1,836 research outputs found

    Diamond semiconductor technology for RF device applications

    Get PDF
    This paper presents a comprehensive review of diamond electronics from the RF perspective. Our aim was to find and present the potential, limitations and current status of diamond semiconductor devices as well as to investigate its suitability for RF device applications. While doing this, we briefly analysed the physics and chemistry of CVD diamond process for a better understanding of the reasons for the technological challenges of diamond material. This leads to Figure of Merit definitions which forms the basis for a technology choice in an RF device/system (such as transceiver or receiver) structure. Based on our literature survey, we concluded that, despite the technological challenges and few mentioned examples, diamond can seriously be considered as a base material for RF electronics, especially RF power circuits, where the important parameters are high speed, high power density, efficient thermal management and low signal loss in high power/frequencies. Simulation and experimental results are highly regarded for the surface acoustic wave (SAW) and field emission (FE) devices which already occupies space in the RF market and are likely to replace their conventional counterparts. Field effect transistors (FETs) are the most promising active devices and extremely high power densities are extracted (up to 30 W/mm). By the surface channel FET approach 81 GHz operation is developed. Bipolar devices are also promising if the deep doping problem can be solved for operation at room temperature. Pressure, thermal, chemical and acceleration sensors have already been demonstrated using micromachining/MEMS approach, but need more experimental results to better exploit thermal, physical/chemical and electronic properties of diamond

    Stress Monitoring of Post-processed MEMS Silicon Microbridge Structures Using Raman Spectroscopy

    Get PDF
    Inherent residual stresses during material deposition can have profound effects on the functionality and reliability of fabricated Micro-Electro-Mechanical Systems (MEMS) devices. Residual stress often causes device failure due to curling, buckling, or fracture. Typically, the material properties of thin films used in surface micromachining are not well controlled during deposition. The residual stress; for example, tends to vary significantly for different deposition methods. Currently, few nondestructive techniques are available to measure residual stress in MEMS devices prior to the final release etch. In this research, micro-Raman spectroscopy is used to measure the residual stresses in polysilicon MEMS microbridge devices. This measurement technique was selected since it is nondestructive, fast, and provides the potential for in-situ stress monitoring. Raman spectroscopy residual stress profiles on unreleased and released MEMS microbridge beams are compared to analytical and FEM models to assess the viability of micro-Raman spectroscopy as an in-situ stress measurement technique. Raman spectroscopy was used during post-processing phosphorus ion implants on unreleased MEMS devices to investigate and monitor residual stress levels at key points during the post-processing sequences. As observed through Raman stress profiles and verified using on-chip test structures, the post-processing implants and accompanying anneals resulted in residual stress relaxation of over 90%

    Size Dependence of Nanoscale Wear of Silicon Carbide

    Full text link
    Nanoscale, single-asperity wear of single-crystal silicon carbide (sc-SiC) and nanocrystalline silicon carbide (nc-SiC) is investigated using single-crystal diamond nanoindenter tips and nanocrystalline diamond atomic force microscopy (AFM) tips under dry conditions, and the wear behavior is compared to that of single-crystal silicon with both thin and thick native oxide layers. We discovered a transition in the relative wear resistance of the SiC samples compared to that of Si as a function of contact size. With larger nanoindenter tips (tip radius around 370 nm), the wear resistances of both sc-SiC and nc-SiC are higher than that of Si. This result is expected from the Archard's equation because SiC is harder than Si. However, with the smaller AFM tips (tip radius around 20 nm), the wear resistances of sc-SiC and nc-SiC are lower than that of Si, despite the fact that the contact pressures are comparable to those applied with the nanoindenter tips, and the plastic zones are well-developed in both sets of wear experiments. We attribute the decrease in the relative wear resistance of SiC compared to that of Si to a transition from a wear regime dominated by the materials' resistance to plastic deformation (i.e., hardness) to a regime dominated by the materials' resistance to interfacial shear. This conclusion is supported by our AFM studies of wearless friction, which reveal that the interfacial shear strength of SiC is higher than that of Si. The contributions of surface roughness and surface chemistry to differences in interfacial shear strength are also discussed

