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Mechanical Stiffness and Dissipation in Ultrananocrystalline Diamond
Films

Abstract
Tetragonal sp3-bonded diamond has the highest known atomic density. The nature of the bond and its high
density enable diamond to have superior physical properties such as the highest Young’s modulus and acoustic
velocity of all materials, and excellent tribological properties. Recently, conformal thin diamond films have
been grown at CMOS-compatible temperatures in the form known as ultrananocrystalline diamond
(UNCD). These make diamond promising for high frequency micro/nanomechanical devices. We have
measured the Young’s modulus (E), Poisson’s ratio and the quality factors (Q) for microfabricated
overhanging ledges and fixed-free beams composed of UNCD films grown at lower temperatures. The
overhanging ledges exhibited periodic undulations due to residual stress. This was used to determine a biaxial
modulus of 838 ± 2 GPa. Resonant excitation and ring down measurements of the cantilevers were conducted
under ultra high vacuum (UHV) conditions on a customized atomic force microscope to determine E and Q.
At room temperature we found E = 790 ± 30 GPa, which is ~20 % lower than the theoretically predicted value
of polycrystalline diamond, an effect attributable to the high density of grain boundaries in UNCD. From
these measurements, Poisson’s ratio for UNCD is estimated for the first time to be 0.057±0.038.

We also measured the temperature dependence of E and Q in these cantilever beams from 60 K to 450 K.
Mechanical stiffness of these cantilevers increased linearly with the reduction in temperature until ∼160 K
where it then saturates. Reduction in the modulus of the film with temperature is slightly higher than that of
single crystal diamond(averaged over all directions). We measured extremely low temperature coefficient of
resonant frequency and results are promising for applications in MEMS and NEMS wireless devices and
biosensors. The room temperature Q varied from 5000 to 16000 and showed a moderate increase as the
cantilevers were cooled below room temperature followed by a characteristic low temperature plateau.
Overall, results show that grain boundaries of UNCD films play a key role in determining its
thermomechanical stability and mechanical dissipation. These results are extremely useful in understanding
and controlling the dissipation in nanocrystalline materials.
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Tetragonal sp3-bonded diamond has the highest known atomic density. The nature 

of the bond and its high density enable diamond to have superior physical properties such 

as the highest Young’s modulus and acoustic velocity of all materials, and excellent 

tribological properties. Recently, conformal thin diamond films have been grown at 

CMOS-compatible temperatures in the form known as ultrananocrystalline diamond 

(UNCD). These make diamond promising for high frequency micro/nanomechanical 

devices. We have measured the Young’s modulus (E), Poisson’s ratio and the quality 

factors (Q) for microfabricated overhanging ledges and fixed-free beams composed of 

UNCD films grown at lower temperatures. The overhanging ledges exhibited periodic 

undulations due to residual stress. This was used to determine a biaxial modulus of 838 ± 

2 GPa. Resonant excitation and ring down measurements of the cantilevers were 

conducted under ultra high vacuum (UHV) conditions on a customized atomic force 

microscope to determine E and Q. At room temperature we found E = 790 ± 30 GPa, 

which is ~20 % lower than the theoretically predicted value of polycrystalline diamond, 

an effect attributable to the high density of grain boundaries in UNCD. From these 
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measurements, Poisson’s ratio for UNCD is estimated for the first time to be 

0.057±0.038.                    

                 We also measured the temperature dependence of E and Q in these cantilever 

beams from 60 K to 450 K. Mechanical stiffness of these cantilevers increased linearly 

with the reduction in temperature until ∼160 K where it then saturates.  Reduction in the 

modulus of the film with temperature is slightly higher than that of single crystal 

diamond(averaged over all directions). We measured extremely low temperature 

coefficient of resonant frequency and results are promising for applications in MEMS and 

NEMS wireless devices and biosensors. The room temperature Q varied from 5000 to 

16000 and showed a moderate increase as the cantilevers were cooled below room 

temperature followed by a characteristic low temperature plateau. Overall, results show 

that grain boundaries of UNCD films play a key role in determining its 

thermomechanical stability and mechanical dissipation. These results are extremely 

useful in understanding and controlling the dissipation in nanocrystalline materials.  
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Chapter 1. Introduction  

 

1.1. Nanocrystallinity and Mechanical Properties 

 

                Nanocrystalline materials, having grain sizes well below 100 nm, are 

characterized structurally by a large volume fraction of grain boundaries and have large 

proportion of atoms at or very close to grain boundaries. These characteristics 

significantly influence their physical, mechanical, and chemical properties in comparison 

with conventional coarse-grained polycrystalline materials and also their single crystal 

counterparts. Mechanical properties of nanocrystalline materials provide us with an 

excellent opportunity to understand the nature of the solid interfaces which can be 

tailored to potential technological applications which otherwise would not be possible 

with much larger grain sizes. However defects present in these interfaces significantly 

influence the mechanical performance, since they alter the nature of bonds around them.  

Such effects are particularly critical to consider in the context of ultrastrong, ultrastiff 

materials as they may lead to undesirable degradation of the mechanical properties, but 

may also provide the key to utilizing such materials in practical applications. Here we 

will consider the mechanical behavior of nanocrystalline diamond. 

Single crystal tetrahedral diamond has carbon atoms arranged through sp3 

bonding in specific type of cubic lattice known as diamond cubic, giving it highest 

atomic density. The nature of the bond and its high density enable diamond to have 

superior mechanical[1], tribological[2], thermal properties[3].  Diamond can be grown as 
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a conformal thin film on a variety of surfaces in a form known as ultrananocrystalline 

diamond (UNCD) (grain size 2–5 nm) and nanocrystalline diamond (grain size <100 nm). 

 

Figure 1.1. Diamond cubic lattice (Courtesy of wikipedia). The diamond has a lattice 

parameter of 0.357 nm.  

These films maintain many of the exceptional properties of diamond despite the presence 

of large fraction of atoms at or very close to the grain boundaries [4-7]. Understanding 

the physics governing how the grain boundaries and defects influence the mechanical 

stiffness is important for device applications in microelectromechanical and 

nanoelectromechanical systems (MEMS/NEMS), which will be discussed further below.  

While modest deviations in the elastic properties can be expected due to the 

polycrystalline nature of the material, mechanical energy dissipation in nanocrystalline 

materials is far more difficult to predict since mechanical dissipation has a large number 

of possible sources which are often very sensitive functions of several material 

parameters.  Understanding how defects and grain boundaries absorb long wavelength 

acoustic phonons is still an ongoing challenge. This thesis will include a particular focus 
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on the behavior and origins of mechanical dissipation in nanocrystalline diamond thin 

films. 

In pure crystalline solids, the lattice vibrations can be described as collective 

excitations or waves as explained by Debye [8]. Lattice defects, like impurities, 

dislocations, vacancies, and stacking faults scatter the thermal phonons. These defects 

lead to local changes in lattice vibrations, referred to as defect modes, which are specific 

to the type and concentration of the defects. Their influence on thermal conductivity and 

specific heat can be seen at low temperatures (T < 0.1 ΘD, the Debye temperature), when 

scattering due to momentum destroying Umklapp processes become negligible. Umklapp 

processes require that, at least one of the participating phonon in the phonon-phonon 

scattering process should have energy in the order of debye temperature (ΘD), chances of 

which are drastically reduced below 0.1 ΘD (Phonon occupation number can be obtained 

from Bose-Einestein distribution). Diamond has extremely high Debye temperature (1860 

K at room temperature) and hence defects can influence the thermal properties even at 

room temperature [3]. In amorphous solids, a different kind of defect mode referred to as 

a “two-level system” exists, which leads to characteristic changes in their low-

temperature thermal conductivity and specific heat, including short and long-term 

thermal relaxation, and also in their time dependent elastic and dielectric functions. These 

properties have been first reported in the 1970’s [9] by Zeller and Pohl, and have been 

successfully described by a phenomenological model which takes into account the 

contribution from impurity modes [10, 11]. In this so-called tunneling model, it is 

postulated that some atoms or groups of atoms have two equilibrium positions between 

which they can tunnel. These tunneling states lead to a low temperature plateau in 
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thermal conductivity and acoustic dissipation [12, 13]. In crystalline materials with small 

number of defects, the spectral distribution of the tunneling states is discrete[14]. 

