

lower values than the Normal density. But unlike the Gaussian density
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Figure 3.1. Effect of a  on the pdf of an alpha-stable distribution with 
(3 =  0, a =  0 and 7  =  1.
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Figure 3.2. Effect of 7 on the pdf of an alpha-stable distribution with 
(3 =  0, a =  0 and a = 1.

which has exponential tails, the SoS distributions have heavier, i.e., 

algebraic tails. The effect of 7  on the pdf of an zero-mean SaS dis­

tribution is shown in Figure (3.2) [65]. The value of the characteristic 

exponent a  is equal to 1. It shows that the effect of 7  is analogous to 

variance in the Gaussian density case and it determines the spread of 

the samples around the location parameter at the respective impulsive-
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ness as determined by the value of a.

3.2.3 Fractional Lower Order Moments

The stable distributions do not possess finite second order moments 

except in the Gaussian limiting case. More formally, this is stated as

Theorem  3.2.1. Let x be a stable random variable. I f  0 < a < 2, 

then

E\x\p =  oo i fp  > a

and

E\x\p < o o  i f  0 < p < a

if a  =  2, then

E\x\p < oo fo r  all p > 0

The proof of this theorem is given in [64]. Hence for 0 < a  < 1, stable 

processes have infinite first and higher moments; for 1 < a  < 2 , they 

have first moment and all moments of order p < a\ and for o; =  2, all 

moments exist. All the non-Gaussian stable distributions have infinite 

variance. All the moments of an SoS random variable with 0 < a < 

2 of order less than a  are termed Fractional Lower Order Moments 

(FLOMs). The relationships between the FLOMs of an SoS random 

variable and its dispersion and its characteristic exponent are given by 

the following preposition [64].

Proposition 3.2.1. Let x  ~  Sa(7,0,0). Then

E(\x\p) =  C(p, o )7p/a i f  0 < p < a
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where
N 2*’+1r ( £ ± i ) r ( - p / a )(p,a} âr(-p/2)

is a function of a  andp and is independent of x.

Most of the research in the area of modeling noise by ct-stable dis­

tributions has concentrated on the design of near-optimum receivers 

operating in impulsive noise environments, blind channel estimation, 

parameter estimation of linear processes, direction of arrival estima­

tion, bearing estimation and other problems related to radar and signal 

modeling. For a comprehensive list see the bibliographies in [50,65].

In [66] it was found that noise over telephone lines can be non-Gaussian 

and the outliers in the noise can be best described by a-stable distri­

butions. The value of a  was found to be in the range 1.9 < a  <  2. 

Stuck [67] also introduced the concept of minimum dispersion (MD) cri­

terion for non-Gaussian stable models as a direct generalization of the 

MMSE criterion which is optimal for Gaussian models. The important 

observation from the proposition (3.2.1) is that FLOMs are related to 

the dispersion 7 , through only a constant. Therefore the MD criterion 

dictates that the p-th lower order moment should be minimized, where 

0 < p < a. The range of a  found in [66] and mathematical conve­

nience dictates the use of the /i-norm for the case of noise on telephone 

lines. Therefore the new algorithm proposed in this chapter will be 

derived from sum-absolute autocorrelation minimization (SAAM). For 

ADSL channel noise, without loss of generality, a zero-mean symmetric 

a-stable (SoS) distribution is assumed, where 0 < a < 2 controls the 

impulsiveness of the distribution.
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3.2.4 Geometric Power of Stable Noise

Due to the infinite variance of stable distributions, the standard SNR 

definition based on noise variance cannot be used. Instead, a Geometric- 

SNR (G-SNR) definition has been used [68]. If A  is the amplitude of a 

signal in additive SaS noise of geometric power then the G-SNR in 

dB is defined as

where Cg =  1.98 is the exponential of the Euler constant and

Here a  is the characteristic exponent and 7  is the dispersion of the 

S a S  noise. The normalized constant 2Cg in Equation (3.2.4) ensures 

that for the Gaussian case (a =  2), the definition of G-SNR coincides 

with that of the standard SNR. SaS noise is generated in this work 

by modifying the Matlab code available at [68] which is based on the 

Chambers-Mailows-Stuck Method [69]. Figure (3.3) shows samples of 

SaS noise at G-SNR of 40dB and at different values of a. The signal 

amplitude is kept at unity. The impulse noise in plot (b) shows that for 

an a  =  1.99 value close to 2, the noise samples characterized by G-SNR 

possess almost the same strength as the Gaussian noise samples of plot 

(a) where the Value of a  is 2. Nonetheless, the concept of variance can 

lead to the misleading conclusion that the stable noise with a  =  1.99 

has infinite strength, although this is clearly not the case in plot (b). 

As the value of a  is decreased to 1.5, the noise becomes impulsive in

(3.2.4)

(3.2.5)
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nature having samples of larger amplitude as shown in plot (c). The 

number of outliers and their amplitude/strength is more visible in plot 

(d) where plot (c) is magnified on the y-axis.
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F igure  3.3. Gaussian and impulsive noise at GSNR=40dB. The signal 
amplitude is unity, (a) Gaussian noise a  =  2, (b) impulse noise a  = 
1.95, (c) more impulsive noise a = 1.5, and (d) magnified view of (c).

3.3 System Model

The system model of blind adaptive channel shortening is shown in Fig­

ure (3.4). In multicarrier systems, the input vector X (k)  to the IFFT 

is a white, zero-mean and Wide-Sense Stationary (WSS) complex se­

quence which is drawn from a finite alphabet QAM constellation. The 

transmitted baseband sequence x(n) in Figure (3.4) is the output of 

the unitary transformation IFFT matrix block in Figure (1.2). This se­

quence is assumed to be white, zero-mean and WSS. This unit variance,

(a) alpha=2

(b) alpha=1.99

(c) alpha=1.5

I

I I I I

I I I I
(d) alpha=1.5 (magnified)

samples
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noise

Adaptive
Algorithm

Channel h TEQ W

Figure 3.4. System model for blind adaptive channel shortening.

=  1, source sequence is transmitted through the linear FIR chan­

nel h  =  [h(0)h ( l ) , . . . ,  h(Lh)]T. Here v(n) is a zero-mean, i.i.d., noise 

sequence uncorrelated with the source sequence and has a variance crj. 

The received signal r(n) at the input of the TEQ is

Lh
r(n) =  h(k)x(n — k) +  v(n) (3.3.1)

*=o

and y(n), the output of the TEQ is given by

Lfjj
y(n) =  ^  w(k)r(n — k) = wTr n (3.3.2)

k=o

where w  = [it;(0)rt;(l), . . . ,  w(Lw)\T is the impulse response vector of 

the TEQ and r n = [r(n) r(n  — 1) . . .  r(n  — LW)]T. The vector c = 

h  ★ w  is the effective channel of order Lc =  Lh +  Lw. The symbol ★ 

represents discrete time convolution and Lh and Lw are the orders of 

the channel and TEQ respectively. It is assumed that 2Lc < N  holds, 

where N  is the FFT size [22]. This assumption makes sure that the
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autocorrelation matrix £ '[x nx ^ _ i] of the input to the channel defined 

in the next Section, contains only one diagonal of nonzero entries. The 

importance of this assumption will become clear in the next section. 

Due to baseband nature of the ADSL transmission, all quantities are 

taken as real, generalization to the complex case is straightforward [9].

3.4 SAAM

The autocorrelation sequence of the effective channel, c is given by

when the effective channel c has zero taps outside a window of size 

(v +  1), its autocorrelation values should be zero outside a window of 

size (2v +  1), i.e.,

The length of the non-zero autocorrelation is proportional to the length 

of the non-zero impulse response sequence of a channel. This is demon­

strated in Figure (3.5). In the top left plot, the channel impulse re­

sponse sequence has v\ +  1 =  10 contiguous non-zero values and is zero 

outside. The autocorrelation of this channel is shown in the top right 

plot for non-negative lags starting from lag 0. In the lower left plot, the 

channel impulse response sequence has ^2 + 1 =  5 contiguous non-zero 

values and is zero outside. The autocorrelation of this channel is shown 

in the bottom right plot again for non-negative lags starting from lag 0. 

The autocorrelations of channel 1 and channel 2 are zero from lags rq+1 

and V2 +1 onward respectively. In multicarrier systems the channel can 

be of maximum length v + 1. Therefore, minimizing the (non-negative)

(3.4.1)
k—0

Rcc(l) = 0 , V | / |  > V
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F igure  3.5. Two channel impulse response sequences and their corre­
sponding autocorrelations.
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autocorrelation of a channel for lags v +  1 and onward, should give a 

shortened channel of required length i.e., v + 1.

Therefore, a cost function, Jv+1 based on the sum of absolute values of 

the auto-correlation of the effective channel is suggested. The reasons 

for taking absolute values have been explained in Section (3.2.3). This 

is in contrast to the cost function of [22] based on the sum of squared 

autocorrelation values for the same lags. We have

Lc
Jv+l =  Y ,  \R‘M  (3.4.2)

l = v + 1

The trivial (anti)solution of w = 0 can be avoided by imposing a norm 

constraint on the equalizer i.e., ||w ||| =  1. The optimization problem 

can then be stated as

w opt = argw min Jv+l 
l |w | |3  =  l

The autocorrelation sequence of the output y(n) is given by

Byy(l) = E\y(n)y(n -  /)]

= E[(cTx„ +  wTvn) (x£_jc +  v j’.fw)] (3.4.3)

where xn =  [x(n),x(n  — 1 x(n  — LC)]T and vn =  [v(n),v(n — 

1) , . . . ,  v(n — LW)]T. The noise correlation matrix becomes

(3.4.4)



Section 3.4. SAAM 43

where R vv(l) =  E[v(ri)v(n — /)]. The noise sequence v(n) is assumed 

i.i.d. Therefore, the matrix in Equation (3.4.4) is a Toeplitz matrix 

with only one diagonal of nonzero entries depending upon the value of /, 

and hence becomes a shifting matrix. The matrices i?[xnvJ,_j] =  0 and 

^ [ v n ^ j ]  =  0 since the signal x(n) and the noise v(n) are uncorrelated. 

If 2Lc < N  holds, then the Toeplitz matrix E'[xnx^_i] has a shifting 

effect too. Now we can simplify Equation (3.4.3) to [22]

Lc L w

j w o  =  £  c(k)c(k  — l) +  a l  (&)«;(& — I)
k=0 k=0

=  Rcc(l) +  ffvRvjwQi) (3.4.5)

So that the cost function in Equation (3.4.2) can be approximated and 

denoted as Jv+1

Lc
X+l =  ^ 2  |-^yy(0 l

/= v + l

Lc

= \Rcc(l) + <y2vR ^ { l ) \  (3.4.6)
l—v + l

In most situations, the TEQ length (Lw + 1) is shorter than the cyclic 

prefix length, v. In such situations, RwW(l) does not exist for the stated 

lags in Equation (3.4.6). Even if the TEQ is larger than the cyclic prefix, 

the second term being added is very small due to its multiplication 

with Cy. The noise variance a* is usually small for ADSL channels [22]. 

Therefore, it is assumed that under practical scenarios, the hat on Jv+1 

can be dropped so that Jv+1 =  Jv+\. For this cost function an estimate 

of the length of the channel h  is needed to determine L c =  Lh + Lw, 

which is fortunately known because the CSA test loops have almost all 

of their energy in 200 consecutive taps [70].
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3.5 Blind Adaptive Algorithm

The steepest gradient-descent algorithm to minimize Jv+\ is

w "“  = w°ld- n V „ ( J v+1)

= w°‘d -  MVW ( j r  IE[y(n)y(n -  i)]| ) (3.5.1)
\ l = V + 1 /

where y, is the step size and Vw is the gradient evaluated at w = 

w old. A Moving Average (MA) implementation is used to realize the 

instantaneous cost function

= £
l ~ V +  1

(k - \ - l )N a vg  — 1

E y(n)y{n - 1)

n = k N a
N,avg

(3.5.2)

Here N avg is a design parameter which determines a tradeoff between 

the algorithm complexity and a good estimate of the expectation. The 

stochastic gradient-descent algorithm of Equation (3.5.1), therefore, 

can be written as (3.5.3) which, using Equation (3.3.2), takes the form 

of Equation (3.5.4).

w
N,avg

L c f  ( (k-\-l)NaVg 1 ( \  (  7\

£  \  M g n l  £  y{n)y(n ~  0
l = V + l  ^  y  n = k N a v g

( k + l ) N a vg - l

Vwi EX <
y(n)y(n -  I)

N,avg
> (3.5.3)

w k + l  _  w k
Lc

/* E
l= v + l

' ( k + l ) N avg- l

sign E y{n)y(n - 1)

n = k N a
N.avg

X <

(AH-1)AU9-1

E
71— kNa v  g

y(n)rn_i +  y(n -  I)r n

N,avg
> (3.5.4)
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The function sign(-) is defined in Equation (3.2.2). The equalizer vec­

tor w must be normalized at every iteration to ensure that [|w|[| =  1. 

