486 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Control-data separation architecture for cellular radio access networks: a survey and outlook

    Get PDF
    Conventional cellular systems are designed to ensure ubiquitous coverage with an always present wireless channel irrespective of the spatial and temporal demand of service. This approach raises several problems due to the tight coupling between network and data access points, as well as the paradigm shift towards data-oriented services, heterogeneous deployments and network densification. A logical separation between control and data planes is seen as a promising solution that could overcome these issues, by providing data services under the umbrella of a coverage layer. This article presents a holistic survey of existing literature on the control-data separation architecture (CDSA) for cellular radio access networks. As a starting point, we discuss the fundamentals, concepts, and general structure of the CDSA. Then, we point out limitations of the conventional architecture in futuristic deployment scenarios. In addition, we present and critically discuss the work that has been done to investigate potential benefits of the CDSA, as well as its technical challenges and enabling technologies. Finally, an overview of standardisation proposals related to this research vision is provided

    Efficient energy management in ultra-dense wireless networks

    Get PDF
    The increase in demand for more network capacity has led to the evolution of wireless networks from being largely Heterogeneous (Het-Nets) to the now existing Ultra-dense (UDNs). In UDNs, small cells are densely deployed with the goal of shortening the physical distance between the base stations (BSs) and the UEs, so as to support more user equipment (UEs) at peak times while ensuring high data rates. Compared to Het-Nets, Ultra-dense networks (UDNs) have many advantages. These include, more network capacity, higher flexibility to routine configurations, and more suitability to achieve load-balancing, hence, fewer blind spots as well as lower call blocking probability. It should be noted that, in practice, due to the high density of deployed small cells in Ultra-Dense Networks, a number of issues, or rather concerns, come with this evolution from Het-Nets. Among these issues include problems with efficient radio resource management, user cell association, inter- and intra-cell interference management and, last but not least, efficient energy consumption. Some of these issues which impact the overall network efficiency are largely due to the use of obsolete algorithms, especially those whose resource allocation is based solely on received signal power (RSSP). In this paper, the focus is solely on the efficient energy management dilemma and how to optimally reduce the overall network energy consumption. Through an extensive literature review, a detailed report into the growing concern of efficient energy management in UDNs is provided in Chapter 2. The literature review report highlights the classification as well as the evolution of some of the Mobile Wireless Technologies and Mobile Wireless Networks in general. The literature review report provides reasons as to why the energy consumption issue has become a very serious concern in UltraDense networks as well as the various techniques and measures taken to mitigate this. It is shown that, due to the increasing Mobile Wireless Systems’ carbon footprint which carries serious negative environmental impact, and the general need to lower operating costs by the network operators, the management of energy consumption increases in priority. By using the architecture of a Fourth Generation Long Term Evolution (4G-LTE) UltraDense Network, the report further shows that more than 65% of the overall energy consumption is by the access network and base stations in particular. This phenomenon explains why most attention in energy efficiency management in UDNs is largely centred on reducing the energy consumption of the deployed base stations more than any other network components like the data servers or backhauling features used. Furthermore, the report also provides detailed information on the methods/techniques, their classification, implementation, as well as a critical analysis of the said implementations in literature. This study proposes a sub-optimal algorithm and Distributed Cell Resource Allocation with a Base Station On/Off scheme that aims at reducing the overall base station power consumption in UDNs, while ensuring that the overall Quality of Service (QoS) for each User Equipment (UE) as specified in its service class is met. The modeling of the system model used and hence formulation of the Network Energy Efficiency (NEE) optimization problem is done viii using stochastic geometry. The network model comprises both evolved Node B (eNB) type macro and small cells operating on different frequency bands as well as taking into account factors that impact NEE such as UE mobility, UE spatial distribution and small cells spatial distribution. The channel model takes into account signal interference from all base stations, path loss, fading, log normal shadowing, modulation and coding schemes used on each UE’s communication channels when computing throughout. The power consumption model used takes into account both static (site cooling, circuit power) and active (transmission or load based) base station power consumption. The formulation of the NEE optimization problem takes into consideration the user’s Quality-of-service (QoS), inter-cell interference, as well as each user’s spectral efficiency and coverage/success probability. The formulated NEE optimization problem is of type Nondeterministic Polynomial time (NP)-hard, due to the user-cell association. The proposed solution to the formulated optimization problem makes use of constraint relaxation to transform the NP-hard problem into a more solvable, convex and linear optimization one. This, combined with Lagrangian dual decomposition, is used to create a distributed solution. After cellassociation and resource allocation phases, the proposed solution in order to further reduce power consumption performs Cell On/Off. Then, by using the computer simulation tools/environments, the “Distributed Resource Allocation with Cell On/Off” scheme’s performance, in comparison to four other resource allocation schemes, is analysed and evaluated given a number of different network scenarios. Finally, the statistical and mathematical results generated through the simulations indicate that the proposed scheme is the closest in NEE performance to the Exhaustive Search algorithm, and hence superior to the other sub-optimal algorithms it is compared to