However, in amorphous solids it is very broad.  In general, the spectral distribution of 

tunneling states and their coupling energy to the lattice depends on several material 

parameters, preparation conditions, and the nature of the defects themselves [15, 16]. In 

nanocrystalline materials, impurities and defects at grain boundaries can contribute to the 

dissipation of low energy acoustic phonons. Due to the large fraction of grain boundaries, 

the spectral distribution of the tunneling states can be broad.  

Measuring the temperature dependence of mechanical properties and mechanical 

dissipation are necessary to understand the influence of defects and under coordinated 

atoms at grain boundaries on the mechanical behavior in nanocrystalline materials.   Low 

temperature changes in the mechanical properties give an accurate estimate of the Debye 

temperature, the temperature dependence of the specific heat and material parameters 

including the Grüneisen parameter [17-19].  Low temperature measurements of 

dissipation of acoustic phonons will be helpful in understanding the influence of defects 

in absorbing the energy from low frequency mechanical vibrations. Literature on the low 

temperature mechanical stiffness of single crystal diamond is rare. This is due to the fact 

that the changes in mechanical stiffness are extremely small. Temperature dependent 

measurements of mechanical stiffness of UNCD films did not exist prior to this work. 

These measurements extremely important for device applications in MEMS and NEMS 

systems as mentioned above, and discussed further below.  

In this study, we have characterized UNCD films grown at 680 ºC using the hot 

filament chemical vapor deposition (HFCVD) technique[20].  The Young’s modulus of 
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the films is determined by measuring the resonant frequency of microfabricated UNCD 

cantilever structures. The Quality factor at the resonance is determined either by 

measuring the full width at half maximum of the fundamental flexural resonance, or by 

stopping the mechanical excitation of the resonator and curve-fitting the ensuing damped 

oscillations. A detailed discussion on measuring tools and methods are discussed in 

Chapter 2. We find that the measured Young’s modulus of the UNCD films is somewhat 

lower than that of the theoretically predicted value for randomly oriented polycrystalline 

diamond grains [21], and also lower than experimentally-determined values for UNCD 

films grown under different, previously-established conditions (i.e., using microwave 

plasma chemical vapor deposition technique (MPCVD) [22] at 800°C). The origins of 

this difference will be discussed. Biaxial modulus is determined by measuring the 

amplitude and wavelength of the fully relaxed substrate free, overhanging portion of film 

using Zygo white light scanning interferometer. From these measurements Poisson’s ratio 

is estimated. We find that the Poisson’s ratio is comparable to that of polycrystalline 

diamond, assuming comparable mass densities. A detailed discussion of these 

measurements is provided in Chapter 3.   

We measured the temperature dependence of the resonant frequency and quality 

factor of stress-free cantilever structures to eliminate the influence from changes in 

thermal stresses. The measured temperature coefficient of frequency and hence the 

temperature dependence elastic modulus was found to be slightly higher than that found 

theoretically [23] and experimentally [24] for single crystal diamond. We attribute this to 

a slightly higher temperature dependence of specific heat due to the presence of broken 

bonds at grain boundaries.[18]  Chapter 4 discusses the measurements of the 
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temperature dependence of the mechanical stiffness of UNCD films grown at 680 °C. 

Further modeling of specific heat as a function of temperature for UNCD films is needed 

to characterize the true nature of temperature dependence of modulus in UNCD films. 

  Dissipation in UNCD micro-cantilevers mainly arises due to the presence of large 

number of defects at the grain boundaries and the surfaces. The dissipation observed is 

much higher than single crystal silicon cantilevers and microcrystalline diamond 

cantilevers [25, 26]. Quality factor has been marginally increased as the temperature is 

reduced from 450 K to 60 K. Detailed discussions of factors that contribute to dissipation 

are provided later in this chapter and experimental results are discussed in Chapter 5.   

These are the first measurements of low temperature elastic properties of UNCD 

films. This will be helpful in further understanding the influence of grain boundaries on 

the observed mechanical behavior of nanocrystalline materials.  Dissipation in cantilever 

structures at a much wider temperature range especially at temperatures well below 10 K 

will give further insight to the nature of defect transitions. Further studies are needed 

including the influence of impurity atoms in grain boundaries, grain size and intrinsic 

stresses on temperature dependent mechanical properties and dissipation. 

1.2 Applications for nanocrystalline diamond 

   MEMS and NEMS offer a smaller, more efficient, and more powerful alternative 

to conventional electronic systems [27, 28]. Radio frequency (RF) MEMS and NEMS 

devices find important applications in the components of wireless devices such as filters, 

oscillators and switches, which increase their utility and shrink the size of currently 
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available wireless devices [29]. With antenna dimensions becoming smaller, their emitted 

signal frequency has been pushed up into the GHz range. This requires that oscillators, 

filters, and switches in the circuit also have to be operated at higher frequencies.  

Conventional RLC (resistor-inductor-capacitor) band-pass filters or oscillators can still 

operate at these frequencies. However, their quality factors (Q), a characteristic of a 

resonator’s bandwidth relative to its center frequency, are very low, i.e., well below 100. 

On the other hand, off the chip piezoelectric resonators are successful in applications 

such as filters, oscillators in heterodyning transceivers. This is mainly due to the fact that 

they have very high quality factors and extremely stable resonant frequencies. High 

quality factors and stable resonant frequencies are necessary to achieve adequate 

frequency selection (filters) and to realize the low phase noise and stability in oscillators.  

But off the chip piezo electric devices occupy large space and must be interfaced with 

integrated electronics at the board level.   Higher resonant frequencies require that off-the 

piezo electric resonators should be scalable down to micrometer and sub-micrometer 

scale [29] which makes it difficult to integrate these devices. MEMS/NEMS resonators 

offer a better alternative, where one can design them to have very high resonant 

frequencies and quality factors and they are scalable. They can be fabricated with 

processes that are compatible with conventional complementary metal–oxide–

semiconductor (CMOS) circuits and hence can be completely integrated with CMOS.  An 

example is the radial disk resonator, which operates at GHz frequency range with a 

quality factor close to 7000 even in air [30]. This, together with the possibility of creating 

vacuum cavities for achieving high Q resonant structures in many different geometries 

[31], has increased the possibility of actual application of these devices.  Similarly high 
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frequency and high quality factor MEMS/NEMS resonators find application in resonant 

mass sensors provided they have very good thermal stability [28]. High frequency and 

high quality factors are desirable to detect small changes in resonant frequency associated 

with added mass [32].  

However there are challenges in achieving high resonant frequencies without 

compromising quality factors [33, 34] and frequency stability. Smaller dimensions are 

required to achieve high resonant frequencies. This means that surface effects will 

dominate the mechanical behavior of the structural materials used. Understanding the 

influence of defects and under coordinated atoms on elastic properties, thermomechanical 

stability, and mechanical dissipation are crucial in achieving commercially-viable 

MEMS/NEMS devices, i.e., devices with stable, high resonant frequencies with low 

mechanical dissipation (high Q). Such materials must have extremely stable, inert 

surfaces. Diamond is one such exceptional material which meets these requirements. 

Diamond is an attractive material for several applications in MEMS and NEMS devices 

such as RF MEMS resonators, switches, and biosensors [35-40]. This is due to the 

superior physical properties of diamond such as high modulus, high acoustic velocity (for 

high frequency resonators), its stable and inert surface (for high Q resonators) with 

correspondingly low adhesion to other materials (for MEMS contact switches), as well as 

good tribological behavior (for RF-MEMS switches and other MEMS actuators, 

positioners, and any other device with sliding interfaces) [41-43]. Functionalized 

diamond surfaces are more stable compared to other MEMS materials [40, 44], and the 

temperature stability of its mechanical properties [17] is useful in applications such as 

resonant biosensors.  
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           Commercially successful synthesis of diamond was first achieved using the high 

temperature, high pressure process developed by Tracy Hall at GE in 1950’s. Using a 

"belt" press capable of producing pressures above 10 GPa and temperatures above 

2000 °C in pyrophyllite container, he dissolved graphite in the presence of molten nickel, 

cobalt or iron to turn it into diamond. These metals acted both as a solvent for carbon and 

catalyst for its conversion into diamond [45].  This led to applications of diamond in 

cutting tools, heat sinks, and other macroscopic applications. However, the extreme 

pressures (> 3.5 GPa) and temperatures (> 2500 K) required, and the inability to grow 

diamond over large areas limited the use of synthetic diamonds in devices or wear-

resistant coatings until new growth processes involving chemical vapor deposition (CVD) 

were discovered in mid 60’s[46]. These required much lower temperatures and pressures. 