The complexities of the SAM-MA and SAAM-MA algorithms have been 

calculated in the Tables (3.1) and (3.2) respectively. It is evident that 

introduction of the sign function in Equation (3.5.4) has reduced the 

computational complexity of the SAAM as compared to the SAM al­

gorithm.

Steps #  multiplications #  addi­
tion /  subtractions

(a)Navg times y(n -  
l)rn

N avg.{Lw +  1} “

(b )Navg times 
y(n)rn-i

N avg.{Lw +  1} ”

(c)(a+b) - N avg-{LW +  1}
(d )Navg times 
y(n)y(n - 1)

N avg -

(e)sum (d) outputs - N aVg ~  1
(f)output (e) x out­
put (c)

Lw +  1 “

(g) Sub-total for (Lc— 
v ) lags

(Lc — v){Navg(2Lw +  
3) +  Lw +  1}

(Tc /̂ '){^avg(^L,w + 
2) ~ 1}

(h)2^ x  output of (g) Lw +  1 -
(i)w* - (h) — L w +  1
(j) Total {Lc — v){Navg(2Lw + 

3) + Lw +  1} +  Lw + 1
(Tc 'U'){Navg(L'U) +
2) — 1} + Lw +  1

Table 3.1. Complexity of SAM-MA.

3.6 Properties of the SAAM cost function

Some properties of the SAAM cost function will be mentioned in Chap­

ter 4 where another autocorrelation based channel shortening algorithm 

will be suggested.
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Steps #  multiplications #  addi­
tion /  subtractions

(&)Navg times y(n — 
l)rn

N avg-{LW +  1} -

(b)AraVg times 
y{n)rn-i

N avg \L w T 1}

(c)(a+b) - N avg-{LW +  1}
(d )Navg times 
y{n)y(n - 1)

N1 vavg

(e)sum (d) outputs - N aVg ~  1
(f)Sub-total for (Lc — 
v) lags

(Lc — v){Navg(2Lw +  
3)}

(7>c T 
2) — 1}

(g)fix  output of (f) Lw + 1 -

(h)w* - (g) — Lyj +  1
(i)Total (Lc — v){Navg(2Lw +  

3)} + Lw +  1
(Tc ^{Navg^Lw T 
2) -  1} +  Lw +  1

Table 3.2. Complexity of SAAM-MA.

3.7 “Left” Initialization

For blind equalizers based upon the Constant Modulus Algorithm (CMA), 

it has been suggested that the location of the single spike initialization 

should be driven according to the center of the mass of the channel 

impulse response [71]. This results in a better Mean Squared Error 

(MSE) performance of the receivers. If the channel impulse response is 

reasonably symmetric, a center spike is most appropriate. Also with­

out any a prior knowledge about the channel impulse response, a center 

spike is a good strategy. This is motivated by being able to concentrate 

on the equalization of the minimum as well as the non-minimum phase 

response of the channel. On the other hand, if the channel impulse 

response is asymmetric, then the initial spike location should be moved 

in the direction of the center of mass. The equalizer can, therefore, 

be “left” , “center” , or “right” initialized. Blind equalization does not 

imply “blind” equalizer design [71]. In Figure (3.6), the zeros of the
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CSA loop 1 channel are shown. It is clear that most of the zeros lie 

within the unit circle at a radius of approximately 0.985, while only a 

few lie outside the unit circle. Therefore, CSA loop channels are quasi 

minimum phase channels [4]. They have the center of mass of their

CL£•
E

15 ■1 0  5 1 .5-0 5 0 1

F igure  3.6. Pole-zero diagram of CSA loop 1.

impulse response on the “left” as shown by the plot of the impulse re­

sponse of the CSA loop 1 channel in Figure (3.7). Using this knowledge, 

the “left” initialization strategy is suggested alongside the SAAM-cost 

function. Specifically, the first spike is initialized to unity. The “left” 

initialization has also been simulated in [72,73] for the TEQ design 

algorithms for ADSL channels. The results presented in the next Sec­

tion show that “left” initialization gives better performance in terms of 

achievable bit rates.

3.8 Simulation Results

Standard ADSL downstream transmission parameters were chosen: CP 

was 32, the FFT size was 512, the equalizer length was 16, the averaging 

window size N avg was 32, and the channel was CSA test loop 1 available
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F igure  3.7. Original and the shortened channel.

at [70]. The 4-QAM signalling was used on all of the sub-carriers. 

These parameters were also chosen so as to compare the results with 

those of SAM in [22]. For the case of Gaussian-mixture modeling, the 

signal to Gaussian noise power was such that crj 11h112/ =  40 dB. 

This is a typical value of SNR in ADSL environments. A total of 75 

symbols comprising of 544 samples each were used. The moving average 

implementation of the SAAM algorithm as given in Equation (3.5.4) 

with unit norm constraint on the equalizer vector w was employed. For 

a point-to-point system with bit loading, the achievable bit rate for a 

fixed probability of error (typically 10-7 in DSL) is the performance 

metric. The SNR gap T is given by

r  r gap T  '7m lc (3.8.1)
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Figure 3.8. 16-tap TEQ.

The bit rate on each subcarrier is determined using noise margin 7m = 

6dB and the coding gain 7C = 4.2dB. The value of r gap =  9.8dB is 

used which corresponds to a probability of error 10~7 and the QAM 

modulation used across the subcarriers. The bit rate on each subcarrier 

i is calculated based on

bi = log2 (1 +  io((5Ar̂ - r )/10)) (3.8.2)

The subchannel SNR, SN R i  in Equation (3.8.2) is found by using the 

subchannel SNR model described in Equation (2.2.17) and includes the 

channel noise as well as the distortion due to ICI and ISI caused by the 

energy of the channel outside the v +  1 length. This definition can be 

used to assess the performance of the TEQ algorithms. To use this 

model, the maximal energy point of the shortened channel is used as 

the starting index of the v -f 1 length window of the desired channel.
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The bit rate is computed with the formula

ra te=  ^

where Fs =  2.208 MHz is the sampling frequency. SAM, SAM-optimized 

(SAM-opt), SAAM with Center spike initialization (SAAM-C), SAAM 

with “left” (first spike) initialization (SAAM-L), and the maximum 

SSNR algorithm (MSSNR) of [21] are simulated. The step sizes used 

for the adaptive algorithms are 5, 1.05, 0.0003, and 0.00016 respectively, 

empirically chosen to give the best performance. For simulations in te­

stable noise, the geometric-SNR (G-SNR) definition defined in Section

(3.2.4) is used, instead of the standard SNR definition, due to infi­

nite variance of SaS distributions. The dispersion of the noise for a 

given value of a  is changed and the achievable bit rate is calculated. 

The remainder of the explanation is related to the individual figures. 

The impulse responses of the original and the shortened channel with 

SAAM-L are shown in Figure (3.7). The equalizer designed after the 

SAAM algorithm converges is shown in Figure (3.8). In Figure (3.9), 

the learning curve of the SAAM cost function and the bit rate as a func­

tion of the averaging block number are shown. It is noteworthy that the 

bit rate approaches the maximum SSNR solution of [21] and that the 

cost function and the bit rate are a smooth function of each other i.e., 

the SAAM minima and the bit rate maxima appear to be located in 

close proximity. Careful selection of parameters for the reported SAM 

algorithm also leads to the same performance under AWGN (see Figure 

(3.10) continues curve). I shall call this algorithm as SAM-optimized 

(SAM-opt). Figure (3.10) shows under AWGN, the achievable bit rate
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Figure 3.9. SAAM cost and bit rate versus averaging block number 
at 40dB SNR.

versus SNR for the respective algorithms. The performance of SAAM- 

C is slightly below that of SAM-opt, this is expected because robust 

algorithms are not optimal for the pure AWGN environment. They 

are designed for special conditions (impulsive noise here). However, 

SAAM-L outperforms SAM-opt, showing existence of a good initializa­

tion strategy for such channels.

In Figure (3.11) the effect of impulsive noise on the quasi-achievable bit 

rate (quasi because the same bit rate calculation, to a first approxima­

tion, on the basis that the impulses occur infrequently, is used. These 

results are for an impulsive contribution of 1% only) is simulated. The 

value of k is changed from 10 to 100 to simulate the amplitude of the 

impulsive spikes from 20 dB to 40dB, while keeping p their contribution 

factor at 1%. The signal to Gaussian noise ratio is 40dB. As expected 

with increasing k the degradation in the SAM-opt algorithm is more
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achievable bit rate under AWGNx 10
SAM

  SAM -opt
- *  • SAAM-C  
- -  SAAM-L 

  MSSNR

-ocoQa>
V)

<x>
Cl

to

10 20 3 0 4 0 5 0 6 0
SNR, in dB

Figure 3.10. Achievable bit rate versus SNR for white noise.

than in the other two algorithms. To illustrate it more, the convergence 

behavior is shown in Figure (3.12) applying impulses of 40dB higher 

than the AWGN and at a contribution factor of 1%. This is the typi­

cal level of impulse noise in ADSL environments where the spikes can 

totally eliminate the signal for a hundred of microseconds [59,74]. It is 

evident from Figure (3.12) that the behavior of the SAM-opt algorithm 

deteriorates, whereas that of SAAM-C and SAAM-L remains smooth 

and less affected achieving higher bit rates.

Figure (3.13) shows the achievable bit rate by SAAM in Gaussian noise 

at 40dB G-SNR versus averaging block/iteration number. In Figures

(3.14) and (3.15) the achievable bit rate versus G-SNR is shown at dif­

ferent values of a. The values of a  were 2, 1.95, 1.9 and 1.7. As noted 

earlier, for the ADSL impulsive noise the value of a  stays above 1.9. 

The above tested range was to show the robustness of the proposed
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Figure 3.11. Quasi-achievable bit rate versus ratio of standard devi­
ations of two noise components, p=l% , SNR=40dB.
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Figure 3.12. Quasi-achievable bit rate versus averaging block number, 
at 40dB SNR and at k=100 (40dB), impulse noise contribution p=l%
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F ig u re  3.14. Achievable bit rate versus G-SNR, top; a  =  2, bottom; 
a  =  1.95.

new algorithm SAAM to even an increased range of impulsiveness.

At a  =  2 i.e., the Gaussian noise case, all the three algorithms are seen
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F igure 3.15. Achievable bit rate versus G-SNR, top; a = 1.9, bottom; 
a  =  1.7.

to yield bit rates close to the optimum solution of [21] for all values of 

the G-SNR shown in the top plot of Figure (3.14). The performance of 

SAAM-C is slightly below that of SAM-opt in this Gaussian case. This 

is expected because the robust algorithms are not optimal for the pure 

AWGN case. However, SAAM-L outperforms SAM even with Gaussian 

noise.

As the impulsiveness of the noise is increased by decreasing a  to 1.95, 

SAAM-C and SAAM-L both remain at the bit rates as in the Gaus­

sian case, while SAM-opt degrades to low bit rates. It is particular to 

note in the bottom plot in Figure (3.14) that SAM-opt is not show­

ing any degradation at higher G-SNRs. Increasing G-SNR at fixed a  

means decreasing the dispersion, 7 . Figure (3.2) showed the effect of 

changing dispersion on the pdf of an SaS distribution, while keeping
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a  fixed. It is evident that less dispersion (higher G-SNR) means fewer 

outliers in the noise exist while most of the noise samples are concen­

trated around the zero mean. Even these reduced number of outliers 

have small strengths. This has been explained further in Figure (3.16), 

where the convergence of SAM-opt at a  =  1.95 and the G-SNR values 

of 15dB, 35dB and 40dB respectively, is shown. With the increase of 

the G-SNR (decrease of 7 ) the achievable bit rate performance of SAM 

gets better.

