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Abstract 
 
Skipjack tuna (katsuwonus pelamis) (SJT) is the largest tuna fishery in all the major oceans around 

the world, and the largest marine fishery in Sri Lanka. Knowledge of genetic population structure 

and effective population size of SJT in the Indian Ocean and other major oceans, however, is still 

lacking for better management practices and conservation strategies. We developed microsatellite 

genetic markers using SJT around Sri Lanka in the Indian Ocean, and characterise one tri- and 

seven tetra-nucleotide microsatellite loci isolated from enriched genomic libraries from SJT, to 

provide tools for addressing both conservation and fisheries management questions. An analysis of 

these eight microsatellite markers in two populations of SJT from eastern Sri Lanka (n = 44) and the 

Maldives Islands (n = 53) showed that all eight microsatellites were polymorphic with an average 

number of alleles per locus of 11.80 (range 5-27). Expected heterozygosities at marker loci ranged 

from 0.450 to 0.961. These markers are being used currently to characterise population structure 

and extent of natural gene flow in SJT populations from the eastern and western Indian Ocean. No 

significant linkage disequilibrium was detected among any loci pairs.  
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Introduction 
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Skipjack tuna (SJT), katsuwonus pelamis (Linnaeus, 1758), are widely distributed across all major 

oceans around the world and constitute a major food commodity both regionally and internationally. 

In addition, while it has not been widely recognised, SJT constitutes the largest tuna fishery 

worldwide. In 2009, global SJT catch had reached 2,599,681 metric tonnes (mt), and comprised 

42% of the total global tuna catch (FAO 2011). Based on life history characteristics and fishery data 

SJT are currently considered, like most tuna species, to constitute a single reproductive unit and 

hence are managed essentially as a single stock in all oceans around the world by the respective 

international commissions (i.e. IOTC-Indian Ocean Tuna Commission; WCPFC-Western and 

Central Pacific Fisheries Commission; IATTC- Inter-American Tropical Tuna Commission; and 

ICCAT-International Commission for the Conservation of Atlantic Tuna). Some recent studies of 

SJT that used both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) microsatellite markers 

however, detected two divergent mtDNA clades and fine-scale geographical population structure in 

the northwestern Indian Ocean (Dammannagoda et al. 2011). Information on wild population 

structure will be critical for conservation management efforts for SJT, but highly sensitive genetic 

markers are essential for determining wild stock structure as SJT have a high capacity to disperse 

long distances and wild populations are still large in some regions. 

 

Although SJT comprise the largest tuna fishery in the world, only a few genetic studies have been 

conducted to assess their wild stock structure. Studies have mainly concentrated in the Pacific and 

Atlantic Oceans. A population genetic study of SJT carried out at an oceanic scale in the Atlantic 

and Pacific Oceans that employed mtDNA RFLP (Restriction Fragment Length Polymorphism) 

data could not detect any differentiation between Atlantic and Pacific Ocean populations (Graves et 

al. 1984), or from the Atlantic and Indian Oceans (Ely et al. 2005). Another study of SJT population 

structure could differentiate samples from India and Japan using mtDNA RFLP markers (Menezes 
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et al. 2005), it failed however, to differentiate the Japanese sample and a SJT sample from the 

western coast of India using microsatellite markers (Menezes et al. 2008).  

 

Microsatellites commonly provide highpervariable markers that can provide the sensitivity 

necessary to detect even weak population structure where it exists. Although several studies have 

developed and characterised microsatellite markers for tuna species (e.g. Atlantic bluefin tuna; 

Broughton and Gold, 1997; Takagi et al. 1999; McDowell et al. 2002; Clark et al. 2004), there has 

been only a single report of microsatellite primers developed for SJT (i.e. Menezes et al. 2008), and 

they only reported on development of dinucleotide markers. Dinucleotide microsatellite markers 

frequently suffer from stutter bands that are more prone to genotype scoring errors than equivalent 

tri- and tetranucleotide repeat loci (e.g. McDowell et al. 2002). Scoring problems associated with 

dinucleotide markers can be particularly problematic when relatively large numbers of alleles are 

present at marker loci, in addition to the large sample sizes that are often required to adequately 

estimate real allele frequencies.  In the current study we focussed our attention on developing tri- 

and tetra-nucleotide microsatellite markers for SJT because in general, they should result in fewer 

problems with stutter bands and they commonly have fewer number of alleles per locus than 

comparable dinucleotide repeat microsatellites. Tri- and tetra-nucleotide microsatellites, however, 

are much less abundant in the nDNA genome compared to dinucleotide microsatellites, making 

development of tri- and tetra-nucleotide microsatellites a difficult task. 

