78 research outputs found

    DVB-RCS return link radio resource management for broadband satellite systems using fade mitigation techniques at ka band

    Get PDF
    Current Broadband Satellite systems supporting DVB-RCS at Ku band have static physical layer in order not to complicate their implementation. However at Ka band frequencies and above an adaptive physical layer wherein the physical layer parameters are dynamically modified on a per user basis is necessary to counteract atmospheric attenuation. Satellite Radio Resource Management (RRM) at the Medium Access Control (MAC) layer has become an important issue given the emphasis placed on Quality of Service (QoS) provided to the Users. The work presented here tackles the problem of Satellite RRM for Broadband Satellite systems using DVB-RCS where a fully adaptive physical layer is envisaged at Ka band frequencies. The impact of adaptive physical layer and user traffic conditions on the MAC layer functions is analyzed and an algorithm is proposed for the RRM process. Various physical layer issues associated with the resource management problem are also analyzed

    Διασύνδεση ασύρματων ευρυζωνικών δικτύων με δορυφορικά δίκτυα

    Get PDF
    Η παρούσα Διδακτορική Διατριβή πραγματεύεται το πρόβλημα της διασύνδεσης μεταξύ ενός Δορυφορικού Διαδραστικού Δικτύου και ασύρματων ευρυζωνικών δικτύων. Η εκχώρηση της χωρητικότητας στις τελικές συνδέσεις του ευρυζωνικού δικτύου γίνεται μετά από χρονικό διάστημα 500 msec από τη στιγμή που στάλθηκε το αντίστοιχο αίτημα από το αντίστοιχο δορυφορικό τερματικό. Οι περισσότερες υπηρεσίες πραγματικού χρόνου δεν μπορούν να ανεχθούν τόσο μεγάλες καθυστερήσεις. Για το λόγο αυτό εισάγουμε την λογική της πρόβλεψης των αναγκών των συνδέσεων κατά την αίτηση της χωρητικότητας. Ο προτεινόμενος μηχανισμός διασύνδεσης αποτελείται από τρία τμήματα: το πρώτο είναι υπεύθυνο για τη διευθέτηση των αιτήσεων χωρητικότητας, το δεύτερο είναι υπεύθυνο για την εκχώρηση χωρητικότητας ανά δορυφορικό τερματικό, και το τρίτο είναι υπεύθυνο για τον διαμοιρασμό της δοσμένης χωρητικότητας στους συνδρομητές του ευρυζωνικού δικτύου. Στην συνέχεια της διατριβής μας, βελτιώνουμε και τα τρία τμήματα του προτεινόμενου μηχανισμού, ειδικά όσο αφορά κίνηση πραγματικού χρόνου που έχει μικρότερες ανοχές σε καθυστερήσεις. Χρησιμοποιούμε τον NLMS αλγόριθμο πρόβλεψης στο πρώτο τμήμα του μηχανισμού, επεκτείνουμε το δεύτερο τμήμα ώστε η κατανομή των χρονοθυρίδων να γίνεται σε MFTDMA, και, βελτιώνουμε τον χρονοπρογραμματιστή που λειτουργεί στο τρίτο τμήμα, ώστε ο διαμοιρασμός της χωρητικότητας στις συνδέσεις πραγματικού χρόνου του ευρυζωνικού δικτύου να γίνεται βάσει μετρικών αντίληψης ποιότητας.This doctoral thesis deals with the problem of interconnection between a satellite interactive network and broadband networks. The time difference between the capacity request of a satellite terminal and the capacity grant from the satellite network is at least equal to the round trip delay. To address this issue, schemes for predicting the needs of connections are used for capacity allocation purposes. An interconnection mechanism is proposed, which consists of three parts: 1) an entity at the satellite terminal responsible for capacity requests, 2) resource allocation to the satellite terminals and 3) sharing the capacity of a satellite terminal among the subscribers of the broadband network. We improve all three parts of the interconnection mechanism aiming to improve the overall performance of the system, especially for real time traffic that can tolerate less delay. Τhe NLMS (Normalized Least Mean Square) algorithm is chosen to be used in the first part of the proposed mechanism. We extend the second part of the mechanism for performing the slot allocation in MF-TDMA. Finally, we improve the scheduler of the third part in order to schedule traffic of real time connections of the broadband network based on Quality of Experience (QoE) metrics

