162,231 research outputs found
Development of novel multiplex microsatellite polymerase chain reactions to enable high-throughput population genetic studies of Schistosoma haematobium
© 2015 Webster et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article
Determination of population structure and stock composition of chum salmon (Oncorhynchus keta) in Russia determined with microsatellites
Variation at 14 microsatellite loci was examined in 34 chum
salmon (Oncorhynchus keta) populations from Russia and evaluated for its use in the determination of population
structure and stock composition in simulated mixed-stock fishery samples. The genetic differentiation index (Fst) over all populations and loci was 0.017, and individual locus values ranged from 0.003 to 0.054. Regional population structure was observed, and populations from Primorye, Sakhalin Island, and northeast Russia were the most distinct. Microsatellite variation provided evidence of a more fine-scale population structure than those that had previously been demonstrated with other genetic-based markers. Analysis of simulated mixed-stock samples indicated that accurate and precise regional estimates of stock composition were produced when the microsatellites
were used to estimate stock compositions. Microsatellites can be used to determine stock composition in geographically separate Russian coastal chum salmon fisheries and provide a greater resolution of stock
composition and population structure than that previously provided with other techniques
No evidence for a recent genetic bottleneck in the endangered Sheko cattle breed (African Bos taurus) revealed by microsatellite analysis
Sheko is African taurine cattle, valued for its milk yield, adaptation to humid tsetse infested environment and trypanotolerance. We used 30 microsatellite markers in analyzing 30 DNA samples. We found high genetic diversity and no genetic bottlenecks in endangered Sheko cattle. Sheko cattle have not undergone recent genetic bottlenecks, in spite of drastic reduction in its overall demographic population size. The results were supported by three statistical methods: 
(i) detection of heterozygosity excess 
(ii) a mode-shift indicator of allele distribution pattern 
(iii) the ratio of the number of alleles to the range of allele size, M-ratio test. This breed reflects historical and cultural identity of local communities and represents a unique component of the global domestic animal biodiversity that deserve priority for conservation
Simple Mathematical Model Of Pathologic Microsatellite Expansions: When Self-Reparation Does Not Work
We propose a simple model of pathologic microsatellite expansion, and
describe an inherent self-repairing mechanism working against expansion. We
prove that if the probabilities of elementary expansions and contractions are
equal, microsatellite expansions are always self-repairing. If these
probabilities are different, self-reparation does not work. Mosaicism,
anticipation and reverse mutation cases are discussed in the framework of the
model. We explain these phenomena and provide some theoretical evidence for
their properties, for example the rarity of reverse mutations
Genetic and phenotypic divergence in an island bird: isolation by distance, by colonization or by adaptation?
Discerning the relative roles of adaptive and nonadaptive processes in generating differences among populations and species, as well as how these processes interact, is a fundamental aim in biology. Both genetic and phenotypic divergence across populations can be the product of limited dispersal and gradual genetic drift across populations (isolation by distance), of colonization history and founder effects (isolation by colonization) or of adaptation to different environments preventing migration between populations (isolation by adaptation). Here, we attempt to differentiate between these processes using island populations of Berthelot's pipit (Anthus berthelotii), a passerine bird endemic to three Atlantic archipelagos. Using microsatellite markers and approximate Bayesian computation, we reveal that the northward colonization of this species ca. 8500years ago resulted in genetic bottlenecks in the colonized archipelagos. We then show that high levels of genetic structure exist across archipelagos and that these are consistent with a pattern of isolation by colonization, but not with isolation by distance or adaptation. Finally, we show that substantial morphological divergence also exists and that this is strongly concordant with patterns of genetic structure and bottleneck history, but not with environmental differences or geographic distance. Overall, our data suggest that founder effects are responsible for both genetic and phenotypic changes across archipelagos. Our findings provide a rare example of how founder effects can persist over evolutionary timescales and suggest that they may play an important role in the early stages of speciation
Microsatellite instability, KRAS mutations and cellular distribution of TRAIL-receptors in early stage colorectal cancer.
Thus, we evaluated the immunofluorescence pattern of TRAIL-receptors and E-cadherin to assess the fraction of membrane-bound TRAIL-receptors in 231 selected patients with early-stage CRC undergoing surgical treatment only. Moreover, we investigated whether membrane staining for TRAIL-receptors as well as the presence of KRAS mutations or of microsatellite instability (MSI) had an effect on survival and thus a prognostic effect.
The fact that the receptors for the TNF-related apoptosis inducing ligand (TRAIL) are almost invariably expressed in colorectal cancer (CRC) represents the rationale for the employment of TRAIL-receptors targeting compounds for the therapy of patients affected by this tumor. Yet, first reports on the use of these bioactive agents provided disappointing results. We therefore hypothesized that loss of membrane-bound TRAIL-R might be a feature of some CRC and that the evaluation of membrane staining rather than that of the overall expression of TRAIL-R might predict the response to TRAIL-R targeting compounds in this tumor. As expected, almost all CRC samples stained positive for TRAIL-R1 and 2. Instead, membrane staining for these receptors was positive in only 71% and 16% of samples respectively. No correlation between KRAS mutation status or MSI-phenotype and prognosis could be detected. TRAIL-R1 staining intensity correlated with survival in univariate analysis, but only membranous staining of TRAIL-R1 and TRAIL-R2 on cell membranes was an independent predictor of survival (cox multivariate analysis: TRAIL-R1: p = 0.019, RR 2.06[1.12-3.77]; TRAIL-R2: p = 0.033, RR 3.63[1.11-11.84]). In contrast to the current assumptions, loss of membrane staining for TRAIL-receptors is a common feature of early stage CRC which supersedes the prognostic significance of their staining intensity. Failure to achieve therapeutic effects in recent clinical trials using TRAIL-receptors targeting compounds might be due to insufficient selection of patients bearing tumors with membrane-bound TRAIL-receptors
Identification and validation of microsatellite markers in strawberry tree (Arbutusunedo L.)