 

Methodology 

Genomic library development 

A single tri- and seven tetra-nucleotide microsatellite markers were developed for SJT after 

generating a microsatellite library using a radio isotopic method (Chand et al. 2005) at the 

molecular genetics labs, Queensland University of Technology, Brisbane, Australia. Genomic DNA 
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from SJT samples that were collected around Sri Lanka was extracted using a salt extraction 

method (Miller et al. 1998), and 10µg of DNA was digested with DpnII (5’ GATC 3’)   and Sau3A 

I (3’ CTAG 5’). Digested, purified DNA (300-700 bp) was ligated to a plasmid vector pUC 18 Bam 

I/BAP (Amersham Pharmacia Biotech). Ligated DNA with the vector was transferred to E.coli 

competent cells using heat shock. Competent cells with ligated DNA were then cultured on 

LB/AMP/X-Gal/IPTG plates, and positive clones were identified. Colonies with positive clones 

were transferred to Hybond+ nylon membranes and DNA was fixed and hybridized with a mixture 

of radioactive labeling oligo-nucleotide probes (CAC)8, (CAG)8, (GACA)6, (GATA)6. 

 

Clones with microsatellite inserts were identified by exposing hybridized membranes on X-ray film. 

Positive clones were selected from the plates, and grown in Terrific Broth/Ampicillin 50mg/ml 

(TB/Amp) solution. DNA was then extracted from grown out positive clones using a miniprep 

protocol. RNAase treated positive clones were sequenced using M13F primer (5’ GTA AAA CGA 

CGG CCA GT ‘3) at the “Australian Genome Research Facility” (AGRF) (http//www.agrf.org.au) 

and checked for microsatellite repeats discarding short repeats and duplicated clones. Primers were 

designed using the PRIMER3 programme (Rozen and Skaetsky, 2000). 

 

Primer designing and optimisation, and screening of populations 

Approximately 200 positive SJT clones were identified of which 80 were sequenced. Based on 

sequence analysis, 17 unique primer pairs were designed and evaluated for polymorphism. Clone 

sequences were deposited in GenBank with accession numbers from HM631812 to HM631828, 

respectively. Of the 17 primer pairs screened, 10 primer pairs produced reliable microsatellite 

products. Of these 10 loci, two could not be scored unambiguously due to amplification of spurious 

bands. The remaining eight loci were polymorphic and considered to be suitable for screening 

variation in SJT populations (Table 1). Suitability of these eight microsatellite markers to detect 



5 
 

genetic variation of SJT populations was tested by screening 44 individuals from a single site in the 

east of Sri Lanka (Kalmunei - KM), and also 53 individuals from the Maldive Islands (Male - MD) 

as a remote group, at the eight loci. The PCR reaction mix consisted of ~50ng/µl DNA 1µl, 1.25µl 

of 10X PCR buffer (Roche), 0.25µl of 25mM MgCl2, 0.5µl of 10mM dNTP (Roche), 0.5µl of each 

10mM forward and reverse primers, 0.1µl of Taq (Roche) and ddH2O to a final volume of 10 µl. 

Forward primers were labelled with Hexa fluorescent dye (GeneWorks, Hindmarsh, SA, Australia) 

for visualisation. Amplification consisted of an initial denaturation of 4 minutes at 950C, then 29 

cycles of (i) 950C for 30 seconds, (ii) at appropriate annealing temperature (Table 1) for 30 seconds, 

(iii) 72 0C for 30 seconds; and a final extension step at 720C for 8 minutes.  PCR products were 

electrophoresed in 0.6X TBE 6% acrylamide gels (100µm thick) on a GS2000 Genetic analyser 

(Corbett Research) According to the Corbett manual, with a 50-350 bp sizing standard (Tamra-

T350) to determine allele size. Resulting products were scored using OneDscan software 

(Scanalytics Inc.). Summary data for the 17 microsatellite loci developed are presented in Table 1. 