Uniform large area (>4” wafer) growth of diamond films remained a challenge, since it is 

difficult to control the initial nucleation of the diamond on most substrates.  This was 

achieved by pre-seeding the substrate with diamond nanoparticles and by controlling the 

growth chemistry to achieve a conformal thin film in a form known as 

ultrananocrystalline diamond (UNCD) and nanocrystalline diamond (NCD), [5, 22, 47, 

48]  producing films with smooth surfaces [47]. UNCD films have shown mechanical 

properties that are in the vicinity of single crystal diamond [22] despite the presence of a 

high volume fraction of grain boundaries and impurities, particularly hydrogen [49]. A 

comparison of properties of MEMS materials is given is table 1.1. Figure 1.2.shows a 

transmission electron microscope (TEM ) image of a typical ultrananocrystalline 

diamond film.  It has grain sizes in the range of 3-5 nm and atomically-abrupt grain 

boundaries. UNCD films have been traditionally grown using a microwave plasma 
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chemical vapor deposition process (MPCVD) [4, 5] and more recently by commercially 

viable hot filament CVD process (HFCVD) at temperatures well above 700°C. 

Properties UNCD/NCD SiC Si 

Young’s Modulus 
GPa  

825-980                   400-700           160   

Hardness (GPa)  98                     30-40         5-10    

Self-mated friction 
coefficient (air)  

0.01                           

 

- 0.1 

Self-mated adhesion 
energy (mJ/m2)          

10                                

 

- 110 

Fracture toughness  

(MPa•m1/2) 

4                    

 

1.2                     2 

Acoustic velocity 
(m/s)  

15000             11800           8800 

Thermal 
conductivity 
(W/m•K)           

15-400              120               130 

Table 1.1.: A comparison of UNCD properties with other important MEMS materials. 

 

Figure 1.2. A cross sectional high resolution TEM image of a MPCVD-grown UNCD 

film grown on tungsten[5] 
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However, there are significant challenges to integrating diamond devices with 

conventional CMOS electronics. The most crucial are the high growth temperature of 

conventional UNCD, and the limited ability to grow uniform films over large areas. In 

recent years, uniform, conformal UNCD films have been grown over large areas (> 6” 

wafers) at CMOS-compatible temperatures (≤ 400 °C) [11] using both the HFCVD and 

MPCVD processes, which is close to the threshold temperature CMOS circuits can 

withstand. In order to fully exploit the true potential of low temperature grown UNCD 

films in high frequency MEMS devices, it is important to characterize the mechanical 

properties of these newly-developed UNCD films. While the overall chemical 

composition and bonding appears to be similar between all the growth processes 

mentioned, subtle difference in grain size, grain boundary structure, and defect structure 

and density may have significant consequences. In fact, the mechanical properties of 

these low temperature UNCD films had not yet been measured prior to this work, and the 

Poisson’s ratio of any UNCD had never been reported at all. Measurements of 

mechanical dissipation (quality factor) in these films were also lacking. Similarly, the 

temperature stability of elastic properties of UNCD films had not yet been reported. 

Understanding the factors that influence these properties will be helpful for applicability 

of these films in stable frequency oscillators, filters and resonant mass sensors. As 

mentioned earlier in this chapter, the mechanical performance of low temperature grown 

UNCD films and the influence of the nanostructure on these properties is the primary 

topic of this thesis.  
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Chapter 2. Experimental Methods 

2.1 Ultra high vacuum atomic force microscopy as a tool for 

characterizing the resonance behavior of materials 

2.1.1 General design and operation of UHV AFM and surface science 

system 

Most of the resonance and quality factor measurements discussed in this thesis are 

performed using the ultra-high vacuum (UHV) atomic force microscope (AFM, RHK-

750) system shown schematically in Fig. 2.1.1, developed by RHK Technology, Inc. 

(Troy, Michigan). It includes a load-lock system for exchanging samples from the 

outside, in situ sample storage of up to 3 sample or cantilever holders, and a wobble stick 

 

Figure 2.1.1. The cross section of UHV-AFM(750 series) chamber (Courtesy of RHK 

technology, Troy, Michigan) 
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fork to facilitate the sample transfer. The sample holder is attached to an eddy current-

damped vibration isolation stage. Variable temperature measurements are conducted 

using a built-in heater filament for heating, with cooling achieved using a liquid helium 

cryostat which can cool the sample down to approximately 55 K. Also installed on the 

UHV chamber (but not shown in Fig. 2.1.1) are a mass spectrometer for residual gas 

analysis and leak testing, ion and convectron gauges for pressure measurement, a 400 L/s 

turbo pump with a scroll-type roughing pump, a 300 L/s ion pump with titanium 

sublimation, an ex situ video camera to monitor scan-head motion and the alignment of 

the laser and photo-sensitive detector (PSD), and a leak valve for introducing vapors into 

the chamber.   

                        The capability of this AFM system is augmented by a connected surface 

science chamber that we have designed and constructed [Fig. 2.1.2]. In situ surface 

analysis tools include X-ray photoemission spectroscopy (XPS) with a monochromated 

X-ray source that allows high resolution spectroscopy. A differentially-pumped analyzer 

column allows for measurements of surface composition in high pressure (up to 100 

mTorr) conditions.  The surface science chamber also includes low-energy electron 

diffraction together with Auger electron spectroscopy (LEED/AES) for surface structural 

and chemical analysis. In addition, a differentially-pumped ion gun is provided for 

sputtering and charge compensation. Temperature dependent measurements can be 

performed with a liquid nitrogen cooled VG sample manipulator with a built-in heater 

that can heat the sample up to 1200 K. This capability is augmented by built-in heating 

capabilities of a RHK-style sample holder. The system also boasts a mass spectrometer 

for residual gas analysis, a leak valve for surface chemical modification and a 300 L/s ion 
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pump with a titanium sublimation pump for UHV operations. The entire system is bolted 

onto a steel frame supported by laminar-flow vibration isolation air legs to reduce the 

influence of external mechanical vibrations. These additional tools for in situ surface 

analysis in combination with the AFM will vastly enhance the understanding of surface 

properties for future nanomechanical and tribological studies performed in this 

laboratory. While the surface science system was not used for the research results 

presented here, substantial effort during this thesis was put into the design, assembly, and 

testing of this system for future use.   

            Measurements of the resonant frequency shifts and quality factor changes with 

temperature are performed using both this system (for the later measurements) and by an 

older RHK 350 AFM system. While both systems are similar in terms of basic operation, 

they differ in the following ways. First, the RHK 750 AFM can perform non-contact 

mode AFM as it includes a phase-locked loop electronics system for a non-contact mode 

known as frequency modulation. Second, the 750 system boasts an internal eddy current 

damping vibration isolation system, while the 350 systems uses a stack of metal plates 

separated by Viton rubber. The eddy current system is far better at filtering low-

frequency (<1 kHz) mechanical vibrations. Finally, the 750 system has a liquid helium 

cryostat, while the 350 system has a liquid nitrogen cryostat. Thus, the 750 can cool the 

sample down to approximately 55 K, while the 350 system can cool it down to 

approximately 120 K. The basic operation of the system is discussed below for the better 

understanding of its operation. 

             The UHV-AFM 750 scan head is based on the “beetle-type” design similar to the 

one developed by Dai, et al. at Lawrence Berkeley National Laboratory.[1]
 
Three piezo 
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legs control the position of a free-standing scan-head that rests on the sample holder [Fig. 