Strawberry tree (Arbutus unedo L.), an evergreen shrub/small tree of the family Ericaceae, is a main constituent of the Mediterranean basin flora; although it is also found in southwestern Prance, Macaronesia, and Ireland. The small fruits are edible but mostly used for preparation of preserves and jams, and for liquors such as the Portuguese traditional "aguardente de medronho". Traditionally cultivated by small farmers, often in consociation with Quercus sp., strawberry tree is presently emerging as a new important fruit crop cultivated in large orchards by modern export-oriented enterprises. This change of paradigm requires a growing role of plant breeding, upstream of the production process. Genomic tools for this species are mostly limited to the chloroplast genome sequence and to genomic data described in this work. In order to identify strawberry tree microsatellite (SSR) loci we performed partial genome next-generation sequencing using the Ion Torrent technology. The sequenced similar to 24.6M nucleotides resulted in the identification of 1185 microsatellite markers mostly constituted by dinucleotide motifs. The relative amount of microsatellite dinucleotide motifs (AG/CT - 71.7%, AC/GT - 20.5%, AT/AT - 2.9%, and CG/CG - 0.3%) is similar to the one observed in other Ericaceae species. Among a tested sample of 40 SSR primer pairs, 20 amplified well-defined PCR products, 12 (30%) were validated as polymorphic. Used in our collaborative project for molecular identification of selected and improved clones, the identified SSR loci constitute a strong tool for a large panoply of applied and fundamental studies of this emerging fruit crop.Pluriannual Funding Program of the Portuguese National Foundation for Science and Technologyinfo:eu-repo/semantics/publishedVersio
Development and characterization of tri- and tetra-nucleotide polymorphic microsatellite markers for skipjack tuna (Katsuwonus pelamis)
Skipjack tuna (katsuwonus pelamis) (SJT) is the largest tuna fishery in all the major oceans around the world, and the largest marine fishery in Sri Lanka. Knowledge of genetic population structure and effective population size of SJT in the Indian Ocean and other major oceans, however, is still lacking for better management practices and conservation strategies. We developed microsatellite genetic markers using SJT around Sri Lanka in the Indian Ocean, and characterise one tri- and seven tetra-nucleotide microsatellite loci isolated from enriched genomic libraries from SJT, to provide tools for addressing both conservation and fisheries management questions. An analysis of these eight microsatellite markers in two populations of SJT from eastern Sri Lanka (n = 44) and the Maldives Islands (n = 53) showed that all eight microsatellites were polymorphic with an average number of alleles per locus of 11.80 (range 5-27). Expected heterozygosities at marker loci ranged from 0.450 to 0.961. These markers are being used currently to characterise population structure and extent of natural gene flow in SJT populations from the eastern and western Indian Ocean. No significant linkage disequilibrium was detected among any loci pairs
Comparative population structure of <i>Plasmodium malariae</i> and <i>Plasmodium falciparum</i> under different transmission settings in Malawi
<b>Background:</b> Described here is the first population genetic study of Plasmodium malariae, the causative agent of quartan malaria. Although not as deadly as Plasmodium falciparum, P. malariae is more common than previously thought, and is frequently in sympatry and co-infection with P. falciparum, making its study increasingly important. This study compares the population parameters of the two species in two districts of Malawi with different malaria transmission patterns - one seasonal, one perennial - to explore the effects of transmission on population structures.
<BR/>
<b>Methods:</b> Six species-specific microsatellite markers were used to analyse 257 P. malariae samples and 257 P. falciparum samples matched for age, gender and village of residence. Allele sizes were scored to within 2 bp for each locus and haplotypes were constructed from dominant alleles in multiple infections. Analysis of multiplicity of infection (MOI), population differentiation, clustering of haplotypes and linkage disequilibrium was performed for both species. Regression analyses were used to determine association of MOI measurements with clinical malaria parameters.
<BR/>
<b>Results:</b> Multiple-genotype infections within each species were common in both districts, accounting for 86.0% of P. falciparum and 73.2% of P. malariae infections and did not differ significantly with transmission setting. Mean MOI of P. falciparum was increased under perennial transmission compared with seasonal (3.14 vs 2.59, p = 0.008) and was greater in children compared with adults. In contrast, P. malariae mean MOI was similar between transmission settings (2.12 vs 2.11) and there was no difference between children and adults. Population differentiation showed no significant differences between villages or districts for either species. There was no evidence of geographical clustering of haplotypes. Linkage disequilibrium amongst loci was found only for P. falciparum samples from the seasonal transmission setting.
<BR/>
<b>Conclusions:</b> The extent of similarity between P. falciparum and P. malariae population structure described by the high level of multiple infection, the lack of significant population differentiation or haplotype clustering and lack of linkage disequilibrium is surprising given the differences in the biological features of these species that suggest a reduced potential for out-crossing and transmission in P. malariae. The absence of a rise in P. malariae MOI with increased transmission or a reduction in MOI with age could be explained by differences in the duration of infection or degree of immunity compared to P. falciparum
- …