The same trend of Figure (3.14) is observed in the top plot of Figure

(3.15), SAAM-C and SAAM-L remain at their optimum bit rates while 

SAM-opt degrades. This time the point on the G-SNR axis, where 

SAM-opt returns to its optimum bit rate has moved towards the right 

to a higher G-SNR value of 45dB. In the bottom plot of Figure (3.14), 

SAM had returned to its optimum bit rate at G-SNR=40dB while now 

it is still degraded at this value of G-SNR. This can be explained by

5
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looking at Figure (3.1). Decreasing a  while fixing G-SNR increases the 

strength and the number of outliers which cause degradation of the 

SAM algorithm. The consequence is that if the a  of the stable noise 

is low, SAM-opt requires high signal to noise ratios to give its opti­

mum bit rates. Increasing impulsiveness further has degraded SAM to 

the extent that it cannot return to its optimum bit rate even at 50dB 

G-SNR as shown in the bottom plot of Figure (3.15). SAAM-C and 

SAAM-L are not affected by this high degree of impulsiveness. SAAM- 

L is respectively showing higher data rates than SAAM-C, and showing 

the benefits of left-initialization of the blind adaptive TEQ for ADSL 

channels.

3.9 Conclusions

The proposed algorithm SAAM has proven to be robust for operations 

in environments with a range of degree of impulsiveness. The compu­

tational complexity of SAAM is also lower than SAM. Noting the quasi 

minimum phase nature of ADSL channels, a “left” initialization strat­

egy was suggested for the blind adaptive channel shortening equalizers. 

Simulation results show that SAAM approaches the maximum short­

ening signal-to-noise ratio (MSSNR) solution [21] in Gaussian noise. 

SAAM is also robust to additive white non-Gaussian noise. Further 

studies on SAM have also been undertaken showing that the bit rates 

achieved by SAM in Gaussian noise can be further improved upon those 

previously reported.



Chapter 4

SINGLE LAG 

AUTOCORRELATION 

MINIMIZATION

SAM [22] is an attractive blind adaptive channel shortening algorithm 

which minimizes the sum of the squared autocorrelations of the effec­

tive channel outside of a CP-length window. The drawback with SAM 

is that it has a significantly higher computational complexity and it 

does not have any stopping criterion (to be explained in Section 4.6) 

to freeze the TEQ when the SSNR of the effective channel reaches its 

maximum. Identical channel shortening can be achieved by minimizing 

the square of only a single autocorrelation1. The proposed single lag 

autocorrelation minimization (SLAM) algorithm has, therefore, rela­

tively low complexity. The autocorrelation minimization is constrained 

with a novel stopping criterion so that the adaptation of the SLAM al­

gorithm only maximizes the SSNR of the effective channel or minimizes 

ISI energy and it avoids the opposite. The simulations have shown that 

SLAM achieves higher bit rates than SAM for a range of SNRs for the

1 T here are poten tia lly  degenerate cases where m inim izing only a single autocor­
relation does n ot lead to  channel shortening to the required w idth  (private corre­
spondence w ith  the second author o f [22]). T his is d iscussed in Section (4.7).

58
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F igu re  4.1. Two channel impulse response sequences and their corre­
sponding autocorrelations.

4.1 M otivation

Figure (4.1) is a reproduction of Figure (3.5). In the top left plot, the 

channel impulse response sequence has vi + 1  =  10 contiguous non-zero 

values and is zero outside. The autocorrelation of this channel is shown 

in the top right plot for non-negative lags starting from lag 0. In the 

lower left plot, the channel impulse response sequence has +  1 =  5 

contiguous non-zero values and is zero outside. The autocorrelation of 

this channel is shown in the bottom right plot again for non-negative
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lags starting from lag 0. The autocorrelations of channel 1 and channel 

2 are zero from lags equal to and greater than v\ +  1 and V2 +  1 respec­

tively. Therefore, minimizing the non-zero autocorrelation of a channel 

only at the lag v +  1 should give a shortened channel of length i.e., v + 1. 

The impulse response sequences of the two channels shown have only 

positive taps, as an example, the SAM and the SLAM algorithms can 

shorten channels with negative taps.

4.2 System Model

The same system model shown in Figure (3.4) is used. The same as­

sumptions for the signal and noise as in Section (3.3) are used. The 

transmitted baseband sequence x(n) is assumed to be white, zero- 

mean and WSS. This unit variance, =  1, source sequence is trans­

mitted through the linear finite-impulse response (FIR) channel h  =  

[/i(0) / i ( l ) , . . . ,  h(Lh)]T. Here v(n) is a zero-mean, i.i.d., noise sequence 

uncorrelated with the source sequence and has a variance crj. The re­

ceived signal r(n) at the input of the TEQ is

Lh
r(n) =  h(k)x(n  — k) +  v(n) (4.2.1)

fc=0

and y(n), the output of the TEQ is given by

where w =  [u;(0)w;(l),. . . ,  w(Lw)]T is the impulse response vector of the 

TEQ and rn =  [r(n) r(n — 1) . . .  r(n — LW)]T. The vector c =  h * w  is 

the effective channel of order Lc = Lh +  Lw. The symbol ★ represents

L,

(4.2.2)
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discrete time convolution and Lh and Lw are the orders of the channel 

and TEQ respectively. It is assumed that 2Lc < N  holds, where N  

is the FFT size [22]. It means that the length of the effective channel 

is less than half the FFT size. Due to the baseband nature of the 

ADSL transmission, all quantities are taken as real; generalization to 

the complex case is straightforward [9].

4.3 SLAM

The autocorrelation sequence of the effective channel, c, is given by

Lc
Rcc(i) =  ]T c(fc)c(fc -;) (4.3.i)

k =  0

When the effective channel c has zero taps outside a contiguous window 

of size (v +  1), its autocorrelation value at a lag of v +  1 is always zero, 

i.e.,

R c c ( l )  =  0, I = V  +  1

Therefore, a cost function, J s iam > based upon minimizing the square of 

the auto-correlation of the effective channel at lag / =  v +  1 is suggested, 

i.e.,

J slam  =  l^ccWI2, l = V + 1 (4.3.2)

The trivial solution can be avoided by imposing a norm constraint on 

the TEQ i.e., ||w ||§ =  1. The optimization problem can then be stated 

as in [22]

w opt -  argw min JsZam 
Hw|i!=i

As explained in Section (3.4), the autocorrelation sequence of the out­

put y(n) of the TEQ is related to the autocorrelation sequence of the
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effective channel as

Ryyil) — i?cc(0  T ^t^WwiP) (4.3.3)

An approximation to the cost function in Equation (4.3.2), denoted by

In most situations, the TEQ length (Lw +  1) is shorter than the cyclic 

prefix length, v. In such cases, R ww(l) does not exist for the stated 

lag in Equation (4.3.4). Therefore, both the noise terms in Equation

(4.3.4) vanish entirely. Even if the TEQ is longer than the cyclic pre­

fix, the second and third terms being added are very small due to their 

multiplication with o\ and a\. The noise variance is usually small 

for ADSL channels [22]. Therefore, it is assumed that under practical 

scenarios Jsiam — Jsiam as in Equation (4.3.2). Another notable dif­

ference of SLAM with SAM is that for the SLAM cost function, the 

knowledge of order of the channel h  to determine Lc is not needed, as 

is required by SAM in [22]. The SLAM algorithm only requires the 

output of the TEQ and is, in that sense, blind.

Jsiam  is given by

Jsiam  — l̂ yy(OI ’  ̂— V T 1

— |^cc(0|2 T 2 < r lR c c ( l ) R w w ( l )  

+g^\Rww(1)\2 (4.3.4)
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4.4 Adaptive Algorithm

The steepest gradient-descent algorithm to minimize Jv+1 is

=  W old -  ( IE\y(n)y(n -  /)]|2) , l = v + l (4.4.1)

where /r is the step size and Vw denotes the gradient evaluated at

T0ld

4.4.1 Moving Average Implementation

A moving average implementation is used to realize the instantaneous 

cost function

(k-\~l}Navg—1

E y(n)y(n -  I)

n= kN a N,avg
I =  V +  1 (4.4.2)

Here Navg is a design parameter which determines a tradeoff between 

the algorithm complexity and a good estimate of the expectation. The 

stochastic gradient-descent algorithm, can then be written as (4.4.3) 

which, using Equation (4.2.2), takes the form of Equation (4.4.4).

w w k -2(1 <
(k+l^Navg — 1

E y(n)y{n - 1)

n=kN. N,
a v g

( k + l ) N a v g ~ l

avg

E y(n)y(n - 1)

n= k N a
N,avg

> (4.4.3)
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(k-̂ -l'jNavg — 1
w k+i =  w fc _  2/i <

where

E y(ri)y(n - 1)

n = k N a
N,avg

X

(fc+ tyNavg— 1

E
n = k N a

2/(n)r„_/ +  2/(n -  /)rr
AT,

W fc+1 _ w .*+1

Iw

l = v + 1

(4.4.4)

(4.4.5)

4.4.2 Auto Regressive Implementation

Another way of implementing the SLAM algorithm is by using the 

Auto-Regressive (AR) estimates. Let

=  (1 -  p)an +  py{n)

bn = wTan

cn = (1 — p)cn +  py(n — v — 1)

r(n  — v — 1)

r(n — v — 1 — Lw) 

r(n)

r(n -  Lw)

where 0 < p <  1 is a forgetting factor and is a design parameter. Using 

these AR estimates and Equation (4.2.2), the update rule of Equation
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Steps #  multiplications #  addi­
tion /  subtractions

(ia)Navg times y(n —
l)rn

^avg\^w  T 1}

(b )Navg times 
y(n)rn-i

Navg-{LW +  1} ”

(c)(a+b) - N avg.{Lw +  1}
(■d)Navg times 
y(n)y(n -  I)

Navg “

(e)sum (d) outputs - N avg 1
(f)2/ix output of (e) 1 -
(g)output (f)x out­
put (c)

Lw + 1 -

(h)w* - (g) —

1--1
+

(i)Total AfOU5.-(2Lu,-|-3}+Ltl,+
2

N avg-{LW +  2} +  Lw

Table 4.1. Complexity of SLAM-MA.

(4.4.1) can be written as

wn+1 =  wn - 2  fjL{E[y(ri)y(n-l)}} 

.{E{y(ri)rn_/ + y{n -  /)rn]} 

^  wn -  2ii bn. {an + cn}

The advantage of AR implementation is that the TEQ is updated at 

every time instant rather than at every time instant as is the case 

with the MA implementation. The complexity of SAM-MA calculated 

in Table 3.1 was (Lc—v){Navg(2Lw+?>)+Lw+ l } + L w-\-l multiplications 

plus one division for renormalization. The computational complexity of 

the MA implementation of SLAM (SLAM-MA), AR implementation of 

SLAM (SLAM-AR), and AR implementations of SAM (SAM-AR) are 

calculated in the Tables 4.1, 4.2, and 4.3 respectively. The calculations

(4.4.6)

(4.4.7)
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Steps #  multiplications #  addi­
tion /  subtractions

(a)an 2 Lw 3 Lw +  1
(b)cn 2 Lw +  3 Lw +  1
(c)(a)+(b) - Lw +  1
(d)b" Lyj +  1 Lyj
(e)2f ix  (d) 1
(f)output (e) x out­
put (c)

Lw + 1 “

(g)wn - (f) — Lyj +  1
(i)Total 6LW +  9 5 Lw +  4

Table 4.2. Complexity of SLAM-AR.

Steps #  multiplications #  addi­
tion /  subtractions

(a)an 2 Lw +  3 Lyj +  1
(b)cn 2 Lw +  3 Lyj +  1
(c)(a)+(b) - Lyj +  1
(d)b“ Lyj +  1 Lyj
(e)output (d) x out­
put (c)

Lyj +  1

(f)Sub-total for (Lc— 
v) lags

(Lc — v).{6Lw +  8} (Lc — ,c).{4 Lw +  3}

(g)2f ix  (f) (Lc — v).{QLw +  8} +  
Lyj +  1

*

(h)wn - (g) — Lyj +  1
(i)Total (Lc v) . \§Lw +  8} +

Lyj +  1
(Lc — ,c).{4 Lw +  3} + 
Lw +  1

Table 4.3. Complexity of SAM-AR.

shown in these Tables clearly show the implementation advantage of 

SLAM over the SAM algorithm. For ADSL downstream case, Lh =  512, 

the typical value of L w =  16 and v =  32. This gives Lc — v = 499. 

Therefore, the complexity of SLAM is about 1/500 times that of SAM 

for ADSL downstream transmission environment parameters.
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4.5 Properties of the SLAM cost function

As for other blind equalization algorithms, e.g., CMA; SLAM’s cost 

can be expected to be multimodal. In general, the SLAM cost surface 

will have local minima. As in [22] for SAM, an example is presented 

here to demonstrate the existence of global and local minima of SLAM. 

Consider the following theorem.

T heorem  4.5.1. The SLAM cost function is invariant to the operation 

w ^ w ,  where w denotes w with the order of its elements reversed.