2.1.2, 2.1.3]. This symmetric geometry provides first-order thermal drift compensation in 

all three axes, with thermal drift less than 1 Å/min. This reduces the need for complex 

drift compensation software. 

 

Figure. 2.1.2. (a) Design (using SolidWorks 3-D CAD software) for the combined UHV-

AFM (left-hand chamber) and surface science system (right-hand chamber). (b) Actual 

chamber after construction. 
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.   

 

Figure. 2.1.3. Schematic arrangement of the UHV-AFM manipulator, scan head, and 

sample platform.  

 

        With a small mechanical loop from the AFM tip to the sample base, the free-

standing scan-head provides greater mechanical stability than larger commercial designs. 
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Furthermore, the sample platform is static and thus may be outfitted for heating and 

cooling without affecting the piezoelectric actuator legs used for scanning. The resonant 

frequency of the scan head is approximately 1.7 kHz and hence higher frequency 

mechanical noise is filtered out. Each leg consists of a four-quadrant piezo tube for x-y-z 

scanning.  

To achieve the coarse approach motion of the scan head and tip in relation to the 

sample, a portion of a saw-tooth waveform is applied to each piezo sector so that the 

scan-head is propelled downward along the three ramps on the sample holder depicted in 

Fig. 2.1.4b (this is for standard sample holders; a description of the custom-built holders 

used for this thesis is provided in the next section). While the piezo legs are used for 

coarse approach / lateral motion of the tip with respect to sample, a z-modulation piezo 

(not shown here) is attached between the cantilever holder and the rest of the scan head. 

This is used for tip actuation, or fine z-motion. Hence, there are two ways to control z-

displacement: using all three legs or the z-modulation piezo.  

           Depending on the sample holder used, samples may be heated up to ~800 K by 

irradiative heating with the tungsten filament (from below the sample), to >1000 K via 

electron bombardment (by applying a high voltage between the sample and filament), or 

to >1200K by direct, resistive heating of the sample itself. Fig. 2.1.4b shows a standard 

sample holder, which features three titanium nitride-coated ramps at the perimeter for tip 

approach or retraction, a copper base for greater thermal conductivity while cooling, a 

thermocouple for temperature measurement, springs and washers for mounting samples 

securely, and resistive heating leads. In principle, the thermally conductive copper braids 

that connect the liquid helium cryostat and sample stage permit sample cooling down to 
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~30 K according to the manufacturer. In practice, we have achieved sample temperatures 

of ~55-65 K.  

                To convert PSD output current to voltage, we use a two-stage RHK 

preamplifier and their PLLPro electronics for processing the PSD signal. The RHK 

SPM100 electronics unit is used to supply voltage to the piezos and for feedback control 

for topographic imaging. The output range of the SPM100 is ±130 V. In this 

configuration, the x-y scan range of the UHV-AFM scan-head is 4.9 x 4.9 μm
2
. Both the 

laser spot and the PSD can be positioned for aligning the laser beam with the cantilever, 

and its reflection with the PSD respectively, by using piezo stepper motors. The RHK750 

is capable of both non-contact and contact mode AFM operation. While non-contact 

mode operation involves detecting minute shifts in the resonant frequency and dissipation 

of the cantilever, contact mode involves detecting the cantilever deflection in real time.  

 

Figure. 2.1.4a UHV-AFM scan-head and residing on the standard sample holder. 

(Adapted from drawings, courtesy RHK Technology, Inc., Troy, Michigan) (b) A standard 

sample holder with ramps for coarse approach of the AFM tip to the sample. Also seen 

are the leads to heating filaments underneath the sample.  
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2.1.2 Design of a low temperature piezo stage for measuring mechanical 

properties 

While the built-in z-modulation piezo is used for actuating the AFM cantilevers, 

for the temperature dependent measurements cantilevers have to be in the sample side. 

For normal operation of the AFM, cantilever tips approach the horizontal sample surface 

at a 22.5° angle. The incident laser beam at an angle of 77.5° (90-22.5°) to the cantilever 

and is normal to sample surface. In order to ensure normal incidence of the reflected 

beam from the cantilever to PSD, this tilt angle is necessary. This tilt also prevents 

reflections from sample surface reaching the detector.  In order to achieve reflection from 

sample side, sample holders have to be tilted at the same angle as shown in Figure 2.1.5. 

Thus, there are several challenges in fabricating a structure for proper measurement when 

the a cantilever is located where the sample normally resides. The incident laser is a 

focused beam emerging from a graded index lens. Departure of the reflecting surface 

from the focal point of the beam increases the beam size (initially 30 μm) by 

approximately 60 μm / mm. This not only reduces the intensity of the beam and hence the 

reflected intensity, it increases the reflection from unnecessary structures surrounding the 

freestanding beams. Considering the fact that we are using ultrananocrystalline diamond 

(UNCD) cantilevers as a resonant structure, which give much lower reflection compared 

to silicon, accurate control of the cantilever chip height with respect to focal point of the 

laser are necessary to achieve sufficient reflected light intensity.  
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Figure. 2.1.5. (a) Custom built tilted wedge sample holder with an in built piezo actuator. 

(b) Schematic of the piezo actuation set up. Cantilever die and Piezos are glued after 

determining the right position for proper reflection into the photodetector. A focused 

laser beam is reflected off the back of the cantilever onto a four-quadrant photo-sensitive 

detector (PSD). The amount by which the cantilever bends and twists in response to 

normal and lateral forces corresponds to variations in the top minus bottom and left 

minus right signals, respectively. 

 

Fig. 2.1.6 shows a custom wedge holder that I designed and constructed for the 

purpose of measuring the temperature dependent response of the UNCD cantilevers. The 

sample platform is tilted by 22.5° with respect to the scanning plane of the microscope. 

The peizo legs of the AFM head rest on the flat surface surrounding the tilted sample 

stage. While the piezo legs allow x-y motion of the scan head on the flat sample ramp, z 

motion is not possible. This fixes the distance between laser source and cantilevers 

mounted on the piezo actuator. A tilted wedge is made of Invar alloy and is electrically 

insulated from surrounding platform by an alumina O-ring on the top side and it rests on 

insulating sapphire ring which has a good low temperature thermal conductivity. The 
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whole platform and tilted wedge are held together by a set of screws. 

 

Fig. 2.1.6 (a) Side view of custom built sample holder. 6 lead sample holder, consists of 

built in heater, piezo leads for actuation of the cantilever mounted on top of the piezo 

piece. Temperature is measured by type K thermocouple  (b) Three-dimensional 

schematic views (using SolidWorks 3-D CAD software) of a wedge-shaped sample 

holder that is tilted by 22.5°. 

 

Figure 2.1.7. Individual components of the custom built sample holder. 
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A 5×5 mm2 piezo actuator (PZT, z poled, Manufactuer EBL products, Harford, CT)is 

glued onto the tilted Invar wedge as shown in the schematic 2.6 using a thermally 

conductive and electrically insulating epoxy, which is compatible with ultra high vacuum 

conditions and low cryogenic temperatures (T7110, 2 part epoxy, Manufacturer epo-tek, 

Billerica, MA). Samples are epoxied on top of the piezo actuator and a thermocouple 

(Type K) is mounted on top of the sample within 2 mm of the cantilever array [2]. This 

entire assembly is mounted on to a copper holder (for good heat transfer capabilities) 

with built-in heater to allow high temperature measurements. The external slots on the 

copper holder facilitate transfer of sample holder between sample stage and sample 

storage via a wobble stick. Individual components of the custom built sample holder is 

shown in Figure 2.1.7 

         2.1.3 Measuring resonant frequency and quality factor 

        Fig. 2.1.5 shows the arrangement of the cantilever, laser and position-sensitive 

detector (PSD) in the popular optical-beam-deflection AFM.
 