    Eficiência energética avançada para sistema OFDMA CoMP coordenação multiponto

    Get PDF
    Doutoramento em Engenharia EletrotécnicaThe ever-growing energy consumption in mobile networks stimulated by the expected growth in data tra ffic has provided the impetus for mobile operators to refocus network design, planning and deployment towards reducing the cost per bit, whilst at the same time providing a signifi cant step towards reducing their operational expenditure. As a step towards incorporating cost-eff ective mobile system, 3GPP LTE-Advanced has adopted the coordinated multi-point (CoMP) transmission technique due to its ability to mitigate and manage inter-cell interference (ICI). Using CoMP the cell average and cell edge throughput are boosted. However, there is room for reducing energy consumption further by exploiting the inherent exibility of dynamic resource allocation protocols. To this end packet scheduler plays the central role in determining the overall performance of the 3GPP longterm evolution (LTE) based on packet-switching operation and provide a potential research playground for optimizing energy consumption in future networks. In this thesis we investigate the baseline performance for down link CoMP using traditional scheduling approaches, and subsequently go beyond and propose novel energy e fficient scheduling (EES) strategies that can achieve power-e fficient transmission to the UEs whilst enabling both system energy effi ciency gain and fairness improvement. However, ICI can still be prominent when multiple nodes use common resources with di fferent power levels inside the cell, as in the so called heterogeneous networks (Het- Net) environment. HetNets are comprised of two or more tiers of cells. The rst, or higher tier, is a traditional deployment of cell sites, often referred to in this context as macrocells. The lower tiers are termed small cells, and can appear as microcell, picocells or femtocells. The HetNet has attracted signiffi cant interest by key manufacturers as one of the enablers for high speed data at low cost. Research until now has revealed several key hurdles that must be overcome before HetNets can achieve their full potential: bottlenecks in the backhaul must be alleviated, as well as their seamless interworking with CoMP. In this thesis we explore exactly the latter hurdle, and present innovative ideas on advancing CoMP to work in synergy with HetNet deployment, complemented by a novel resource allocation policy for HetNet tighter interference management. As system level simulator has been used to analyze the proposed algorithm/protocols, and results have concluded that up to 20% energy gain can be observed.O aumento do consumo de energia nas TICs e em particular nas redes de comunicação móveis, estimulado por um crescimento esperado do tráfego de dados, tem servido de impulso aos operadores m oveis para reorientarem os seus projectos de rede, planeamento e implementa ção no sentido de reduzir o custo por bit, o que ao mesmo tempo possibilita um passo signicativo no sentido de reduzir as despesas operacionais. Como um passo no sentido de uma incorporação eficaz em termos destes custos, o sistema móvel 3GPP LTE-Advanced adoptou a técnica de transmissão Coordenação Multi-Ponto (identificada na literatura com a sigla CoMP) devido à sua capacidade de mitigar e gerir Interferência entre Células (sigla ICI na literatura). No entanto a ICI pode ainda ser mais proeminente quando v arios n os no interior da célula utilizam recursos comuns com diferentes níveis de energia, como acontece nos chamados ambientes de redes heterogéneas (sigla Het- Net na literatura). As HetNets são constituídas por duas ou mais camadas de células. A primeira, ou camada superiora, constitui uma implantação tradicional de sítios de célula, muitas vezes referidas neste contexto como macrocells. Os níveis mais baixos são designados por células pequenas, e podem aparecer como microcells, picocells ou femtocells. A HetNet tem atra do grande interesse por parte dos principais fabricantes como sendo facilitador para transmissões de dados de alta velocidade a baixo custo. A investigação tem revelado at e a data, vários dos principais obstáculos que devem ser superados para que as HetNets possam atingir todo o seu potencial: (i) os estrangulamentos no backhaul devem ser aliviados; (ii) bem como sua perfeita interoperabilidade com CoMP. Nesta tese exploramos este ultimo constrangimento e apresentamos ideias inovadoras em como a t ecnica CoMP poder a ser aperfeiçoada por forma a trabalhar em sinergia com a implementação da HetNet, complementado ainda com uma nova perspectiva na alocação de recursos rádio para um controlo e gestão mais apertado de interferência nas HetNets. Com recurso a simulação a níível de sistema para analisar o desempenho dos algoritmos e protocolos propostos, os resultados obtidos concluíram que ganhos at e a ordem dos 20% poderão ser atingidos em termos de eficiência energética
    corecore