Proof: Consider the autocorrelation sequence of the combined chan­

nels Ci =  h * w  and c2 = h * w ,  where ★ denotes convolution.

Rcici = Ci * c !  = ( h*w)  ★ ( h*  w)

= h * w * h * w  

= (h ★ w) ★ (h ★ w)

=  C2 ★ C2 =  R C 2 C2

Since the autocorrelation sequence is invariant to reversing the order 

of the elements of w, the SLAM cost is also invariant to such a switch. 

Theorem (4.5.1) means if there is a good minima of the SLAM cost 

surface, say at w 0, there will also be another minimum at w 0. Even 

though the SLAM cost will be the same, the achievable bit rate will not 

be the same for the two TEQ settings. This flipped w 0, therefore, is 

not necessarily as good as w0. Another consequence is that the SLAM 

cost surface is symmetric with respect to w —► w; therefore, there will 

be minima, maxima, or saddle points along the subspace w =  w.

To demonstrate this as in [22], consider the following example. The
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channel is h =  [1,0.5,0.3], the cyclic prefix length is 1 (making the 

length of the required channel 2), there is no noise, the TEQ w has 

three taps, and the unit norm constraint ||w||2 =  1 is used. The equal­

izer, then must lie on the unit sphere; therefore the equalizer is repre­

sented in spherical coordinates: wq = wx = cos(0) sin(0),w;i = wz = 

cos((f>),W2 =  wy =  sin(0) sin(<£). In this case w —► w is equivalent to 

switching wx and wy, which is equivalent to reflecting 9 over 7r/4 or 

57t/4, and w —* —w is equivalent to the combination of reflecting (f) 

over 7t/2 and adding 7r to 9.

SLAM  cost contours

minir
0 .9
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0.1 maxima'

0 .5
0 / 71

F igure 4.2. SLAM cost contours. The dashed lines are the plane of 
symmetry of the SLAM cost function.

A contour plot of the SLAM cost function is shown in Figure (4.2). The 

axes represent normalized values of the spherical coordinates 9 and <f>. 

The contours are logarithmically scaled. There are four minima, but 

they all have equivalent values of the SLAM cost due to the equivalence 

relations w —> w and w —> —w. For the 5-tap effective channel in the
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Figure 4.3. 1/SSNR cost contours.

example above, a 2-tap window is picked and the energy of these taps 

is divided by the energy of the remaining three taps. For each equal­

izer setting, the effective channel is computed, and the energy of the 

two taps is divided by the energy of the remaining three taps to get 

SSNR. The contours of the 1 / S S N R  cost function are shown in Figure

(4.3). The two contour plots in Figure (4.2) and Figure (4.3) show that 

the pair of the global minima of the 1 /S S N R  cost function match up 

nicely with one pair of the minima of the SLAM cost. Thus, if a pair 

of the minima of the SLAM cost have a high value of 1 /S S N R , it will 

be the pair of local minima in terms of the achievable bit rate. The 

global minima can be found by switching to the other pair of minima 

of SLAM simply by reversing the order of taps in w. The SAAM cost 

function suggested in the previous chapter is based on minimizing the 

autocorrelation, therefore, analysis presented here applies similarly to
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SAAM cost function surface.

4.6 Stopping Criterion

The SLAM cost function is highly non-linear in the TEQ parameter 

space. As is shown in the Figure (4.2), the minima of the SLAM cost 

function are very poorly defined. It seems that the cost surface is shal­

low around the global minima which allows the parameters of the TEQ 

to wander around the optimum point. This gives rise to a reduction in 

the SSNR of the effective channel. A novel stopping criterion is pro­

posed to freeze the channel shortener at the above mentioned point. 

Specifically the energy of the taps of the TEQ, except the first tap, 

is examined and when the sum of the energy of these taps reaches a 

threshold, the adaptation of the TEQ is stopped. The stopping cri­

terion seems intuitive, also there have been studies in the literature 

showing the importance of initialization tactics and equalizer parame­

ter constraints for the blind adaptive equalizers to ensure convergence 

only to the global minima [75]. The proposed stopping criterion which 

constrains the TEQ parameters does not add any extra computational 

complexity as the norm of the TEQ is being taken at every iteration. 

Simulations have shown the effectiveness of the stopping criterion.

4.7 Simulations

The standard parameters of an ADSL downstream transmission were 

simulated as in [22]. Both MA and AR implementations of the SLAM 

algorithms were simulated. The value of Navg and p for the MA and AR 

implementations of SLAM were 32 and 1/100 respectively. The step
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sizes used for both implementations were 150 and 12 respectively. The 

value of the threshold =  0.044 was fairly same for all the 8 CSA loop 

channels. Left initialization with the first spike of the TEQ initialized 

to unity was used. MA and AR implementations of the SAM algorithm 

are also shown for comparison purposes. Achievable bit rate for a fixed 

probability of error was chosen as the performance metric. The details 

of how the bit rate is calculated have already been given in Section 

(3.8). The bit rate on each subcarrier is determined using noise margin 

7m =  6dB and the coding gain 7C =  4.2dB. The value of r sap =  9.8dB 

is used which corresponds to a probability of error 10~r and the QAM 

modulation used across the subcarriers. SLAM is also compared with 

the MSSNR solution of [21]. The remainder of the explanation relates 

to the figures mentioned individually.

Figures (4.4) and (4.5) show the shortening effect on the original chan-
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nel and its autocorrelation. Figure (4.6) shows the 16-tap TEQ de­

signed after the SLAM algorithm converges. Figure (4.7) in its top plot 

shows the SSNR of the effective channel versus averaging block/iteration 

number. The middle plot shows the achievable bit rate versus iteration 

number for SLAM and SAM algorithms without stopping criterion. 

Decrease in the bit rates after achieving the peak bit rates is evident 

for both the algorithms. The bottom plot shows the SLAM cost ver­

sus the iteration number. As was noted with SAAM, the SLAM cost 

function and the bit rate are also a smooth function of each other i.e., 

the SLAM minima and the bit rate maxima appear to be located in 

close proximity. All the results in these plots were for an SNR=40dB. 

In Figure (4.8), the same plots have been reproduced. This time the 

novel stopping criterion is used for the SLAM algorithm. It is clear that 

the TEQ adaptation has been frozen once the peak bit rates have been
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achieved. Figure (4.9) shows the bit rates versus a range of SNRs for 

white as well as Near End Crosstalk (NEXT) noise. The upstream sig­

nal is the source of the NEXT noise for the downstream transmission. 

The NEXT noise is generated by the code available at [70] which is 

based on the specification given in [60]. NEXT noise was generated by 

exciting a coupling filter with spectrum \Hnext(f ) \2 =  #o#masfc(/)/3/2 

with white noise. The constant Ho was chosen so that the variance of 

the NEXT was aj, with chosen to achieve the desired SNR [22]. The 

filter Hmask is an ADSL upstream spectral mask tha t passes frequencies 

between 28 and 138 KHz. SLAM approaches the MSSNR bit rates and 

outperforms SAM for the whole range of the SNRs. The behavior of 

the SLAM algorithm is almost the same for white as well as NEXT 

noise.

In Figure (4.10), the data rates achieved by SLAM for the 8 CSA loop

I r~

)

—0 i  d> i  ^  c
i cb cb cb cb c

tap number 

F ig u re  4 .6 . TEQ coefficients.
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Figure 4.7. SAM, SLAM(-MA), and MSSNR simulated at 
SNR=40dB. top; SSNR versus iteration number, middle; Bit rates 
achieved by SAM, SLAM-MA (no stopping criterion used), and MSSNR 
versus iteration number, bottom; SLAM cost versus iteration number.

channels are shown. The results of the AR implementation of SLAM 

have been shown in Figures (4.11) and (4.12).

If all the contiguous r  + 1 taps of a channel impulse response sequence 

are only positive and the channel is zero outside this width of r  + 1 , its 

non-negative autocorrelation values are always zero from the lag equal 

to and greater than r  +  1. In this case the SAM as well as the SLAM 

cost will be zero at the same time. However, if the contiguous r  +  1 taps 

of the channel impulse response sequence are more frequently positive 

and negative, then there is a possibility that its non-negative autocor­

relation is zero at some lag lower than r  +  1 and non-zero for higher 

lags. It again becomes zero for lags equal to and greater than r  +  1.
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Figure 4.8. SAM, SLAM(-MA), and MSSNR simulated at 
SNR=40dB. top; SSNR versus iteration number, middle; Bit rates 
achieved by SAM, SLAM-MA (with stopping criterion), and MSSNR 
versus iteration number, bottom; SLAM cost versus iteration number.

In this case, the statement does not hold that the channel is zero after 

the width equal to the lag of the first zero autocorrelation. In the nut­

shell, it would mean that the SLAM cost is zero but the channel is not 

shortened. Nevertheless, simulations show that SLAM does similarly 

well for the CSA loop channels, for which SAM has been simulated. 

A SLAM channel shortening example is shown in Figure (4.13) where 

upstream filtering has been included in the channel.

4.8 Conclusions

The SLAM algorithm proposed in this chapter inherits all the merits of 

the SAM algorithm of [22] while at the same time considerably reduces
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its complexity. Moreover, SLAM does not need a knowledge of the or­

der of the original channel to calculate the cost function. The intuitive 

stopping criterion freezes the TEQ parameters at the peak achievable 

bit rates and stops them from wandering. The simulations have been 

performed for all 8 CSA loop channels. SLAM, with the stopping cri­

terion, achieves better bit rates than SAM for a range of SNRs and for 

both white as well as NEXT noise.
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Chapter 5

LOW COMPLEXITY PER 

TONE EQUALIZATION

Although the complexities of the PTEQ and the TEQ schemes are ap­

proximately the same during data transmission modes [23], the PTEQ 

scheme has very large complexity during the initialization mode. For 

DMT-based systems, this scheme requires initialization of T  x N/2  fil­

ter taps instead of only T  taps as in the TEQ scheme. This problem is 

addressed in this chapter. The direct non-adaptive initialization of the 

PTEQ is the focus in this chapter; although the proposed complexity 

reduction techniques are also beneficial for its adaptive implementa­

tions.

5.1 Data Model

I first describe the TEQ scheme in detail. The material in this section 

benefits from [23]. Consider three successive symbols X f y  to be trans­

mitted at discrete times c = k — 1, k and k +  1, respectively. The 

kth  symbol is the symbol of interest, while the previous and the next 

symbols are used to include interferences. The received signal can be

79
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specified in vector form as:

T k - s + v —T + 2 + < 5

^ ( f c + l ) - s + ( 5

h  0 . . .
i 1

o o
1

0(1) 0(2) O P o

.. .  0 h O O P

Xn o o v(& — 1) Tlk-s+v—T+2+6

o Xn o ^1:N

o o Xn ^1:N n(k+l)-s+6

(5.1.1)

which can also be written as

r =  H • X + n (5.1.2)

where
O

'■N

(5.1.3)

which adds the cyclic prefix. Here s =  N + v  is the length of the symbol 

including the prefix and k denotes the symbol index. Furthermore, r/ 

denotes the received signal, and ni zero mean additive noise with I being 

the sample index. The vector h  =  [Iil . • • ho . . .  H-k \ is the channel 

impulse response in reverse order. The Xn matrices are N  x N  IFFT 

matrices [23]. O(i) and 0(2) are zero matrices of size ( N + T — 1) x (N +  

v — T  + 1  — L + v + 5) and (N  +  T  — 1) x (N  +  v — K  — 5) respectively. 

These sizes show that the first sample for the symbol of interest has been
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collected after a delay of K.  This zero reference delay K  corresponds 

to the head [h-K • • • h-i\  and the tail [hv+i . . .hi]  which maximizes the 

energy in [ho . . .  hv] [23]. Therefore K  +  1 is the synchronization point. 