A focused laser beam 

reflects off the back of the cantilever and onto the PSD, which consists of four 

photosensitive sectors quadrants which we label A1, A2, A3 and A4. Normal or lateral 

forces applied to the cantilever cause it to bend or twist, respectively. These forces 

change the angles of reflection of the laser, causing the laser spot on the PSD to displace 

in the vertical or horizontal direction, respectively. The PSD separately measures the 

normal and lateral signals, V
norm 

= (V
A1

+V
A2

)-(V
A3

+V
A4

) and V
lat 

= (V
A1

+V
A3

)-(V
A2

+V
A4

), 

that vary in proportion to the bending and twisting of the cantilever. At flexural and 

torsional resonance both Vnorm and Vlat reach their maximum respectively. This maximum 
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can be identified by sweeping the input frequency to the piezo across the expected 

frequency range for the particular cantilever beam being studied using a function 

generator and recording the Vnorm and Vlat  in an oscilloscope.  

             To determine the quality factor, two approaches can be used. In the first 

approach, a ring-down measurement is performed whereby the excitation was stopped 

and the subsequent cantilever motion recorded using a Tektronix 3014B oscilloscope. An 

exponential fit as shown in Fig 2.1.8 (a) to the ring-down curve gives a measure of 

dissipation in the fixed-free beams. An equation for the fit is given by  

                                          

0( )

0( )
nf t t
QA t A e

π− −

=                                            (2.1) 

 Where A(t) and A0 are the time (t) dependent amplitude and initial amplitude 

respectively. fn is the resonant frequency of the nth mode and t0 is the initial time. In the 

second method, the resonance frequency and the full width half maximum (FWHM) are 

measured to determine the quality factor. The equation for the quality factor is given by: 

                                            

2 n

n

fQ
f
π

=
Δ      (2.2) 

Where fn is the resonant frequency of the nth mode and Δfn is the full width at half 

maximum of the nth mode. To do this, we used the PLL Pro module of the RHK750 

AFM which can detect small shifts in resonant frequency and dissipation, and is used to 

confirm the measured values using oscilloscope. An example is shown in Fig. 2.1.8 (b). 
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These measurements can be performed independently using XPM Pro software supplied 

by the vendor and quality factor of this resonator is 10,400.  

Measurements are conducted in UHV conditions to avoid condensation of vapor 

at lower temperatures. There are three thermocouples on the UHV AFM. A solid state 

thermocouple for the cryostat, a type K thermocouple at the stage and Type K 

thermocouple glued on top of the chip containing cantilevers. Recent temperature 

measurements are conducted using a Lakeshore temperature controller (model), which 

allows one to control the cooling or heating rates through the in situ built in heater in the 

cryostat. Typical heating / cooling rates of the sample are about 1 K/min. The lowest 

temperature of the sample (measured by the type K thermocouple mounted on top of the 

cantilever chip) we could reach is approximately 60 K, and the highest temperature 

reached is 450 K. Even though higher temperatures can be reached, stabilizing the 

temperature takes much more time due to heat flow from the sample holder to copper 

foils then to the cryostat. This heat transfer takes place through junction between cryostat 

and copper block where in a sapphire plate pressed between two indium foil sheets. It is 

necessary to keep the temperature of the junction less than 150°C in order to prevent the 

electrical shorting of the stage with the chamber/cryostat. Shorting of the bias voltage to 

ground prevents the scanning tunneling microscopy imaging capability of the system.  
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Figure. 2.1.8. a) Typical ringdown measurement of UNCD cantilever acquired using an 

oscilloscope. b) Resonant excitation of the UNCD cantilever across the fundamental 

mode using XPM Pro 2.0 software. Both measurements are conducted at room 

temperature. 

2.2 White light interferometry 

Zygo white light interferometer is an extremely powerful tool for measuring the 

topography of the surfaces. While white light interferometry is certainly not new, zygo 

interferometer offers a combination of rather old white light interferometry techniques 

with modern electronics, computers, and software to produce extremely powerful 

measurement tool. It is being manufactured by Zygo Corporation, Middlefield, CT. In our 

lab, we have 6300 series, which has a dynamic MEMS module, which enables the users 

to capture the time varying response of MEMS devices. Similarly it enables us to 

measure the stress gradient of released beams. In this thesis Zygo white light 

interferometer is used for measuring the amplitude and period of the wrinkles in the 

overhanging portion of the released UNCD film grown on silicon wafer. A detailed 
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discussion of this topic is provided in Chapter 3. Here I will briefly discuss the operation 

of white light interferometer.  

Traditionally most interferometry is performed using a laser as the light source. 

The primary reason for this is that the long coherence length of laser light makes it easy 

to obtain interference fringes and interferometer path lengths no longer have to be 

matched as they do if a short coherence length white light source is used. Even though it 

is easier to obtain these fringes, any stray reflections will also give spurious fringes which 

can give incorrect measurements. Similarly, It can easily be shown that for laser based 

phase-shifting interferometry the height difference between two adjacent data points must 

be less than λ/4, where λ is the wavelength of the light used. If the slope is greater than 

λ/4 per detector pixel then height ambiguities of multiples of half wavelengths can exist 

[3].   

An excellent way of obtaining good height measurements with large steps or 

rough surfaces is to use a white light source and the coherence peak sensing approach in a 

vertical scanning interferometer apparatus shown in Figure 2.2.1. In the vertical scanning 

coherence peak sensing mode of operation a broad spectral width light source is used 

which has very short coherence length, and good contrast fringes will be obtained only 

when the two paths of the interferometer are closely matched in length. This is well 

depicted in Fig. 2.2.1(a) If in the interference microscope the path length of the sample 

arm of the interferometer is varied using a piezo stack, the height variations across the 

sample can be determined by looking at the sample position for which the fringe contrast 

is a maximum. Height ambiguities are eliminated by using this technique, since sample is 

in focus when the maximum fringe contrast is obtained and there are no focus errors in 
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the measurement of surface microstructure. The vertical resolution depends on the 

precision of the mechanical movement measurement which is done through a piezo stack 

and is well calibrated.   

 

Figure 2.2.1. (a) A schematic showing the operation of white light interferometer.[3] (b) 

Actual white light interferometer in Carpick research group. 

One of the major drawbacks of this type of scanning interferometer measurement 

is that only a single surface height is being measured at a time. Hence a large number of 

measurements and calculations are required to determine a large range of surface height 

values which is performed by the use of modern electronics, computer and software 

package provided by zygo.  
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Chapter 3. Elastic properties of UNCD films 

3.1 Background 

Tetragonal sp3-bonded diamond has the highest known atomic density (1.77×1023 

atoms/cm3). The strong nature of the carbon-carbon bond and the high density of bonds 

provide diamond with superior mechanical properties such as the highest Young’s 

modulus, hardness, acoustic velocity of any material, and a very low Poisson’s ratio.  

Device applications of diamond are made possible by uniform, large area growth 

UNCD/NCD films. In general, UNCD and nanocrystalline diamond (grain size ∼10 nm-

100 nm) thin films exhibit a unique combination of properties suitable for applications in 

MEMS/NEMS and devices as discussed in Chapter 1. UNCD films were originally 

grown using microwave plasma chemical vapor deposition (MPCVD) at 800°C. The 

Young’s modulus [1, 2]  and hardness[2] of films grown using this well-established 

recipe have been measured previously.  

The mechanical properties of UNCD films grown at low temperatures play an 

important role in the suitability of these films for applications involving monolithic 

integration of MEMS/NEMS and CMOS devices. They are rarely reported in the 

literature. In this chapter, we discuss the experimental results for the Young’s modulus 

and Poisson’s ratio of UNCD films grown at 680 °C using the HFCVD technique.  We 

determined the Young’s modulus of these films by fabricating UNCD micro-cantilevers 

and measuring the resonance frequency of the fundamental flexural mode of the 

cantilevers. Under-etching of the UNCD films was performed to produce overhanging 

ledges. These overhanging ledges formed periodic wrinkles due to residual compressive 
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stress in the film. The amplitude and wavelength of the fully relaxed overhanging portion 

were measured to determine the biaxial modulus of the film and, by comparison with the 

Young’s modulus, Poisson’s ratio.               