    Resource Allocation in Relay-based Satellite and Wireless Communication Networks

    Get PDF
    A two-level bandwidth allocation scheme is proposed for a slotted Time-Division Multiple Access high data rate relay satellite communication link to provide efficient and fair channel utilization. The long-term allocation is implemented to provide per-flow/per-user Quality-of-Service guarantees and shape the average behavior. The time-varying short-term allocation is determined by solving an optimal timeslot scheduling problem based on the requests and other parameters. Through extensive simulations, the performance of a suitable MAC protocol with two-level bandwidth allocation is analyzed and compared with that of the existing static fixed-assignment scheme in terms of end-to-end delay and successful throughput. It is also shown that pseudo-proportional fairness is achieved for our hybrid protocol. We study rate control systems with heterogeneous time-varying propagation delays, based on analytic fluid flow models composed of first-order delay-differential equations. Both single-flow and multi-flow system models are analyzed, with special attention paid to the Mitra-Seery algorithm. The stationary solutions are investigated. For the fluctuating solutions, their dynamic behavior is analyzed in detail, analytically and numerically, in terms of amplitude, transient behavior, fairness and adaptability, etc.. Especially the effects of heterogeneous time-varying delays are investigated. It is shown that with proper parameter design the system can achieve stable behavior with close to pointwise proportional fairness among flows. Finally we investigate the resource allocation in 802.16j multi-hop relay systems with rate fairness constraints for two mutually exclusive options: transparent and non-transparent relay systems (T-RS and NT-RS). Single-Input Single-Output and Multi-Input Multi-Output antenna systems are considered in the links between the Base Station (BS) and Relay Stations (RS). 1 and 3 RSs per sector are considered. The Mobile Station (MS) association rule, which determines the access station (BS or RS) for each MS, is also studied. Two rules: Highest MCS scheme with the highest modulation and coding rate, and Highest (Mod) ESE scheme with the highest (modified) effective spectrum efficiency, are studied along with the optimal rule that maximizes system capacity with rate fairness constraints. Our simulation results show that the highest capacity is always achieved by NT-RS with 3 RSs per sector in distributed scheduling mode, and that the Highest (Mod) ESE scheme performs closely to the optimal rule in terms of system capacity

    An AI-based incumbent protection system for collaborative intelligent radio networks

    Get PDF
    Since the early days of wireless communication, wireless spectrum has been allocated according to a static frequency plan, whereby most of the spectrum is licensed for exclusive use by specific services or radio technologies. While some spectrum bands are overcrowded, many other bands are heavily underutilized. As a result, there is a shortage of available spectrum to deploy emerging technologies that require high demands on data like 5G. Several global efforts address this problem by providing multi-tier spectrum sharing frameworks, for example, the Citizens Broadband Radio Service (CBRS) and Licensed Shared Access (LSA) models, to increase spectrum reuse. In these frameworks, the incumbent (i.e., the technology that used the spectrum exclusively in the past) has to be protected against service disruptions caused by the transmissions of the new technologies that start using the same spectrum. However, these approaches suffer from two main problems. First, spectrum re-allocation to new uses is a slow process that may take years. Second, they do not scale fast since it requires a centralized infrastructure to protect the incumbent and coordinate and grant access to the shared spectrum. As a solution, the Spectrum Collaboration Challenge (SC2) has shown that the collaborative intelligent radio networks (CIRNs) -- artificial intelligence (AI)-based autonomous wireless networks that collaborate -- can share and reuse spectrum efficiently without any coordination and with the guarantee of incumbent protection. In this article, we present the architectural design and the experimental validation of an incumbent protection system for the next generation of spectrum sharing frameworks. The proposed system is a two-step AI-based algorithm that recognizes, learns, and proactively predicts the incumbent's transmission pattern with an accuracy above 95 percent in near real time (less than 300 ms). The proposed algorithm was validated in Colosseum, the RF channel emulator built for the SC2 competition, using up to two incumbents simultaneously with different transmission patterns and sharing spectrum with up to five additional CIRNs