A blind method to estimate K  has been suggested in Section (5.2). If 

K'  is the estimate of K , then the parameter 8 is the synchronization 

error, given by

5 = K* — K  (5.1.4)

The standard receiver with a TEQ is based on the following operation:

• (R • w)
1 F F T

z (k) Di 0

= 0 0

1 i 0 D n

where

R

?"fc-s+r+l+<5 Tk-s+v+S • • • T'k-s+v—T +2+ 5

^k-s+v+2+S T k -s+ v + l+ d  • • • T k -s+ v—T +3+ 6

^(k+ l) .s+S  T'(k+l)-s —1+<5 r ( k + l ) - s - T + l + 5

and wTxi = [woWi, . . .  ,ic r-i]T is the real T-tap TEQ, Jjv an N  x N  

FFT-matrix, Di the complex 1-tap FEQ for tone i , R a n i V x T  Toeplitz 

matrix of received samples for the current symbol k, and z \ k  ̂ is the 

final output for tone i and symbol k. The PTEQ scheme is based on 

transferring the TEQ operations to the frequency domain. For a single 

tone z,

,(k) Di • r o w ^ x )  • (R • w) =  roWi(fN • R) • w • Di (5.1.5)
T  F F Ts
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Now w i is a complex T-tap PTEQ for tone i. From Equation (5.1.5), it 

seems that T  FFTs are needed instead of one FFT per symbol. Because 

of the Toeplitz structure of R, these FFTs can be calculated efficiently 

by a sliding FFT [23]. One full FFT has to be calculated for the first 

column of R  and the (T — 1) remaining FFTs can be deduced from it. 

Using this property of the sliding FFT, the so called modified PTEQ 

equalizer for each tone i has as its inputs the ?th output of the FFT 

of the first column of the matrix R  and (T — 1) real difference terms. 

From now on this modified PTEQ equalizer will be called the PTEQ 

equalizer and will be denoted by v, =  [vi>0 .. • i]T- 

The block diagrams of the TEQ /FEQ  scheme and the PTEQ scheme 

are given in Figure (5.1) specialized to the case N  = 4, T  =  3. As 

shown in Equation (5.1.1), (N + T  — 1) samples are collected related 

to symbol period k in the (N  +  T  — 1) x 1 vector r^k\  note that these 

collected samples form the entries of the Toeplitz matrix R. The PTEQ 

equalizer for the «th tone, denoted by the T  x 1 vector v*, has as its 

inputs the ith  output of the FFT, denoted by [Oixy-i, ^N (h  01 *r ^»  an(  ̂

( T — 1) difference terms, denoted by [ It - i » 0 (t - i ) x (jv- t + i ), — I t - i ] - r ^ ,  

where In is the n x n  identity matrix, Onxm is the n  x m  all zero matrix, 

and /jv (? ,:) is the zth row of the N  x N  FFT matrix The optimal 

PTEQ equalizer, which gives rise to maximum SNR on each tone i , can 

be computed by finding the MMSE-PTEQ by minimizing the following
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cost function [23] :

min J(vi)Vi
2 \

where v* =  [v^r- 1 • • • v*.o]T- Where the column vector zf =  F* • r ^ ,  

contains (T — 1) required difference terms in reverse order in its first 

(T — 1) entries, and the fth value of the single FFT in its last entry. 

The MMSE solution is then given by

v f =  E{{7!l)H(v!l)}-lE{(z ,‘)H(X^)}

This-optimum PTEQ equalizer calculation is based on the assumption 

that the channel model and the signal and noise covariance matrices 

are known as in [23]. The complexities of the TEQ/FEQ scheme and 

the PTEQ scheme during data transmission are comparable and are of 

the order of FST,  where Fs is the sampling frequency [23].

5.2 Synchronization

In what follows, it is shown that the expected value of the power of 

the first difference term is proportional to the energy of the channel 

impulse response outside of a length v window, plus a noise gain term. 

The value of this energy depends upon the value of K ' . When this 

value is minimized or in other words when the energy is maximized in 

a window of length v, K' = K  and consequently 5 — 0. The proof

= min E < —Tv:
I t - i O —I t - i

O 0
.r m  _  y (*)

F ,
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follows the outlines of the cost function analysis presented in [38]. The 

following are assumed

1. The IFFT outputs are uncorrelated.

2. N  > (L +  K  +  1), The FFT length is at least as large as the 

channel impulse response length.

3. Noise autocorrelation function Rn(l) = 0 for I > N.

4. Noise is uncorrelated with data.

The first difference term is given by

D i f f i  =  r(v + K') — r(v -h N  + K')  (5.2.1)

The expected value of the power of the first difference term is given by

J ! = E ( r ( v  + K ' ) - r ( v  + N +  K ' j )  (5.2.2)

Next consider the following definitions:
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Ji — E[\hTx v+K’ — hTxu+jy+/r' +  nv+K> nv+N+K> |2]

=  ^ [ l ^ x ^ ^ l 2] +  E[nv+K> — nv+N+K'\2]

= hT E[xv+K,(xv+K')h}h + E {\nv+K’\2} + E[\nv+N+K’\2]

A w+K-'

—‘2E[(nv+K')(nv+N+K’)]

= p K + K ’(*v+K')h\ h  +  2<J" (5-2-4)
At + K*

Where assumption (4) has been used in going from the first to the 

second line. Assumption (3) has been used in moving from the second 

to the third line and then to the fourth line. Note that

xv+ic' = + K') ~ x (v + N  + K')

x(v -f K' — 1) — x(v + N  +  K' — 1) , . . . ,

x(v +  K' -  (L + K  + 1) +  1)

- x ( v  +  N  +  K' -  (L + K  +  1) +  1)]T

The values of x  that enter additively have the highest index of (v + K'),  

whereas the values of x that enter with a minus sign have the smallest 

index of (v +  N  +  K' — (L + K  +  1) + 1). If assumption (2) holds

i.e., N  > L +  K  +  1, then the highest index in the first group will be

lower than the lowest index in the second group. Now if assumption 

(1) above holds, then A^+K will be diagonal. Furthermore, the middle 

v terms in Equation (5.2.4) are all zero due to the addition of the cyclic 

prefix in the transmitted signal. Thus

A%+K — 2<72[diap(lK' x l, 0vxi, 1(l+k +i- v- k ')xi)] (5.2.5)
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Substituting in (5.2.4),

k ' K + L + lK + L + l

— 2a\  I ^ 2  l ^ | 2 ) (5.2.6)
3—1 j = v + K '  + 1

It is straightforward to show that the expected value of the power of 

the second difference term is given by

and so on.

Depending upon the parameter K \  there are three cases

• if K' > K,  suppose K ’ = K  +  1, which means 8 =  +1, J\ is 

proportional to the energy of the channel impulse response from 

its tap 1 to (K + 1) plus the energy in the taps after a window 

of length v plus a noise gain term. Likewise, J 2 is proportional 

to the energy of the channel impulse response from its tap 1 to 

K  plus the energy in the taps after a window of length v plus a 

noise gain term, and so on, for higher difference terms.

- • if K  = K ,  which means 8 =  0, J\ is proportional to the energy of 

the channel impulse response from its tap 1 to K  plus the energy 

in the taps after a window of length v plus a noise gain term. 

Likewise, J 2 is proportional to the energy of the channel impulse 

response from its tap 1 to (K — 1) plus the energy in the taps 

after a window of length v plus a noise gain term, and so on, for 

higher difference terms.

• if K' < K , suppose K'  =  K  — 1, which means 8 =  —1, J\ is

J2 =  2<rl + (5.2.7)
K-\-L-\-1
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proportional to the energy of the channel impulse response from 

its tap 1 to (K — 1) plus the energy in the taps after a window 

of length v plus a noise gain term. Likewise, J 2 is proportional 

to the energy of the channel impulse response from its tap 1 to 

(K  — 2) plus the energy in the taps after a window of length v 

plus a noise gain term, and so on, for higher difference terms.

The points summarized above give an inside look into the construction 

of the difference terms especially at different synchronization errors in 

the system. These are further elaborated in Section (5.3).

The timing synchronization in OFDM systems corresponds to finding 

a delay which maximizes the energy in the impulse response of the 

channel in a window of length v +  1. There are many timing syn­

chronization algorithms developed for multicarrier systems [76]. These 

schemes estimate the channel impulse response as is realized within a 

DMT system by consistently transmitting the same DMT symbol dur­

ing initialization and generating the multicarrier signal without guard 

band insertion. At the receiver, an FFT is performed and the out­

puts are corrected to remove the QAM modulation. Finally, the IFFT 

applied to the corrected signal yields a noisy estimate of the channel 

impulse response from which the symbol timing is extracted by search­

ing for the maximal energy of the impulse response in a window of 

length (v +  1) [76].

It was shown in Equation (5.2.6) that depending upon the synchroniza­

tion delay, the expected value of the power of the first difference term 

is proportional to the energy of the channel impulse response outside 

a window of length v. This energy would be minimum (or the energy 

in a length v would be maximum) when K'  =  K.  Thus, K  can be
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estimated by minimizing J\ over the symbol timing delay d

K
K  =  min (r(k ■ s +  v +  d) — r(k  • s +  v +  N  +  d))2 (5.2.8)0<cf<s-l^

by transmitting JC symbols. The good thing about this approach is 

that it is blind and also does not require any FFT and IFFT operation 

to obtain the synchronization parameter as required by the methods 

mentioned in [76].

There are two very close variants of the above proposed synchronization 

method. In [77] the redundancy in the cyclic extension is used to find a 

timing estimate. It uses the correlation between all of the CP samples 

and the last v samples in the data portion of the OFDM symbol. This 

effectively means using v number of difference terms instead of only 

one as in Equation (5.2.8) to find the timing estimate. A multipath 

channel smears out the correlation output and the peak often does not 

correspond to an ISI-free sampling position. Therefore this method is 

optimal only for a single ray channel [78].

The algorithm presented in [78] is based on an ensemble correlation that 

is computed across identically positioned samples belonging to several 

OFDM symbols. This effectively means using only one difference term 

to find the timing estimate. This method exactly corresponds to the 

method proposed above in Equation (5.2.8) except that this and the 

method in [77] have been given for the case when the cyclic prefix is 

longer than the channel. The good thing about the method in Equa­

tion (5.2.8) is it provides a good symbol timing estimate within the 

framework of the PTEQ scheme. This estimate can be used with 2-tap 

PTEQ proposed in the next Section for the low complexity equalization
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Figure 5.2. Illustration of the PTEQ difference terms in a multicarrier 
system. N=12, CP=3. If T=CP+1=4, then T-1=CP=3, and if 5 =  0, 
the difference terms are, [r(3)-r(15)], [r(2)-r(14)], and [r(l)-r(13)j.

of the multicarrier systems.

5.3 Difference Terms-elaborated

The concepts presented in Section (5.2) are further explained diagram- 

matically in Figure (5.2). Assume a length 9 channel 

i.e., h  =  [hi h2 h$ /i4 h5 he h7 hg hg]T, where [hi h2 hg\T constitutes 

the head of the channel and [/i4 he he h7 hg hg]T is the channel spread 

from its peak to the end. Obviously, the value of the CP used in Figure 

(5.2) is less than the spread of the channel. If perfect synchronization 

is assumed, then the first difference term [r(3) — r(15)] in Figure (5.3) 

would be zero if hi, h2, h3, h7, hg and hg are zero. It has been suggested 

in [79,80) that the ISI and ICI caused by insufficient CP are a function 

of the FFT of the head (which in our example is [hi h2 /i3]T) and the 

tail (which in our example is [hg hg\T) of the channel impulse response. 

It is evident that the first difference term energy is proportional to the
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energy of the undesirable part of the channel plus the energy of one tap 

of the desirable or acceptable part of the channel. The second difference 

term [r(2) — r(14)] would be zero if hi,  h i ,  he, h 7, hg and hg are zero. 

With one additional term, there are two more taps i.e., [he h 7]T , from 

the acceptable part of the channel and also the hg part of the head has 

not been taken into account. The third difference term [r(1) — r(13)] 

would be zero if hi ,  h 5, he, h7, hg and hg are zero. Therefore, the third 

difference term energy contains [h5 he h7]T from the acceptable part of 

the channel leaving behind only the first tap and as before, the [hg h i ]T 

part of the head has not been taken into account. It is clear that as the 

number of difference terms used is increased, the useful information to 

calculate the interference is decreased. There is another point to note 

here. From the nature of the exponentially decaying impulse responses 

of the CSA channels, the magnitudes of the difference terms tend to 

increase with their number. For example, at 8 =  0, their magnitudes 

increase with second, third difference term and so on.

If there is negative synchronization error in the system, the position of 

the head and tail that contribute to ISI and the resulting ICI changes in 

proportion to the synchronization error. Suppose <5 =  — 1 in the above 

example, the head and tail of the channel that give rise to interference 

are [hi h 2]T and [h7 hg hg]T respectively. This time the tail is longer 

than that for the case of perfect synchronization. The first difference 

term [r(2) — r(14)] would be zero if hi,  h i ,  he, h 7, hg and hg are zero. 