 

Statistical analysis 

Raw microsatellite data were summarised into allele frequencies for each locus at two sites using 

the software CONVERT (Glaubitz, 2004). This software was also used to transform data into other 

data formats for subsequent analyses using other statistical software packages.  Microsatellite data 

were checked for presence of null alleles, large allele dropout and errors in scoring using Micro-

checker software version 2.2.3 (Oosterhout et al. 2004). Conformance of genotypic frequencies at 

each locus to Hardy-Weignberg equilibrium (HWE) expectations was estimated with Arlequin 

version 3.5.1.3 software (Schneider et al. 2005) with significance of deviations in observed vs 

expected heterozygosity tested using Exact tests (Guo and Thompson 1992). The possibility of 

linkage disequilibrium (LD) among loci was investigated using the method of Slatkin and Excoffier 

(1996) in Arlequin with 1000 permutations (α = 0.05). P values were adjusted using the Bonferroni 
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correction (Rice 1989). Measures of genetic variation and descriptive statistics for two populations 

including number of alleles (NA), allelic richness (AR), and inbreeding coefficient (Fis) were 

calculated using the software program FSTAT version 2.9.3.2 (Goudet 1995). To enable 

comparison of diversity across sites, allelic richness (AR) was calculated for each locus at both sites 

(in addition to number of alleles), that corrects for different sample sizes using rare faction (leberg 

2002).  

 

Table 1. Summary data for SJT (Katsuwonus pelamis) microsatellites loci 

Locus  Repeat motiff   Primer sequence (5'-3') 
Product size 

(bp) 
Size range Ta 

0C. 
GenBank 
accession 
number 

UTD535 (AGAT)9 F CAC TGA AGA TAT AGG CAG CCT TG 193 (150-218) 55 HM631826  

    R TTT CTC CAG CGG CAT TAC AT         

UTD523 (GATA)18 F TTT GAA TGG GAG ACA TGC AG 247 (172-268) 55 HM631818 

    R TGT CCT GCA CTT GTG TTC ACT         

UTD172 (GACT)5 F GTT GTG TAT TTT TGG CTG GAC C 145 (118-158) 55 HM631813 

    R CAA CAG CTA ACG GGC AAA TTC C         

UTD328 (GCT)8 F GAG AGA GAA GCG GAC AGG ATA GG 143 (120-157) 50 HM631815 

    R TGA GTA ATA GAG AGT GGG AAT GG         

UTD203 (GAA)7CT(GAA)2 F CCC TGT GCT GTC TGT GAA G 157 (134-161) 50  HM631814 

    R TTG AAT CAA TGG CAA CTG GA         

UTD73 (AACT)6 F TGT GTG ATG AAG CTA AAG 135 (148-188) 50 HM631828 

    R CAA AAA TAT AGC CTT CGT         

UTD329 (AACT)7 F TAC TGG GTG ATG AAG CTA AAG AC 146 (136-172) 55  HM631816 

    R TCG TAA GGG AAT ATA AAA  AAG TG         

UTD531 (ATCT)16 F GCA GTC CTG TGG GTG ATT AAA 201 (198-246) 55 HM631823 

    R GGT AAG TAT CAG AGG CTC TAC CAT C         

UTD149 (GGA)11 F ACC GGT GGC TTG AAG ATT GAC AG 262 na 56 HM631812 

    R GTA AAG CTC TCT CTC CTC TCC CT          

UTD 522 (GATA)17 F GATTATGTTCAGTGTTCCAAGCTC 389 na 58 HM631817 

    R CACAGACAGGAAAGCAATCA         

UTD526 (GATA)28 F GCT CTA AAT TAA ATG GAG CAT CAA A 245 na 52 HM631819 

    R GCA GAA TCC AGT CTA GTG CAA A         

UTD528 (CTAT)11 F GGC CTA GCT AGC AGA ATC ACT C 150 na 54 HM631820  

    R AGT GCC ATT GAA CCC ACC TA         
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UTD529 
(GACA)4 GACGA 

(ATAG)22 
F ACCCAGCAATTGACATCTGA 245 na 58 HM631821 

    R ACTAATGAATTCGCGGCC         

UTD530 
(TAGA)14 TATA 

(TAGA)5 
F GTT TAA GGC CTA GCT AGC AGA A 188 na 52 HM631822 

    R TCC CCG AGA GTG AAA ATG TC         

UTD532 (TATC)21 F GGC CTA GCT AGC AGA ATC CA 190 na 52 HM631824  

    R TGC TGC CAT TAT ACC TGC AT         

UTD533 (CTAT)12 F ACGCGTCAGACTGCACTTC 225 na 60 HM631825 

    R GCACATATTACGGTAAATACACCG         

UTD540 (ATAG)17 F TCA TCC TCT CCA TTG AAC CTC 236 na 53 HM631827 

    R GGC CTA GCT AGC AGA ATC ACA         

T a 
0C - Annealing temperature, F – Forward primer, R – Revers primer 

Results 

Measures of genetic variation and descriptive statistics for two populations are summarised in Table 