Property UNCD [1, 2, 4] 
(MPCVD 
grown) 

Poly Crystalline 
Diamond –
random grain 
orientation[5] 

Diamond 
like 
carbon[6] 

Tetrahedral 
amorphous 
carbon[3] 

Young’s 
modulus, E 
(GPa) 

860-960 GPa  1143 87±18  662±24 

Biaxial 
modulus 
(GPa)  

 1232 101 ± 4  ∼829 

Poisson’s 
ratio, ν  

 0.069 0.22 ± 0.33  0.202±0.054

Acoustic 
velocity, VL 
(km/s) 

14.243  18  ∼14.7 

Table 3.1.1. A comparison of mechanical and acoustic properties of crystalline as well as 

amorphous forms of carbon. 

Table 3.1.1 compares mechanical properties of different carbon films with 

varying sp3 content and order. Modest deviations in the elastic properties (modulus, 

Poisson’s ratio) from the values for bulk diamond can be expected due to the 

polycrystalline nature of the UNCD, due to the presence of a large fraction of the atoms 

at grain boundaries. These include defects at the grain boundaries such as sp2 bonds, 

disordered atoms, and hydrogen atoms. Traditional UNCD films showed Young’s 
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modulus (E) values 20 %-30 % lower than that of polycrystalline diamond (averaged 

over all directions) but Young’s modulus values were higher than the amorphous 

diamond like carbon (DLC) films.  The mechanical property of DLC films strongly 

depends on sp3 content. Tetrahedral amorphous carbon (ta-C) has the highest modulus 

(660 GPa,[3]) among the amorphous diamond like carbon (DLC) films since it has very 

high sp3 content (80% sp3, 20% sp2), while the DLC film quoted in Table 3.3.1 [6]  has a 

much lower modulus.  Ultrananocrystalline diamond (which as up to ~5% sp2 content) 

has a higher modulus than DLC films but Young’s modulus values are lower than 

nanocrystalline[7] and microcrystalline diamond[8] films due to large fraction of grain 

boundaries. 

3.2 UNCD growth and hydrogen termination 

 

Figure 3.2.1. A hot filament CVD reactor at advanced diamond technologies (ADT).  

UNCD films (produced commercially by Advanced Diamond Technologies Inc. 

and known as Aqua 25) were grown using the hot filament chemical vapor deposition 

(HFCVD) technique at 680°C on silicon wafers (diameter = 150 mm) using a 
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predominantly methane/hydrogen growth chemistry. Controlling this chemistry is critical 

to achieve films with ultrananocrystalline grains. Introducing more hydrogen causes the 

microstructure to evolve from nanocrystalline to microcrystalline [9]. Silicon wafers were 

ultrasonically seeded with ultradispersive detonation diamond (UDD) powder solution 

before the growth. The average film thickness was measured by the NANOSPEC 

thickness measuring tool and found to be 1.002 µm, uniform to within 11% across the 

wafer, with the thickness greatest at the center. These films exhibited a residual 

compressive stress of 370 ±1 MPa measured using a Tencor Flexus 2320A stress 

measurement tool.  While we have also characterized microwave plasma CVD grown 

UNCD films by Argonne National Laboratories, the characterization of resonant 

structures made from such films was rendered difficult due to the low thickness and high 

stress of those films. Therefore, discussion of the fabrication and characterization of 

MPCVD structures will not be described in this thesis. All of the discussion will be on 

the HFCVD films grown by ADT.   

 

Figure 3.2.2. Hot filament chemical vapor deposition chamber used for hydrogen 

termination. Hydrogen passed through tungsten filaments after carburization. 
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                 In this work, the UNCD films grown by ADT were later H-terminated in the 

HF-CVD chamber in our laboratory shown in Figure 3.2.2. This is done by flowing H
2
 

across a carburized tungsten filament at 1800 ºC. Carburization of the tungsten filament 

is necessary to limit the tungsten contamination during the hydrogen termination. This is 

done by passing the methane gas (9 sccm, 3 Torr) across the hot filament for about 20 

minutes.  For hydrogen termination, a sample is placed in close proximity (∼ 2 mm) to 

the carburized filament and the chamber is pumped down to 50 mTorr. Hydrogen gas 

(100 sccm, 20 Torr) is then passed across the carburized hot filament. At filament 

temperatures above 1800ºC, H
2 

dissociates into atomic hydrogen. The samples are placed 

within range of the atomic H by mounting them several millimeters below the filament, 

which also heats the samples to ~700ºC (measured on the sample stage with a type K 

thermocouple). At this temperature, hydrogen molecules dissociated by the filaments can 

both bond with the diamond surface and knock off existing hydrogen atoms to form H2 

[10]. After approximately 20 minutes, all of the surface carbon atoms are expected to be 

H-terminated.[11]
 
 If the sample is cooled slowly, then the likelihood of incident 

hydrogen atoms ejecting (a thermally-activated process) already bonded H is reduced. 

Therefore, the termination is more complete when sample temperature was slowly 

decreased at the end of the termination. This is done by progressively lowering of the 

sample stage until the sample cools to below ~500°C. The filaments are shut off and the 

sample was allowed to cool under the flow of hydrogen. The UNCD sample was 

removed from the chamber after cooling and then stored in a dry nitrogen environment 

for surface characterization.  
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3.3 Characterization of HFCVD grown UNCD films 

Near edge X-ray absorption fine structure (NEXAFS) spectroscopy was used to 

determine the chemical bonding nature of the films, especially for the presence of sp3 and 

sp2 bonded carbon in the near-surface region (top ~4 nm) of the films.[12] This technique 

is extremely useful to characterize the local bonding structure of the elements on a 

sample's surface. Here, monochromated X-rays of sufficient but tunable energy impinge 

upon a sample and excite core-level (K-shell, for example) electrons above the vacuum 

level (primary core level electrons) or into unoccupied electronic states above the Fermi 

level but below the vacuum level. In the case of diamond, it is the excitation from C 1s 

→σ*, in the case of graphite, C 1s →σ* or C 1s →π*. When a core-level electron is 

excited during an X-ray absorption event into unoccupied electronic state, the energized 

atom will relax by filling the core hole with an electron from a higher electronic state (L-

level, for example) and can simultaneously emit an Auger electron or a fluorescent 

photon from that state. 

Emitted Auger electrons from the top few nanometers (Auger electrons have very 

small ineleastic mean free path only few nanometers) of the surface will then propagate 

through the material and will either escape from the sample completely or will collide 

inelastically with other loosely-bound electrons, generating lower energy secondary 

electrons, which are then ejected from the sample's surface. The Auger and secondary 

electrons that are ejected from the sample are then collected by an anode and measured as 

a current as a function of incident X-Ray energy. NEXAFS spectra of different allotropes 

of carbon are presented in 3.3.1.(a).  While ordered graphite shows a much stronger π* 

peak, σ* peaks, single crystal diamond shows much stronger exciton peak at 289.3 eV  
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(C 1s→σ*) and a dip corresponding to second band gap at 302 eV.  Disordered 

tetrahedral amorphous carbon which has about 80 % sp3 and 20 % sp2 content shows 

peaks corresponding to both transitions, but due to the amorphous nature, peaks are very 

broad. 

 

Figure. 3.3.1(a) Comparison of NEXAFS sectra of different carbon allotropes (courtesy 

of Dr. Dave Grierson and Andy Konicek).   (b) NEXAFS spectra from a H-terminated 

UNCD film and single crystal diamond (offset for clarity). UNCD exhibits a sp2 peak at 

285 eV, a diminished exciton peak at 289 eV, and shallower band gap at 302 eV, all due 

to the fractional presence of non-diamond bonding  

A NEXAFS spectrum taken on the topside of a hydrogen-terminated UNCD film 

is shown in Fig. 3.3.1.(b)(black curve), where a NEXAFS spectrum from a single crystal 

diamond is shown for comparison (red curve). Characteristic diamond features observed 

in Fig. 3.3.1(b) include the exciton peak at 289.3 eV and second band gap at ~302 eV, 

characteristic of diamond. A small amount of non-diamond bonding in the UNCD film is 
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revealed by the presence of peak corresponding to sp2-bonded carbon (C 1s →π*) 

centered at 285.0 eV.   