It is evident that the first difference term energy is proportional to  the 

energy of the undesirable part of the channel plus the energy of one tap 

of the desirable or acceptable part of the channel. The second differ­

ence term [r( 1) — r(13)] would be zero if hi ,  he, he, h 7, hg and hg are
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r(3) = hi x(6) + h2 x(5) + h3 x(4) + h4 x(3) + h5 x(2)+h6 x(l) + h7 x(0) + h8 x (-l) + 9 x(-2)

= h l x(6) + h2 x(5) + h3 x(4) + |h 4  x(15) + h5 x(14)+h6 x(13] + h7  x(0) + h8 x(-l) + h9 x(-2)

i(15) = h l x(18) + h i x(17)+h3 x (16)+ [h4 x( 15) + h5 x(14)+h6 x(13| + h7  x(12) + h 8 x (U )+ h 9  x(10) 

r(2) = hi x(5) + h2 x(4) + h3 x(3) + h4 x(2) + h5 x(l)+h6 x(0) + h7 x (-l) + h8 x(-2) + h9 x(-3)

= hi x(5) + h2 x(4)+[h3 x(15) + h4 x(14) + h5 x(13j+h6 x(0) + h7 x(-l) + h8 x(-2) + h9 x(-3) 

r( 14) -  hi x(l7) + h2 x(16) +[h3 x(15) + h4 x(l4) + h5 x(l3 j+h6  x(12) + h7 x(l I) + h8 x(10) + h9 x(9)

r(l) = hi x(4) + h2 x(3) + h3 x(2) + h4 x(l) + h5 x(0)+h6 x(-l) + h7 x(-2) + h8 x(-3) + h9 x(-4)

= h l x(4) + [h2 x(15) + h3 x(!4) + h4 x(13j + h5 x(0)+h6 x (-l) + h7 x(-2) + h8 x(-3) + h9 x(-4)

i(13) = hi x(l6) + (h2 x(l5) + h3 x(l4) + h4 x(13j + h5 x(12)+h6 x ( ll)  + h7 x(10) + h8 x(9) + h9 x(8)

Figure  5.3. Construction of Difference terms.

zero. Again as noted above, with the increase in the number of differ­

ence terms used, the useful information to calculate the interference is 

decreased.

If the channel length is smaller than or equal to CP, the transmission 

is (ISI+ICI) free. In such cases, the PTEQ scheme reduces to con­
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ventional equalization in OFDM/DMT systems where equalization is 

performed with 1-tap FEQ (say 1-tap PTEQ) and it will not use any 

difference terms. If the spread of the channel energy is greater than the 

CP, the advantages of 1-tap FEQ equalization do not hold anymore. 

In such cases, one difference term can be used along with the first tap 

of the PTEQ, as explained in the previous paragraphs. Two columns 

of R  would be needed now. This reduces the initialization complexity 

and the memory requirements of the PTEQ scheme as only (2 x N/2) 

equalizer coefficients have to be initialized as compared to (T  x N/2) 

coefficients. During data transmission, the complexity of the PTEQ 

scheme is of the order of FST  [23]. Therefore, this observation also re­

duces the computational complexity of the PTEQ scheme during data 

transmission mode. Simulations for ADSL CSA Loop channels show 

that this 2-tap PTEQ gives maximum achievable bit rates comparable 

to the case with (CP  +  1) tap PTEQ at 5 =  0 and is also robust to a 

reasonable range of negative synchronization errors. For larger negative 

delays, few additional difference terms are needed as they are not that 

insignificant at these delays.

In the case of positive synchronization error, the effect on the bit rate 

is more severe. Positive synchronization error corresponds to process­

ing the received block in an FFT window which is a mixture of two 

transmitted blocks. Consequently, there is very strong intercarrier and 

inter symbol interference ( I S I  +  IC I)  from the next symbol even if 

the channel length is smaller than the CP. If the channel length is 

larger than the CP, there is additional interference from the previous 

symbol. As in the above two cases, the same analysis based on head 

and tail of the channel contributing to the interferences can be applied.
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The difference is that now first and onward difference terms are signifi­

cant. Interestingly, the difference terms having number greater than the 

synchronization error suddenly drop in magnitude. Simulations have 

shown that for positive synchronization errors, proportional difference 

terms are required to keep data rates at the maximum value. However, 

such values of 6 would not be used in any practical system [44,81].

5.4 Simulations

The length two MMSE-PTEQ is implemented by modifying the Mat- 

lab code available at [70]. The same method of calculating bit rate is 

used as explained in previous chapters. However, the signal to noise 

ratio S N R i ,  on each tone i is now based on the estimation of mean 

square error between input-output data for each tone i. The total 

bit rate in Equation (3.8.3) is summed over the used tones only. The 

used tones are (38 — 255) and 4-QAM constellation is used on each 

of the used tones. The FFT size used is N  = 512, the CP length is 

v =  32, the power of the transmitted signal is 23dBm and AWGN has 

psdn =  — 140dBm/Hz. The equalizer is trained with 511 symbols [70]. 

.CSA loop 1 and 4 with NEXT from 8 disturbers are considered. The 

synchronization error 5 is determined by the relative distance from the 

first sample index of the channel impulse response window of (v +  1) 

samples with maximum energy. The effect of 5 on the achievable bit 

rate is simulated. Figure 5.4 shows the achievable bit rate for different 

lengths of PTEQ equalizer for a range of synchronization errors.

In the case of perfect synchronization i.e., 5 = 0, the data block selected 

for the FFT corresponds exactly to the transmitted IFFT block [81,82], 

provided the channel length is less than CP. Only one-tap PTEQ would
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have been sufficient to equalize the symbols. Because now the chan­

nel length is greater than the CP, there is interference (ISI-I-ICI). An 

equalizer of length two achieves the same data rates as obtained by a 

length 33 equalizer. This is because the first difference term gives us 

a measure of this interference and as we use more difference terms the 

useful information about this interference is lost. Hence, there is no 

added benefit in using these redundant difference terms.

This PTEQ equalizer of length 2 gives maximum bit rates until a syn-

x 10
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T=15
—  T=20
—  T=33

-20 -10
5

Figure 5.4. Achievable data rates versus synchronization error, 6 for 
CSA Loop 1 in the delay range [-25:5:35].

chronization delay of approximately —15. For negative delays, all the 

samples in the FFT window belong to the same quasi-periodically ex­

tended symbol, if the value of the CP is enough to mitigate the effects of 

the channel delay spread plus the synchronization error [81,82]. If this 

is the case the only effect is the phase rotation which can be handled 

by the 1-tap FEQ (or 1-tap PTEQ). In DMT-based ADSL systems, 

CP inserted is insufficient, so there will be ISI and the resulting ICI in 

the received symbol. The value of this interference (ISI+ICI) is propor-
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Figure 5.5. Achievable data rates versus synchronization error, S for 
CSA Loop 4 in the delay range [-25:5:35).

tional to the energy in the first difference term. Therefore, even up until 

the delay value of —15, the data rates achieved stay at the maximum 

for a 2-tap PTEQ. Towards larger negative delays, a few more differ­

ence terms are needed for the bit rate to remain at the maximum. The 

CSA loop channels are exponentially decaying channels. Therefore, at 

these large negative delays, the difference terms are significant due to 

longer and significant tails contributing to the interference. Also the 

first few additional difference terms do not lose their useful informa­

tion towards the interference calculation. For positive synchronization 

errors, the PTEQ length is proportional to the error due to the reasons 

given above.

A 2-tap TEQ has also been suggested in [40] for ADSL CSA loops. A 

plot similar to Figures (5.4) and (5.5) has been shown in [27] showing 

that a 3 tap TEQ is sufficient to give maximum bit rates over a fairly 

long range of delays. The non-symmetrical behavior of an OFDM sys­

tem with respect to positive and negative delays has also been shown
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in [82,83]. It should be noted that the data rates for the curve T  = 33 

drop after a delay value of +33. As every 5th value of the delay is 

being plotted, it is not being seen here. The curve for T  = 33 also 

shows some decrease (about 1% of its maximum value) in bit rates in 

the mid range of the negative synchronization errors. Although it is 

very small, it could have resulted from the numerical instability of cal­

culating more equalizer coefficients. It also supports the idea of using 

an equalizer of length according to the synchronization error and not 

necessarily a long equalizer. Figure 5.5 shows the results for the CSA 

loop 4 and similar explanation applies.

0.3
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- 0.2

- 0.3

- 0.4
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300

Figure 5.6. Normalized CSA Loop 1 impulse response with upstream 
filtering.

The synchronization method proposed in the Equation (5.2.8) is simu­

lated to find the synchronization delay for CSA loop channels 1 and 4. 

Upstream filtering has been included in the channel impulse responses. 

The normalized CSA 1 channel impulse response is shown in Figure 

(5.6). The optimum synchronization point for this channel which max­

imizes channel energy in a window of length {v +  1) is at tap number
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27. The proposed method successfully finds the optimum synchroniza­

tion point for both of the channels. If on the other hand, the difference 

terms used are equal to the value of CP according to the [77] method, 

the synchronization delay is wrongly found to be 40.

5.5 Conclusions

In this chapter a low complexity per tone equalization (PTEQ) scheme 

for discrete multitone (DMT)-based systems has been proposed. A 

low complexity blind synchronization method is also suggested which 

is intuitively based on the construction of the difference terms of the 

PTEQ scheme. It is shown that the use of more than one difference 

term in the PTEQ scheme is generally redundant. It is possible to  use 

a length two PTEQ equalizer and attain essentially identical bit rate 

performance as a PTEQ equalizer with length matched to the cyclic 

prefix. This observation allows for a substantial reduction in computa­

tional complexity of the PTEQ scheme in both initialization and data 

transmission modes. For a reasonable range of values of 6 around the 

optimal value of 5 = 0, the performance of this length two equalizer is 

relatively insensitive to the choice of 5. Therefore, the proposed length 

two PTEQ equalizer is robust to a range of negative synchronization 

delays in the system. For positive synchronization delays, however, the 

required PTEQ equalizer length is proportional to the synchronization 

error, which is a consequence of strong intercarrier interference ICI in 

the received signal. As noted above, it is always advisable to avoid late 

synchronization in multicarrier communication systems.



Chapter 6

CONCLUSIONS AND 

FURTHER RESEARCH

In this chapter general conclusions are drawn and suggestions for fur­

ther research are given.

The implementation complexity of a multicarrier communication sys­

tem is generally less than that of a single carrier system for the same 

amount of delay spread. This reduction in complexity is to a large ex­

tent due to the use of the CP which eliminates the need for an equalizer 

except for a single FEQ at each subchannel. However, to reduce the 

bandwidth efficiency loss due to insertion of CP, channel shortening or 

partial equalization in the form of a TEQ is introduced. The complex­

ity of this partial equalization should, therefore, be kept low in order 

to keep the superiority of the multicarrier systems over single carrier 

systems. The throughput loss due to the insertion of the CP can fur­

ther be reduced indirectly by applying channel shortening algorithms 

which are blind and do not need training. Furthermore, channel short­

ening should be made robust to the impulsive noise impairment found 

in ADSL channels.

Chapter 3 proposes a robust blind adaptive channel shortening algo­

rithm called SAAM. SAAM is based on the concept of property restoral.
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In particular, it restores the span of the autocorrelation of the received 

data input of the TEQ to a short range. The motivation of SAAM is 

if the channel is short, the autocorrelation of its output should also be 

short. The algorithm does more than just channel shortening. It makes 

channel shortening robust to impulsive noise and is also less complex 

than another similar algorithm SAM. The algorithm achieves bit rates 

close to those of the MSSNR algorithm of [21] in AWGN conditions. To 

assess the robustness of the SAAM algorithm, the impulsive noise has 

been modelled as Gaussian-mixture and as a-stable distributions. Due 

to the quasi minimum phase nature of the channel impulse response 

of ADSL, a “left” initialization scheme is suggested which further en­

hances the convergence performance of SAAM. It is found that SAM 

in its original version requires a large value of the learning parameter 

i.e., the step size. Its performance can also be improved by applying 

a suitable smaller step size. The SAAM algorithm uses the /r norm 

of the autocorrelation outside the window of interest and is robust to 

a greater degree of impulsiveness found in ADSL channels. Alterna­

tively, [68] proposes to use the log of the autocorrelation in a so called 

zero statistics framework. This method can be used to tackle very 

high impulsive noise. Future work could involve a comparison of such 

schemes.

SAM can boast of its merits in terms of channel shortening. It is 

adaptive so has relatively less complexity as compared to other channel 

shortening algorithms requiring matrix inversions. It is blind so channel 

shortening benefits in terms of throughput loss saving become twofold. 