2. All loci that amplified successfully were polymorphic possessing 5 to 27 alleles, respectively. 

Four loci (UTD172, UTD328, UTD523 and UTD531) of site MD showed significant deviations 

from HWE after Bonferroni correction (Rice, 1989) for multiple tests. At the same time, three of the 

four loci showing HWE deviations (except UTD 535) indicated a possibility of null alleles being 

present due to excess of homozygotes, after analysis with MICROCHECKER version 2.2.3 

software (Oosterhout et al. 2004). In addition, locus 328 at site KM also showed possibility of null 

alleles due to excess of homozygotes. Linkage disequilibrium was not detected between any pairs of 

loci after Bonferroni correction. 

 

Table 2 Descriptive statistics for two SJT (Katsuwonus pelamis) populations for eight 

microsatellite loci. Significant probability values after Bonferroni correction (α = 0.05/16 = 0.0031) 

Population 

  
Locus Avg. 

across 
loci   UTD535 UTD523 UTD172 UTD328 UTD203 UTD73 UTD329 UTD531

KM N 37 33 34 43 44 40 31 25 35.875 
NA 14 19 7 9 5 8 7 12 10.125 
AR 13.171 17.434 6.65 8.376 4.059 6.825 6.418 12 9.367 
HE 0.914 0.925 0.676 0.820 0.471 0.688 0.625 0.918 0.755 
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Fis 0.115 0.051 -0.356 0.179 -0.308 0.02 0.072 0.131 0.016 
                      

MD N 41 43 45 51 53 51 48 39 46.375 
NA 16 27 10 12 7 11 11 14 13.500 

AR 14.139 23.131 8.824 10.365 5.138 9.012 9.481 12.772 11.608 
HE 0.914 0.961 0.827 0.857 0.450 0.720 0.760 0.907 0.800 

  Fis 0.175 0.422* -0.131* 0.224* -0.006 0.047 0.124 0.551* 0.200 
 
N-sample size, NA-number of alleles, AR-allelic richness, HE-expected heterozygosity,  Fis-inbreeding 
coefficient, *- significant deviations from the HWE 
 

 

Discussion 

The single tri- and seven tetra-nucleotide microsatellite markers optimised here show a high level of 

polymorphism, according to number of alleles and allelic richness at each locus and at both sites 

(Table 2). The most important and the most beneficial factor of these tri- and tetra-nucleotide 

microsatellite markers compared to di-nucleotides, is minimum level of stutter bands in tri- and 

tetra- nucleotide microsatellite markers. Further, stutter bands in di-nucleotide microsatellite 

markers can easily and frequently cause scoring errors once the two alleles are closely spaced 

(Perlin et al. 1995). 

Six of these eight microsatellite markers have used successfully screening over 333 individuals 

from nine sampling sites around Sri Lanka, the Laccadive Islands, and the Maldive Islands to 

characterise population structure and extent of natural gene flow in SJT populations from the north 

western Indian Ocean (Dammannagoda et al. 2011). In addition, these markers are being used 

currently to screen SJT populations from the eastern Indian Ocean around Malaysia (Bhassu, S. 

pers.comm.).  

In this analysis, deviations from HWE at some loci had been expected however, as the populations 

screened here were comprised of individuals from two divergent SJT mtDNA clades 

(Dammannagoda et al. 2011), potentially causing a Wahlund effect as indicated by excess of 

homozygotes at these loci (Chand et al. 2005). Of the total 17 primer pairs developed in this study, 
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only 8 could optimise to a condition that is suitable for large scale screening of individuals, due to 

time and fund restrictions. The seven tetranucleotide and the single trinucleotide polymorphic 

microsatellite loci described here can provide a powerful addition to the markers already available 

for SJT and can contribute to development of a better understanding of the scale of individual 

dispersal, population structure within and between wild SJT populations, effective population sizes 

of each clade for the conservation and management of wild stocks, and for investigating 

evolutionary processes underlying genetic divergence among populations across major oceans 

around the world.  
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