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility

    Modélisation et simulation des réseaux mobiles de 4ème génération

    Get PDF
    Cette thèse porte sur l'interopérabilité et la qualité de service dans les réseaux de 4ème génération. En particulier, nous proposons des solutions d'intégration entre le réseau WiMAX et le système satellite DVB-RCS en s'appuyant sur le standard IEEE 802.21. Trois solutions peuvent être mises en place pour l'interconnexion de réseaux sans fil. Il s'agit de la technologie GAN soutenue par le 3GPP, du protocole FMIP proposé par l'IETF et du standard IEEE 802.21. Notre choix se porte sur ce denier standard car il propose un cadre générique pour l'interopérabilité des réseaux. En fait, nous proposons une architecture satellitaire à base de WiMAX, DVB-RCS et IEEE 802.21 et nous décrivons aussi la procédure de handover WiMAX/DVB-RCS. Par ailleurs, nous améliorons les performances des réseaux WiMAX en utilisant un handover horizontal avec un mécanisme de réservation de ressources. Ensuite, le réseau WiMAX est intégré dans un système satellite DVB-RCS afin d'étudier les performances de cette convergence avec une réservation de ressources. Les résultats obtenus montrent que les mécanismes de réservation améliorent les performances. Afin de permettre au trafic de passer d'un réseau à l'autre en garantissant une qualité de service, une mise en correspondance de la qualité de service entre les réseaux WiMAX et DVB-RCS est proposée. En outre, nous proposons un mécanisme d'admission de connexion CAC dans le cadre de l'interconnexion WiMAX/DVB-RCS. Plusieurs stratégies sont prises en compte afin de permettre une coopérative efficace entre les deux systèmes. ABSTRACT : This PH.D thesis is based on the interworking and the quality of service in 4th generation mobile wireless networks. In particular, we propose solutions of integration between WiMAX networks and satellite systems (DVB-RCS). Three solutions can be considered for the interconnection of wireless networks: GAN technology supported by the 3GPP, FMIP protocol suggested by the IETF and the IEEE 802.21 standard. Our choice is focused on this last standard because it proposes a generic framework for the interworking of wireless networks. A procedure of handover WiMAX/DVB-RCS is then described. In addition, we improve the performance of WiMAX networks by using a horizontal handover with resource reservation mechanisms. Then, the WiMAX network is integrated in a DVB-RCS satellite system. The performance of this convergence with a resource reservation mechanism is studied. The obtained results show that the reservation mechanisms improve the performance of the system. In order to switch the traffic from one network to the other by guaranteeing an appropriate level of quality of service, a mapping of quality of service between WiMAX networks and DVB-RCS system is proposed. Moreover, we propose a Connection Admission Control (CAC) mechanism within the framework of the WiMAX/DVB-RCS interconnection. Several strategies are taken into account in order to allow an effective co-operative between the two system

    Call admission control for interactive multimedia satellite networks.

    Get PDF
    Master of Science in Engineering (Electronic). University of KwaZulu-Natal, Durban 2015.Satellite communication has become an integral component of global access communication network due mainly to its ubiquitous coverage, large bandwidth and ability to support for large numbers of users over fixed and mobile devices. However, the multiplicity of multimedia applications with diverse requirements in terms of quality of service (QoS) poses new challenges in managing the limited and expensive resources. Furthermore, the time-varying nature of the propagation channel due to atmospheric and environmental effects also poses great challenges to effective utilization of resources and the satisfaction of users’ QoS requirements. Efficient radio resource management (RRM) techniques such as call admission control (CAC) and adaptive modulation and coding (AMC) are required in order to guarantee QoS satisfaction for user established connections and realize maximum and efficient utilization of network resources. In this work, we propose two CAC policies for interactive satellite multimedia networks. The two policies are based on efficient adaptation of transmission parameters to the dynamic link characteristics. In the first policy which we refer to as Gaussian Call Admission Control with Link Adaptation (GCAC-LA), we invoke the central limit theorem to statistically multiplex rate based dynamic capacity (RBDC) connections and obtain an aggregate bandwidth and required capacity for the multiplex. Adaptive Modulation and Coding (AMC) is employed for transmission over the time-varying wireless channel of the return link of an interactive satellite network. By associating users’ channel states to particular transmission parameters, the amount of resources required to satisfy user connection requirements in each state is determined. Thus the admission control policy considers in its decision, the channel states of all existing and new connections. The performance of the system is investigated by simulation and the results show that AMC significantly improves the utilization and call blocking performance by more than twice that of a system without link adaptation. In the second policy, a Game Theory based CAC policy with link adaptation (GTCAC-LA) is proposed. The admission of a new user connection under the GTCAC-LA policy is based on a non-cooperative game that is played between the network (existing user connections) and the new connection. A channel prediction scheme that predicts the rain attenuation on the link in successive intervals of time is also proposed. This determines the current resource allocation for every source at any point in time. The proposed game is played each time a new connection arrives and the strategies adopted by players are based on utility function, which is estimated based on the required capacity and the actual resources allocated. The performance of the CAC policy is investigated for different prediction intervals and the results show that multiple interval prediction scheme shows better performance than the single interval scheme. Performance of the proposed CAC policies indicates their suitability for QoS provisioning for traffic of multimedia connections in future 5G networks
    corecore