The use of the term blind is a little debatable for SAM as it does require 

a prior knowledge about the length of the channel impulse response. It
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converges faster than another blind adaptive channel shortening al­

gorithm MERRY and can track channel variations within a symbol 

because it can update once per sample while MERRY updates once 

every symbol. Another important feature of SAM opposed to MERRY 

is that, it is independent of the transmission delay A. Therefore, an 

exhaustive search for the optimal transmission delay is not needed. 

However, SAM has higher complexity than MERRY. SAM also does 

not have a stopping criterion to freeze the TEQ when the SSNR of 

the effective channel reaches its maximum or the maximum ISI can­

cellation point has been reached. Chapter 4 addresses the complexity 

reduction and convergence issues with SAM [22]. The main argument 

of this chapter is that effectively identical channel shortening can be 

achieved by minimizing a single autocorrelation. The proposed SLAM 

algorithm has, therefore, relatively low complexity. It does not require, 

a priori, the knowledge of the length of the original channel. Therefore, 

the SLAM algorithm fully qualifies to be called a blind algorithm. A 

novel stopping criterion is proposed which freezes the adaptation of the 

TEQ when maximum SSNR has been achieved. The stopping criterion 

does not add complexity to the algorithm, and as such, it can be used 

with SAM as well.

Chapter 5 discusses the alternate equalization scheme called PTEQ 

for multicarrier systems. Van Acker et al. [23] proposed the PTEQ 

scheme, in which equalization is performed with a T-tap equalizer for 

each tone separately after the FFT-demodulation. This scheme en­

ables true signal-to-noise ratio optimization to be implemented for each 

tone. The resulting capacity of the PTEQ scheme is always higher and 

a smoother function of the synchronization delay as compared to the
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TEQ scheme [23]. The computational and memory requirements of 

the PTEQ scheme are proportional to the length of the equalizer used. 

Although the complexities of the PTEQ and the TEQ schemes are ap­

proximately the same during data transmission modes [23], the PTEQ 

scheme has very large complexity during the initialization mode. Its 

memory requirements are also comparatively very high. A low com­

plexity PTEQ scheme is, therefore, proposed. It is shown that the 

use of more than one difference term in the PTEQ scheme is gener­

ally redundant, given the perfect synchronization. The length of the 

equalizer is equal to the number of difference terms used plus one. The 

PTEQ scheme assumes knowledge of the channel impulse response for 

its reported lease square solution. In this case synchronization point 

is known and it is possible to use only a length two PTEQ equalizer 

and attain essentially identical bit rate performance as a PTEQ equal­

izer with length matched to the cyclic prefix. This observation allows 

for a substantial reduction in computational complexity of the PTEQ 

scheme in both initialization and data transmission modes. In this way 

the equalization complexity can be traded off with the synchronization 

complexity in the system. Simulations also show that for a reasonable 

range of values of synchronization error, 5 around the optimal values of 

5 =  0, the performance of this length two equalizer is relatively insensi­

tive. For positive synchronization errors, however, the required PTEQ 

equalizer length is proportional to the synchronization error, which is a 

consequence of strong intercarrier interference ICI in the received sig­

nal. A low complexity blind synchronization method is also suggested 

which is intuitively based on the construction of the difference terms of 

the PTEQ scheme.
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The channel shortening algorithms presented in Chapters 3, 4 and 5 

are applied to downstream ADSL transmission environments. They are 

equally applicable to shorten the upstream channels where the direc­

tion of transmission is from the subscriber to the telephone exchange. 

The derivations of the SAAM and the SLAM algorithms have given 

for the real case. Their extensions to the complex cases are straight­

forward. Therefore, these algorithms can be potentially applied to the 

wireless channels in OFDM. PTEQ has already been applied to the 

wireless channels in [41]. In wireless channels the difference terms are 

no longer real and it further increases the complexity of the PTEQ 

scheme. This underlines the importance of our 2-tap PTEQ scheme. 

MIMO systems are receiving more attention in the context of ADSL as 

well as OFDM [20,84]. It is possible to extend the concepts presented 

in the thesis to the MIMO systems, and this is the subject of ongoing 

and future research.



Appendix A

ACHIEVABLE BIT RATE

In multicarrier systems, the achievable bit rate R  in bits per second is 

determined based on

i=u sed  carriers  x

where Fs =  2.208 MHz is the sampling frequency for downstream ADSL 

transmission, N  is the symbol duration without CP and v is the length 

of CP. SNR gap T is assumed constant across all subcarriers. It corre­

sponds to achieving Shannon channel capacity and is given by

r  =  Tffap +  7rn  -  7 c  (A. 1.2)

where 7m and 7C denote desired noise (system) margin and coding gain

respectively. The value of r 5ap is 9.8 dB assuming QAM is used and a

probability of symbol error of 10-7 . The SNR in each subchannel i is 

defined as

SN R ?1™  =  (A.1.3)
^n ti

where SXii, Snji are the transmitted signal and channel noise power 

respectively, and Hi is the channel gain, in the zth subchannel. It is the 

maximum achievable SNR and hence is denoted as the matched filter
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bound (MFB). Note that Equation (A.1.1) is used when the length of 

the channel is not greater than the length of the CP plus unity.

When channel impulse response length is longer than (CP+1), the TEQ 

is used to shorten the channel. The performance of the TEQ in terms 

of achievable bit rate is found by changing the definition of S N R i .  It 

is given by
o  I Tjsignal  12

SN R- _  --------------- *___I---------- (A 1 4)

Here H*SI, and H?otse are the gains of the signal path h*ignal, ISI

path h{SI and the noise path h™01̂  in the zth subchannel respectively. 

Specifically, H stgnal is the N-point FFT of hsl9nal which is the effec­

tive/shortened channel multiplied by a window which has magnitude 

one for a (CP+1) length and zero elsewhere. H ISI is the N-point FFT 

of hISI which is the effective/shortened channel multiplied by a win­

dow which has magnitude zero for a (CP+1) length and one elsewhere. 

The index of the (CP+1) window is determined by the synchronization 

parameter used by the algorithm. The algorithms SAAM and SLAM 

do not depend upon the value of the synchronization parameter. For 

these algorithms, the index which maximizes the energy of the (CP+1) 

window is used to evaluate their achievable bit rates. H™0lse is the N- 

point FFT of the TEQ.

' However in the PTEQ scheme, for a given synchronization parameter, 

the value of S N R i , on each tone i is based on the estimation of the 

mean square error between the input-output data for tone i and the bit 

rate is calculated by using Equation (A. 1.1).

The material in this Appendix has benefitted from [29].



BIBLIOGRAPHY

[1] R. V. Nee and R. Prasad, OFDM For Wireless Multimedia Commu­

nications. Boston, London: Artech House Publishers, 2000.

[2] B. L. Evans, “Equalizer Design to Maximize Bit Rate

in ADSL Transceivers,” Lecture on ADSL Transceivers.

Dept. of Electrical and Comp. Eng. The University

of Texas at Austin [Online July 16, 2006] Available:

http://www.ece.utexas.edu/~bevans/projects/adsl/index.html.

[3] P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete 

multitone transceiver loading algorithm for data transmission over spec­

trally shaped channels,” IEEE Trans, on Commun., vol. 43, no. 234, 

pp. 773-775, Feb./M ar./Apr. 1995.

[4] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time 

Signal Processing, 2nd edition. Prentice-Hall, 1989.

[5] J. A. C. Bingham, ADSL, VDSL, and Multicarrier Modulation. New 

York, US: John Wiley & Sons, Inc., 2000.

[6] D. D. Falconer and F. R. Magee, “Adaptive channel memory trun­

cation for maximum likelihood sequence estimation,” Bell Sys. Tech. 

Journal, pp. 1541-1562, Nov. 1973.

106

http://www.ece.utexas.edu/~bevans/projects/adsl/index.html


Bibliography 107

[7] G. D. Forney, “Maximum-likelihood sequence estimation of digital 

sequences in the presence of intersymbol interference,” IEEE Trans, on 

Info. Theory, vol. 18, pp. 363-378, May 1972.

[8] I. Medvedev and V. Tarokh, “A channel-shortening multiuser detec­

tor for DS-CDMA systems,” in Proceeding of the 53rd Veh. Tech. Conf., 

pp. 1834-1838. vol. 3, Rhodes, Greece, May 2001.

[9] R. K. Martin, “Blind, Adaptive Equalization for Multicarrier Re­

ceivers,” Ph. D. Thesis, Cornell University, US 2004.

[10] S. I. Husain and J. Choi, “Single correlator based UWB receiver 

implemetation through channel shortening equalizer,” in 2005 Asia- 

Pacific Conf. on Commun., pp. 610-614. Perth, Western Australia, 

Oct. 2005.

[11] M. Kallinger and A. Mertins, “Room impulse response shortening 

by channel shortening concepts,” in Proc. IEEE Asilomar Conf. on 

Signals, Systems and Comp., pp. 898-902. Pacific Grove, CA, Nov. 

2005.

[12] J. A. C. Bingham, “Multicarrier modulation for data transmission: 

An idea whose time has come,” IEEE Commun. Magazine, vol. 28, no. 

5, pp. 5-14, May 1990.

[13] R. D. J. van Nee, G. A. Awater, M. Morikura, H. Takanashiand, 

M. A. Webster, and K. W. Halford, “New high-rate wireless LAN stan­

dards,” IEEE Commun. Magazine, vol. 37, no. 12, pp. 82-88, Dec. 

1999.

[14] The Inst, of Electrical and Electronics Engineers, “Air Interface for



Bibliography 108

Fixed Broadband Wireless Access Systems, MAC and Additional PHY 

Specifications for 2-11 GHz IEEE Std. 802.16a, ”. 2003 Edition.

[15] The European Telecomm. Standards Inst., "Radio Broadcasting 

System, Digital Audio Broadcasting (DAB) to Mobile, Portible, and 

Fixed Receivers,”. ETS 300 401, 19951997.

[16] The European Telecomm. Standards Inst., "Digital Video Broad­

casting (DVB); Framing Structure, Channel Coding and Modulation 

for Digital Terrestrial Television,”. ETSI EN 300 744 V I.4.1, 2001 

Edition.

[17] D. H. Layer, “Digital radio takes to the road,” IEEE Spectrum, 

vol. 38, pp. 40-46, July 2001.

[18] S. Galli, A. Scaglione, and K. Dostert, “Broadband is power: Inter­

net access through the power line network,” IEEE Commun. Magazine 

(special issue), vol. 41, no. 5, pp. 82-118, May 2003.

[19] T. Starr, J. M. Cioffi, and P. T. Silverman, Understanding Digital 

Subscriber Line Technology. Englewood Cliffs NJ: Prentice-Hall, 1999.

[20] H. Bolcskei, “MIMO-OFDM wireless systems: Basics, perspectives, 

and challenges,” May 2006 Report. Communication Technology Labo­

ratory ETH Zurich 8092 Zurich, Switzerland.

[21] P. J. W. Melsa, R. C. Younce, and C. E. Rohrs, “Impulse response 

shortening for discrete multitone transceivers,” IEEE Trans. Commun., 

vol. 44, pp. 1662-1672, Dec. 1996.

[22] J. Balakrishnan, R. K. Martin, and C. R. Johnson, “Blind, adap­

tive channel shortening by sum-squared auto-correlation minimization



Bibliography 109

(SAM),” IEEE Trans. Signal Processing, vol. 51, no.12, pp. 3086-3090, 

Dec. 2003.

[23] K. V. Acker, G. Leus, M. Moonen, O. van de Wiel, and T. Pollet, 

“Per tone equalization for DMT-based systems,” IEEE Trans. Com­

mun., vol. 49, no. 1, pp. 109-119, Jan. 2001.

[24] J. S. Chow and J. M. Cioffi, “A cost-effective maximum likelihood 

receiver for multicarrier systems,” in Proc. IEEE Int. Conf. Commun., 

pp. 948-952. vol. 2, June, 1992.

[25] J. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “Equalizer training 

algorithms for multicarrier modulation systems,” in Proc. IEEE Int. 

Conf. on Commun., pp. 761-765. Geneva, Switzerland, May 1993.

[26] M. V. Bladel and M. Moeneclaey, “Time-domain equalization for 

multicarrier communication,” in Proc. IEEE Global Telecomm. Conf., 

pp. 167-171. Nov. 1995.

[27] M. Milosevic, “Maximizing Data Rate Of Discrete Multitone Sys­

tems Using Time Domain Equalization Design,” Ph. D. Thesis, The 

University of Texas at Austin 2003.

[28] J. F. V. Kerchove and P. Spruyt, “Adapted optimization criterion 

for FDM-based DMT-ADSL equalization,” in Proc. IEEE Int. Conf. 

