2 research outputs found

    Mode division multiplexing zero forcing equalisation scheme using LU factorization

    Get PDF
    Optical networks is considered as the main backbone networks that handled the Internet traffic worldwide. Currently, the Internet traffic has had huge annual growth due to the increment in connected devices. At this rate, it is believed that the current technology in optical network will not able to handle this growth in the near future. Till recently, multiplexing techniques in the optical communication rely on modulation techniques where polarization, amplitude and frequency of the signal are used as the main data carrier. In these techniques, light modes are considered as an undesired effect causing modal dispersion. In contrast, mode division multiplexing (MDM) was introduced as a multiplexing approach which relies on the utilization of the light modes for the benefit of increasing the capacity-distance product of the optical network. As per any new technology, it is still facing a lot of problems preventing it from being commercially standardized and used. One of the main MDM issues is the mode coupling, which is an inventible phenomena occurs when the energy of one mode transfers to another mode during their propagation throughout the optical fibre causes inter-symbol interference (ISI), increasing the bit error rate (BER) and reducing the overall system performance. Different equalization schemes have been proposed so far attempting to mitigate the effect of mode coupling on the MDM optical signal. However, they suffer from high computational complexity and rely on training signals in estimating the optical channel which increases the overhead payload. These technique mainly rely on Least Mean Squared (LMS) and Recursive Least Squared (RLS) algorithms. The purpose of this study is to introduce a Zero Forcing LU-based equalization scheme for MDM. Previous research in the radio domain on multiple-input multiple output (MIMO) and orthogonal frequency division multiplexing (OFDM) demonstrated that zero forcing schemes have low computational complexity compared to current schemes as they equalize the signal without training signals, thus reducing the overhead payload. All of the previous points motivate the work of this study to adapt this approach in optical communications. The study adopts the four stages of the Design Research Methodology (DRM). The initial data was collected from the optical simulator, processed and used to derive the transfer function (H) of the system. Then it was used to develop the equalization scheme in MATLAB. The experimentation on Zero Forcing LU based equalization scheme shows O(N) complexity which is lower than RLS which has O(N2) and faster than LMS, in fact, LMS needs an average of 0.0126 seconds to process the signal while ZF LU-based needs 0.0029 seconds only. On the other hand, the proposed equalization reduces the time delay spread of the channel, resulting three times increment in the capacity of the MDM channel and even lower computational complexity. The main contribution of this study is the reduction of the computational complexity of the previous equalization schemes in MDM. Applying this scheme in real MDM systems can produce more cost effective and smaller digital signal processing (DSP) parts for MDM equipment and can accelerate the work on the standardization of MDM for being commercially used as a multiplexing technique for optical communication networks

    QR factorization equalisation scheme for mode devision multiplexing transmission in fibre optics

    Get PDF
    Optical communication systems play a major role in handling worldwide Internet traffic. Internet traffic has been increasing at a dramatic rate and the current optical network infrastructure may not be able to support the traffic growth in a few decades. Mode division multiplexing is introduced as a new emerging technique to improve the optical network capacity by the use of the light modes as individual channels. One of the main issues in MDM is mode coupling which is a physical phenomenon when light modes exchange their energy between each other during propagation through optical fiber resulting in inter-symbol interference (ISI). Many studies based on Least Mean Square (LMS) and Recursive Least Square (RLS) have taken place to mitigate the mode coupling effect. Still, most approaches have high computational complexity and hinders high-speed communication systems. Blind equalisation approach does not need training signals, thus, will reduce the overhead payload. On the other hand, QR factorization shows low computational complexity in the previous research in the radio domain. The combination of these two concepts shows significant results, as the use of low complexity algorithms reduces the processing needed to be done by the communication equipment, resulting in more cost effective and smaller equipment, while having no training signal saves the bandwidth and enhances the overall system performance. To the best knowledge of the researcher, blind equalisation based on QR factorization technique has been not used in MDM equalisation to date. The research goes through the four stages of the design research methodology (DRM) to achieve the purpose of the study. The implementation stage is taken two different simulators has been used, the first one which is the optical simulator is used to collect the initial optical data then, MATLAB is used to develop the equalisation scheme. The development starts with the derivation of the system’s transfer function (H) to be used as the input to the developed equalizer. Blind equalisation based on QR factorization is chosen as a way to introduce an efficient equalization to mitigate ISI by narrowing the pulse width. The development stages include a stage where the channel estimation is taken place. Statistical properties based on the standard deviation (STD) of the powers of the input and output signals has been used for the blind equalisation’s channel estimation part. The proposed channel estimation way has the ability in estimating the channel with an overall mean square error (MSE) of 0.176588301 from the initial transmitted signal. It is found that the worst channel has an MSE of 0.771365 from the transmitted signal, while the best channel has and MSE of 0.000185 from the transmitted signal. This is done by trying to avoid the issues accompanied with the development of the previous algorithms that have been utilized for the same goal. The algorithm mentioned in the study reduces the computational complexity problem which is one of the main issues that accompany currently used tap filter algorithms, such as (LMS) and (RLS). The results from this study show that the developed equalisation scheme has a complexity of O(N) compared with O(N2) for RLS and at the same time, it is faster than LMS as its calculation CPU time is equal to 0.005242 seconds compared with 0.0077814 seconds of LMS. The results are only valid for invertible and square channel matrices
    corecore