    Mechanical Stiffness and Dissipation in Ultrananocrystalline Diamond Films

    Get PDF
    Tetragonal sp3-bonded diamond has the highest known atomic density. The nature of the bond and its high density enable diamond to have superior physical properties such as the highest Young’s modulus and acoustic velocity of all materials, and excellent tribological properties. Recently, conformal thin diamond films have been grown at CMOS-compatible temperatures in the form known as ultrananocrystalline diamond (UNCD). These make diamond promising for high frequency micro/nanomechanical devices. We have measured the Young’s modulus (E), Poisson’s ratio and the quality factors (Q) for microfabricated overhanging ledges and fixed-free beams composed of UNCD films grown at lower temperatures. The overhanging ledges exhibited periodic undulations due to residual stress. This was used to determine a biaxial modulus of 838 ± 2 GPa. Resonant excitation and ring down measurements of the cantilevers were conducted under ultra high vacuum (UHV) conditions on a customized atomic force microscope to determine E and Q. At room temperature we found E = 790 ± 30 GPa, which is ~20 % lower than the theoretically predicted value of polycrystalline diamond, an effect attributable to the high density of grain boundaries in UNCD. From these measurements, Poisson’s ratio for UNCD is estimated for the first time to be 0.057±0.038. We also measured the temperature dependence of E and Q in these cantilever beams from 60 K to 450 K. Mechanical stiffness of these cantilevers increased linearly with the reduction in temperature until ∼160 K where it then saturates. Reduction in the modulus of the film with temperature is slightly higher than that of single crystal diamond(averaged over all directions). We measured extremely low temperature coefficient of resonant frequency and results are promising for applications in MEMS and NEMS wireless devices and biosensors. The room temperature Q varied from 5000 to 16000 and showed a moderate increase as the cantilevers were cooled below room temperature followed by a characteristic low temperature plateau. Overall, results show that grain boundaries of UNCD films play a key role in determining its thermomechanical stability and mechanical dissipation. These results are extremely useful in understanding and controlling the dissipation in nanocrystalline materials

    Silicon Carbide in Microsystem Technology — Thin Film Versus Bulk Material

    Get PDF
    This chapter looks at the role of silicon carbide (SiC) in microsystem technology. It starts with an introduction into the wide bandgap (WBG) materials and the properties that make them potential candidates to enable the development of harsh environment microsystems. The future commercial success of WBG microsystems depends mainly on the availability of high-quality materials, well-established microfabrication processes, and economic viability. In such aspects SiC platform, in relation to other WBG materials, provides a clear and competitive advantage. The reasons for this will be detailed. Furthermore, the current status of the SiC thin film and bulk material technologies will also be discussed. Both SiC material forms have played important roles in different microsystem types

    Temperature dependence of mechanical stiffness and dissipation in ultrananocrystalline diamond

    Get PDF
    Ultrananocrystalline diamond (UNCD) films are promising for radio frequency micro electro mechanical systems (RF-MEMS) resonators due to the extraordinary physical properties of diamond, such as high Young’s modulus, quality factor, and stable surface chemistry. UNCD films used for this study are grown on 150 mm silicon wafers using hot filament chemical vapor deposition (HFCVD) at 680°C. UNCD fixed free (cantilever) resonator structures designed for the resonant frequencies in the kHz range have been fabricated using conventional microfabrication techniques and are wet released. Resonant excitation and ring down measurements in the temperature range of 138 K to 300 K were conducted under ultra high vacuum (UHV) conditions in a custom built UHV AFM stage to determine the temperature dependence of Young’s Modulus and dissipation (quality factor) in these UNCD cantilever structures. We measured a temperature coefficient of frequency (TCF) of 121 and 133 ppm/K for the cantilevers of 350 ìm and 400 ìm length respectively. Young’s modulus of the cantilevers increased by about 3.1% as the temperature was reduced from 300 K to 138 K. This is the first such measurement for UNCD and suggests that the nanostructure plays a significant role in modifying the thermo-mechanical response of the material. The quality factor of these resonators showed a moderate increase as the cantilevers were cooled from 300 K to 138 K. The results suggest that surface and bulk defects significantly contribute to the observed dissipation in UNCD resonators

    Process development of silicon-silicon carbide hybrid structures for micro-engines (January 2002)

    Get PDF
    MEMS-based gas turbine engines are currently under development at MIT for use as a button-sized portable power generator or micro-aircraft propulsion sources. Power densities expected for the micro-engines require very high rotor peripheral speeds of 300-600m/s and high combustion gas temperatures of 1300-1700K. These harsh requirements for the engine operation induce very high stress levels in the engine structure, and thus call for qualified refractory materials with high strength. Silicon carbide (SiC) has been chosen as the most promising material for use due to its high strength and chemical inertness at elevated temperatures. However, the state-of-the art microfabrication techniques for single-crystal SiC are not yet mature enough to achieve the required level of high precision of micro-engine components. To circumvent this limitation and to take advantage of the well-established precise silicon microfabrication technologies, silicon-silicon carbide hybrid turbine structures are being developed using chemical vapor deposition (CVD) of thick SiC (up to ~70µm) on silicon wafers and wafer bonding processes. Residual stress control of thick SiC layers is of critical importance to all the silicon-silicon carbide hybrid structure fabrication steps since a high level of residual stresses causes wafer cracking during the planarization, as well as excessive wafer bow, which is detrimental to the subsequent planarization and bonding processes. The origins of the residual stress in CVD SiC layers have been studied. SiC layers (as thick as 30µm) with low residual stresses (on the order of several tens of MPa) have been produced by controlling CVD process parameters such as temperature and gas ratio. Wafer-level SiC planarization has been accomplished by mechanical polishing using diamond grit and bonding processes are currently under development using CVD silicon dioxide as an interlayer material. This paper reports on the work that has been done so far under the MIT micro-engine project.Singapore-MIT Alliance (SMA
    • …
    corecore