Commun., pp. 1328-1334. June 1996.

[29] G. Arslan, B. L. Evans, and S. Kiaei, “Equalization for discrete mul­

titone receivers to maximize bit rate,” IEEE Trans. Signal Processing, 

vol. 49, pp. 3123-3135, Dec. 2001.



Bibliography 110

[30] G. Strang, Linear Algebra and Its Applications. Harcourt Brace 

Jovanovich, Publishers, San Diego, CA, 1988.

[31] C. Yin and G. Yue, “Optimal impulse response shortening for dis­

crete multitone transceivers,” Electronics Letters, vol. 34, pp. 35-36, 

Jan. 1998.

[32] R. Schur, J. Speidel, and R. Angerbauer, “Reduction of guard in­

terval by impulse compression for DMT modulation on twisted pair 

cables,” in IEEE Global Telecomm. Conf., pp. 1632-1636. San Fran­

cisco, USA, Nov. 2000.

[33] B. Lu, L. D. Clark, G. Arslan, and B. L. Evans, “Fast time-domain 

equalization for discrete multitone modulation systems,” in Proc. IEEE  

Digital Signal Processing Workshop. Hunt, TX, Oct. 2000.

[34] R. Schur and J. Speidel, “An efficient equalization method to mini­

mize delay spread in OFDM/DMT systems,” in Proc. IEEE Int. Conf. 

Commun., pp. 1481-1485. June 2001.

[35] A. Tkacenko and P. P. Vaidyanathan, “Noise optimized eigenfilter 

design of time-domain equalizers for DMT systems,” in Proc. IEEE Int. 

Conf. Commun., pp. 54-58. May 2002.

[36] A. Tkacenko and P. P. Vaidyanathan, “Eigenfilter design of MIMO 

equalizers for channel shortening,” in Proc. IEEE Int. Conf. Commun., 

pp. 2361-2364. May 2002.

[37] M. G. Troulis and S. Sesia, “A spectrally flat time domain equalizer 

for rate improvement of multicarrier systems,” in Proc. IEEE Int. Conf. 

Commun., pp. 1803-1807. May 2002.



Bibliography 111

[38] R. K. Martin, J. Balakrishnan, W. A. Sethars, and C. R. John­

son, “A blind, adaptive TEQ for multicarrier systems,” IEEE Signal 

Processing Letters, vol. 9, pp. 341-343, Nov. 2002.

[39] R. K. Martin, J. M. Walsh, and C. R. Johnson, “Low complex­

ity MIMO blind adaptive channel shortening,” in Proc. In. Conf. on 

Acoustics, Speech, and Signal Processing. Montreal, Quebec, May 2004.

[40] G. Arslan, “Equalization for Discrete Multitone Transceivers,” Ph. 

D. Thesis, University of Texas at Austin, 2000.

[41] G. Leus and M. Moonen, “Per-tone equalization for MIMO OFDM 

systems,” IEEE Trans, on Signal Processing, Special Issue on Signal 

Processing for MIMO Wireless Commun. Systems, vol. 51, no. 11, 

pp. 2965-2975, Nov. 2003.

[42] I. Berhumi, G. Leus, and M. Moonen, “Per-tone equalization for 

OFDM over doubly-selective channels,” in Proc. Int. Conf. on Com­

mun., pp. 2642-2647. Paris, France, June 2004.

[43] K. V. Acker, G. Leus, M. Moonen, and T. Pollet, “RLS-based ini­

tialization for Per-Tone equalizers in DMT receivers,” IEEE Trans. 

Commun., vol. 51, no. 6, June 2003.

[44] R. K. Martin and C. R. Johnson, “Blind, adaptive, Per Tone equal­

ization for multicarrier receivers,” in Conference on Information Sci­

ences and Systems. Princeton University, Mar. 2002.

[45] M. Ding, R. Redfern, and B. L. Evans, “A dual-path TEQ structure 

for DMT ADSL systems,” in Proc. Int. Conf. on Acoustics, Speech, and 

Signal Processing, pp. 2573-2576. April, 2002.



Bibliography 112

[46] M. Milosevic, L. F. C. Pessoa, and B. L. Evans, “Simultaneous mul­

tichannel time domain equalizer design based on the maximum compos­

ite shortening SNR,” in Proc. IEEE Asilomar Conf. on Signals, Systems 

and Comp., pp. 1895-1899. vol. 2, Pacific Grove, CA, November 2002.

[47] M. de Courville, P. Duhamel, P. Madec, and J. Palicot, “Blind 

equalization of OFDM systems based on the minimization of a 

quadratic criterion,” in Proc. Int. Conf. Commun., pp. 1318-1321. Dal­

las, TX, June 1996.

[48] C. F. Gauss, “Gottingische gelehrte anzeigen,” pp. 321-327, 1821. 

reprinted in Werke Bd. 4, pp. 98-117, 1880.

[49] A. Papoulis, Probability, Random Variables, and Stochastic Pro­

cesses. McGraw-Hill, 3rd edition, 1991.

[50] T. C. Chuah, “Robust Techniques For Multiuser CDMA Commu­

nications In Non-Gaussian Noise Environments,” Ph. D. Thesis, Uni­

versity of Newcastle upon Tyne, UK, 2002.

[51] S. A. Kassam and H. V. Poor, “Robust techniques for signal pro­

cessing: A survey,” IEEE Proc., vol. 73, pp. 433-481, 1985.

[52] B. Aazhang and H. V. Poor, “Performance of DS/SSMA commu­

nications in impulsive channels-Part I: Linear correlation receivers,” 

IEEE Trans. Commun., vol. 35, pp. 1179-1188, 1987.

[53] A. D. Spaulding, “Locally optimum and suboptimum detector per­

formance in a nOn-Gaussian interference environment,” IEEE Trans. 

Commun., vol. 33, pp. 509-517, 1985.



Bibliography 113

[54] T. K. Blankenship, D. M. Krizman, and T. Rappaport, “Measure­

ments and simulation of radio frequency impulsive noise in hospital and 

clinics,” in IEEE Proc. Veh. Tech. Conf., pp. 1942-1946, 1997.

[55] P. L. Brocket, M. Hinich, and G. R. Wilson, “Nonlinear and non- 

Gaussian ocean noise,” J. Acoust. Soc. Am., vol. 82, pp. 1386-1394, 

1987.

[56] J. H. Fennick, “Amplitude distributions of telephone channel noise 

and a model for impulse noise,” Bell Syst. Tech. J., vol. 48, pp. 3243- 

3263, 1969.

[57] D. Middleton, “Non-Gausian noise models in signal processing for 

telecommunications: New methods and results for class A and class B 

noise models,” IEEE Trans. Inform. Theory, vol. 45, pp. 1129-1149, 

1999.

[58] J. Cook, “Wideband impulsive noise survey of the access network,” 

B T  Technical Journal, vol. 11, no. 3, pp. 155-162, 1993.

[59] I. Mann, S. Mclaughlin, W. Henkel, R. Kirkby, and T. Kessler, “Im­

pulse generation with appropriate amplitude, length, inter-arrival, and 

spectral characteristics,” IEEE J. Select. Areas in Commun., vol. 20,

.no. 5, pp. 155-162, June 2002.

[60] “Asymmetric Digital Subscriber Line (ADSL) Metallic Interface,” 

American National Standard T l .413-1995, printed from: The accom­

panying CDROM in [19].

[61] H. V. Poor and M. Tanda, “Multiuser detection in impulsive chan­

nels,” Ann. Telecommun., vol. 54, pp. 392-400, 1999.



Bibliography 114

[62] K. Vastola, “Threshold detection in narrow-band non-Gaussian 

noise,” IEEE Trans. Commun, vol. 32, pp. 134-139, 1984.

[63] A. T. Georgiadis, “Adaptive Equalisation for Impulsive Noise En­

vironments,” PhD thesis, Edinburgh University, UK, 2000.

[64] C. L. Nikias and M. Shao, Signal Processing with Alpha-Stable Dis­

tributions and Applications. New York: Wiley, 1995.

[65] E. E. Kuruoplu, “Signal Processing in a-Stable Noise Environments: 

An Lp-Norm Approach,” Ph. D. Thesis, University of Cambridge, UK, 

1998.

[66] B. W. Stuck and B. Kleiner, “A statistical analysis of telephone 

noise,” The Bell System Technical Journal, vol. 53, no. 7, pp. 1263- 

1320, Sep. 1974.

[67] B. W. Stuck, “Minimum error dispersion linear filtering of scalar 

symmetric stable processes,” IEEE Trans. Auto. Control, vol. 23, 

pp. 507-509, 1978.

[68] J. G. Gonzalez, D. W. Griffith, and G. R. Arce, “Zero-order statis­

tics: A signal processing framework for very impulsive environments,” 

in Proc. IEEE Signal Proc. Workshop on Higher Order Statistics. Banff, 

Alberta, Canada, 1997.

[69] J. M. Chambers, C. L. Mallows, and B. W. Stuck, “A method for 

simulating stable random variables,” J. Amer. Stat. Assoc., vol. 71, 

pp. 340-346, 1976.

[70] G. Arslan and M. Ding and B. Lu and Z. Shen and B. L. Evans. 

MATLAB DMTTEQ Toolbox 3.1, Univ. Texas, Austin, May 10, 2003,



Bibliography 115

[Online.] Available: http://www.ece.utexas.edu/~bevans/ 

projects/adsl/dm tteq/dmtteq.html.

[71] S. Haykin, Unsupervised Adaptive Filtering, Blind Deconvolution. 

New York, US: John Wiley & Sons, Inc., 2000.

[72] M. Ding, “Channel Equalization To Achieve High Bit Rates In Dis­

crete Multitone Systems,” Ph. D. Thesis, The University of Texas at 

Austin, 2004.

[73] M. Webster and R. Roberts, “Finite length equalization for FFT- 

based multicarrier systems an error-whitening viewpoint,” in Proc. of 

the 31th Asilomar Conference on Signals, Systems and Computers, 

pp. 555-559. Nov. 1997.

[74] H. Dai and H. V. Poor, “Crosstalk mitigation in DMT VDSL with 

impulse noise,” IEEE Trans. Circuits and Systems-I: Fundamental the­

ory and applications, vol. 48, no. 10, pp. 1205-1213, Oct. 2001.

[75] Z. Ding and R. A. Kennedy, “On the whereabouts of local minima 

for blind adaptive equalizers,” IEEE Trans. Circuits and Systems-II: 

Analog and Digital Signal Processing, vol. 39, no. 2, pp. 119-123, Feb. 

1992.

[76] T. Pollet and M. Peeters, “Synchronization with DMT modulation,” 

IEEE Commun. Magazine, pp. 80-86, 1999.

[77] J. J. van de Beek, M. Sandell, and P. O. Borjesson, “ML estimation 

of time and frequency offset in OFDM systems,” IEEE Trans. Signal 

Processing, vol. 45, no.7, July 1997.

http://www.ece.utexas.edu/~bevans/


Bibliography 116

[78] K. Ramasubramanian and K. Baum, “An OFDM timing recov­

ery scheme with inherent delay-spread estimation,” in Proc. of IEEE  

GLOBECOM, pp. 3111-3115. Nov. 2001.

[79] T. Pollet, H. Steendam, and M. Moeneclaey, “Performance degra- 

tion of multi-carrier systems caused by an insufficient guard interval 

duration,” in International Workshop on Copper Wire Access Systems 

(CWAS ’97), Bridging the Last Copper Drop. Budapest, Oct. 1997.

[80] W. Henkel, G. Taubock, P. Odling, P. 0 . Borjesson, and N. Peters- 

son, “The cyclic prefix of OFDM/DMT-An analysis,” in International 

Zurich Seminar on Broadband Communications Access-Transmission- 

Networking. ETH Zurich Switzerland, Feb. 2002.

[81] M. Engels, Wireless OFDM Systems, How to make them work? 

Boston: Kluwer Academic Publishers, 2002.

[82] L. Hanzo, W. Webb, and T. Keller, Single- and Multi-carrier 

Quadrature Amplitude Modulation, Principles and applications for Per­

sonal Communications, WLANs, and Broadcasting. Chichester, U.K.: 

Wiley-IEEE press, 2000.

[83] Y. Mostofi and D. C. Cox, “Analysis of the effect of timing synchro­

nization errors on pilot-aided OFDM systems,” in 37th Asilomar Conf. 

on Signals, Systems and Computers. Monterey, California, November 

2003.

[84] G. Ginis and J. M. Cioffi, “Vectored transmission for digital sub­

scriber line systems,” IEEE Journal on Select. Area in Commun.,