Based on these measurements and the corresponding reference spectra obtained 

on single crystal diamond and HOPG, we estimate the sp2 content of the films to be 5.8% 

using the normalization method described by Lenardi et al [12]. The sp2 content observed 

in the HFCVD UNCD films studied here is on the upper end of the 2-5% sp2 content 

typically observed in MPCVD films grown at 800°C. [13] Most of this sp2-bonded 

carbon is present at the grain boundaries; some fraction may be due to adsorbates and 

surface reconstruction. Hydrogen termination[14] of the surface using the hot filament 

process described above resulted in the reduction of sp2 content in the near-surface region 

to 4.3%. Thus, this percentage represents a likely lower bound for the sp2 content of the 

bulk of the film assuming a uniform film structure with thickness.  

   

Fig 3.3.2. (a) Normalized XPS survey spectra of HFCVD-grown UNCD (b) Extended high 

resolution scan of the carbon peak before (green) and after (black) hydrogen termination 

demonstrates the reduction in C-O shoulder after H-termination. 
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XPS spectra of the as-received film showed the presence of oxygen at the surface and 

typical surface composition showed approximately 7-9 % oxygen content at the 

unterminated HFCVD grown UNCD surface. After hydrogen termination, the oxygen 

content is drastically reduced as evidenced by reduction in O 1s peak and CO shoulder 

(Fig 3.3.2 (b)). We have measured the bulk hydrogen content of the films using forward 

recoil spectroscopy (FRES). In FRES analysis,
 
beam of helium (

4
He

++
) ions is accelerated 

to 3 MeV, and are filtered and focused by electro magnets. The sample is mounted at 

grazing angle (~15°) to the incident ion beam, which knocks out one hydrogen atom per 

helium ion that collides and embeds in the film. Recoiled hydrogen as well as He ions are 

passed through 10 μm Mylar filter to suppress the He ions overwhelming the detector. 

This film is calibrated to take into account the energy loss of both ions of different 

energy.  While the film is very effective in suppressing the energy of the helium ions, the 

lighter, more energetic hydrogen ions are transmitted. Transmitted hydrogen generates a 

current (typically 10 nA for our measurements) which is measured by a solid state 

detector. We count the number of hydrogen ions in a particular energy window and 

measurements are stopped after a total charge dosage of 10 μC.  Each of these energy 

window corresponds to a depth from which hydrogen is ejected. The typical depth profile 

resolution is about ~30 nm. Polystyrene on silicon is used as a reference hydrogen-

containing film.  The small amount of hydrogen in the UNCD film is consistent with 

previous analyses of UNCD film using FRES [9] which yielded a hydrogen content of 

approximately 1 to 1.5% depending on growth conditions. We have measured hydrogen 

content of about 2.5% at the surface and about 1 % in the bulk as shown in Fig 3.3.3. for 
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the UNCD films grown using HFCVD technique. Higher hydrogen content at the surface 

is in part due to absorbed water.  We also sent out UNCD samples (Aqua 25) to Evans 

Analytical Group (EAG), Hightstown, NJ, 08520 USA for Secondary Ion Mass 

Spectrometry (SIMS) analysis. This yielded a hydrogen content of approximately 1.7%.  
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Fig. 3.3.3. FRES data show the hydrogen concentration of the Aqua 25 film as a function 

of depth from the surface. At higher depths (> 800 nm) low energy He ++ ions 

overwhelm the signal.  

 

Hydrogen in ultrananocrystalline diamond (UNCD) mainly present in the grain 

boundaries[9] as evident by the FRES measurements we have done for determining the 

influence of hydrogen content on the dielectric properties of Microwave plasma CVD 



43 

 

grown UNCD films. Here we found that polycrystalline diamond films containing fine 

grained diamond had much lower hydrogen content compared to ultrananocrystalline 

diamond (UNCD) films indicating that hydrogen is present mainly in the grain 

boundaries.          

   

Fig 3.3.4 (a) The UNCD films studied here exhibit an RMS roughness of ∼ 10 nm over 

10×10 μm2 area measured by tapping mode AFM imaging. However completely etched 

underside (b) yielded a much more uniform surface (RMS roughness ∼2 nm)  

As shown in Figure 3.3.4, RMS roughness of the Aqua 25 UNCD films are 

typically less than 10 nm over a scan area of 10 ×10 μm2. After completely removing 

silicon substrate using wet etching, AFM imaging of the underside of the UNCD film 

were performed. This yielded a RMS roughness of ∼ 2 nm over a scan area of 10 ×10 

μm2. This is initial nucleation side of the film. Earlier studies [15] indicated diamond 

colonies grow out of single nucleation sites and they coalesce to form pinhole-free films. 

This is evident by comparing the underside of the UNCD film before and after hydrogen 
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plasma treatment using AFM. [15] Hydrogen plasma treatment removes the non-diamond 

carbon present in between the diamond colonies.  The initial layer density of the films 

primarily depends on the initial nucleation density.    

UNCD 
characterization  

 Technique/to
ol  

Surface sp2 content  4-6 %  NEXAFS 

Bulk hydrogen content  1.0 -1.5%  FRES 

Surface composition  C 91.5 %, O 8.5 
%  

XPS 

Film stress  -370 ± 1 MPa  Flexus Tencor  

Surface roughness 
(rms)  

∼5 nm  AFM  

Table 3.3.1. Summary of characterization results of UNCD grown by HFCVD technique.  

The mass density of Aqua 25 films were examined using X-ray Reflectivity 

(XRR) measurements. These measurements are performed by Evans Analytical Group, 

Hightstown, NJ, 08520 USA. This yielded a density of 3.05 g/cm3 for the UNCD layer 

and 2.39 g / cm3 for the low density layer (about 100 nm thick) above silicon substrate (ρ 

= 2.33 g / cm3). XRR alone can not determine the composition of this low density layer. 

We assume it to be either a low density nucleation layer, or an oxide layer on top of 

silicon, or both.  Depth profiling of various elements in UNCD using SIMS (performed 

by EAG) yielded negligible change in the hydrogen or oxygen content in this region 

compared to UNCD layer, suggesting that this layer is likely due to silicon oxide.  

Considering the fact that this is the first measurement of density of UNCD films, for the 
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following sections we assumed that the density of UNCD to be that of single crystal 

diamond. Further work is needed to determine the composition and thickness of any 

initial seed layer in the UNCD. We will discuss the possibility of lower density and its 

influence on the measured mechanical properties.  A summary of the characterization 

results are shown in Table 3.3.1. 

3.4 Fabrication of UNCD devices 

For cantilever fabrication, a thick sputtered oxide was deposited on the UNCD 

surface. This oxide layer is subsequently patterned and etched to expose UNCD. Oxide 

layer serves as a hard mask for etching the UNCD layer to produce the cantilevers. The 

UNCD layer was etched using an oxygen-based plasma in a reactive ion etching (RIE) 

process. The wafers were diced to commercial AFM chip specifications (4.4 mm × 1.6 

mm dies) to enable insertion into commercial AFMs for measuring the cantilever 

properties.  Each die contained four cantilevers as shown in the SEM image in Fig. 3.4.1, 

with the cantilever lengths of 100 μm, 250 μm, 350 μm and 400 μm. The thickness of 

each cantilever was measured by SEM, and ranged from 820 nm to 1.01 μm. The minor 

differences in thickness are from thickness variation of the film as deposited or due to 

subsequent processing. The length-to-width ratio is 7.5 for all the cantilevers. The oxide 

hard mask and sacrificial oxide were subsequently wet-etched simultaneously, using a 

49% (by volume) HF solution.    

The Si underside of the cantilevers was further etched with either a SF6 or a XeF2 

dry etch chemistry to study the effect of overhang on mechanical properties. The 

substrates were cleaved so that the cantilevers did not have any substrate material 
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underneath them (Fig. 3.4.2.). This was done to ensure that reflected light was sampled 

only from the cantilever and not from the more reflective Si substrate. Cantilever dies are 

further subjected to piranha cleaning and XeF2 etch process to remove silicon particles 

after the cleaving process.  

 

FIG. 3.4.1 (a). SEM image of unreleased UNCD cantilever die which features four 

different cantilevers with lengths ranging from 100 μm to 400 μm,  with a thickness of 1 

μm.  (b) Optical microscope image of the cantilever die. 

In order to fabricate overhang-free cantilevers, we adopted following procedure. 

After the wet release, cantilever dies are subjected to deep reactive ion etch (DRIE) 

procedure using SF6 (Bosch process). This is a highly anisotropic, line of sight process 

and it etched the silicon between the cantilevers (etch depth is 250μm), leaving the side 

walls of silicon underneath the levers exposed for isotropic etch.  This step is followed by 

a SF6 isotropic etch, which removed the remaining silicon underneath the cantilevers and 

produced an overhang of 30 μm.  

(a) (b) 
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Fig. 3.4.2 (a) SEM image of underside cleaved UNCD cantilevers (b) An optical image 

of underside cleaved UNCD cantilevers subjected to isotropic etch. Undulating overhang 

at the cantilever base is due to residual stress.  

           This procedure ensured that the gap between cantilever and underlying substrate is 

large (250 μm), so that the laser bouncing of a slightly bent (This curvature is due to 

residual stress gradient) cantilever can be distinguished by the photosensitive detector 

(PSD) from light bouncing off from underlying substrate. Similarly, these etch processes 

resulted in rough substrate surface which limited the reflection from the same.  

Combination of DRIE and isotropic etch helps to limit the overhang to about 30μm 

which can be eliminated by focused ion beam milling of both sides of cantilever base as 

shown in Fig 3.4.3.  Dies were then cleaned using a piranha solution  (3:1 concentrated 

sulfuric acid to 30% hydrogen peroxide solution) before being tested under UHV (2×10-10 
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Torr) conditions on a custom-built AFM stage inserted into a RHK 350 UHV AFM and 

RHK 750 UHV AFM.  

 

Fig 3.4.3 SEM image of DRIE etched UNCD cantilevers dies after FIB milling the 

cantilever base to eliminate the overhang. 

Dies without cantilevers were also studied to determine the biaxial modulus. XeF2 

dry etching chemistry is used to produce an uninterrupted overhang of UNCD films 

grown on silicon.  This etching method is preferable as the SF6 reactive ion etch (RIE) 

also attacks UNCD due to the presence of a small amount of oxygen in the plasma. The 

amplitude and wavelength of the overhanging portion were measured using a Zygo white 

light scanning interferometer (NewView 6K). Different overhangs were produced till the 

film is completely relaxed to determine the biaxial modulus. Zygo interferometer is used 

to measure the curvature of the released cantilevers.  Based on this measurement, we 

determined that the films have a residual stress gradient of ∼75 MPa/μm. 
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3.5 Elastic properties of UNCD 

A. Young’s modulus  

The measured resonant frequencies of cantilevers of different lengths and 

overhangs are plotted in Fig. 3.5.1. The resonant frequency for the nth mode of an 

undamped, freely vibrating cantilever is given by [16] 

 

2

22 12
n

n
t Ef
L

β
π ρ

=
 

(3.1)  

where L and t are the length and thickness of the beam, respectively, and E and ρ are 

Young’s modulus and density, respectively. βn is a constant equal to ∼ 1.875, 4.694, 

7.855 for n = 1,2,3 respectively. Therefore, the Young’s modulus of the cantilever 

material can be determined if the mass density and the dimensions are known. 

Measurements of resonance frequencies vs. 1/L2 for all cantilevers with overhangs 

ranging from 5 μm to 85 μm are shown in Fig. 3.5.1(a). In principle, if the mass density 

is specified, Eq. (3.1) could then be used to determine Young’s modulus. However, the 

presence of an overhang at the cantilever base alters the resonant frequency from the 

value predicted by Eq. (3.1) by an amount which increases as the lever gets shorter.  

Therefore, we employed two independent methods to correct for this effect. First, we 

determined the modulus numerically using the COMSOL multi-physics package 

(COMSOL Inc. Burlington, MA, USA), accounting for the measured overhang. This 

yielded a Young’s modulus of 790±30 GPa. Second, the Young’s modulus was estimated 

by adding an effective length chosen to give a constant Young’s modulus for all the 
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levers of different lengths.[17]  Fig. 4(b) shows such an estimate of the Young’s modulus 

for cantilevers with 85 μm overhang obtained by adding 36 μm to the actual length of the 

cantilevers. Based on these estimates, we determine the modulus to be 792 ± 38 GPa. 

There is excellent agreement between the two independent correction methods.  
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Figure. 3.5.1. (a) First flexural resonance frequency of the cantilevers as a function of the 

inverse square of the cantilever length. (b) A comparison of the modulus determined from 

Eq. (3.1) as a function of actual cantilever length, before and after adding an effective 

length of 30 μm to the actual length of the levers. All three cantilevers were on a single 

die with an 85 μm overhang.  

           Both of the calculations of the Young’s modulus described above depend linearly 

of the density of the UNCD films as shown in Eq. 3.1. The density is not known with 

certainty. For the calculations presented here, the density of the UNCD is assumed to be 

equal to that of single crystal diamond (3500 kg/m3). The effect of lower density will be 

discussed further below. The reported uncertainty of the Young’s modulus of individual 

cantilevers was determined from the accuracy of the thickness of the beams measured in 
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SEM, which leads to an error of ∼ 4% in the measured Young’s modulus. The Hershey-

Kroner-Eshelby averaging procedure for polycrystalline diamond yields a Young’s 

modulus value of 1143 GPa [5]. Thus, the measured Young’s modulus is ∼20-25% lower 

than the theoretically calculated value for microcrystalline diamond with randomly 

oriented grains, [5] and is ∼5-15 % lower than the experimentally determined value for 

the modulus of traditional UNCD films measured using nanoindentation (864 GPa)[2] 

and beam deflection (916-959 GPa)[1]. However, MPCVD-grown NCD fixed-fixed 

resonator structures yielded modulus values ranging from 680-980 GPa[18-20],  and 

MPCVD-grown UNCD fixed-fixed resonators grown at 550° C yielded a modulus of 710 

GPa.[4]  These results are summarized in Table 3.5.1 

Film thickness 

nm 

Growth method Growth 
temperature 

(°C) 

Grain size 

(nm) 

Young’s 
modulus (GPa) 

∼1000 HFCVD 680 ∼5 nm 790 ± 30[21] 

870  MPCVD 550 ∼2-5 nm  710[4] 

∼500 MPCVD 800 ∼2-5 nm 916-957[1] 

600 - 4100 MPCVD 720 ∼10-100 nm 500-1120[22] 

340 HFCVD 600 ∼5 nm 440[23] 

Table 3.5.1. Comparison of Young’s modulus of diamond thin films.  

The reasons for the somewhat lower Young’s modulus of the UNCD films 

discussed here compared to traditional MPCVD grown films are not understood at this 

time. Theoretical studies [24-26] of mechanical properties of UNCD have indicated that 

the observed Young’s modulus strongly depends on the sp2 content as well as volume 
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fraction of grain boundaries. Philip et al.[22] showed that NCD films (columnar grains, 

grain size 10-100 nm) can have Young’s moduli in the range of 500 GPa – 1120 GPa 

depending on the initial nucleation densities.  UNCD and NCD films all have an initial 

nucleation layer which can be geometrically irregular, disordered, and lower in density 

due to voids, and can possess enhanced sp2 bonding [15, 27]. These factors can reduce 

the modulus of that layer. Indeed, thinner films of UNCD are reported to have a reduced 

Young’s modulus compared to single crystal diamond, [23] which could be explained by 

the increased proportion of the level that is composed of this inhomogeneous seed layer.   

As mentioned earlier, experimental measurement of density using XRR yielded a 

value of 3.05 g/cm3 with the possibility of seeding layer with a much lower density of 

2.39 g/cm3. Taking these into account would produce an even lower Young’s modulus 

for the UNCD. Modeling the cumulative effects of the lower density of the UNCD layer 

and the seed layer are difficult. This is due to the lack of information about the modulus 

of seed layer and its structure. In the case of resonator structures which are subjected to 

fabrication processes, including reactive ion etching, it is challenging to speculate on the 

nature of the underside, since oxygen present during this process etches both sp2 and sp3 

carbon at different rates. We have not seen a variation in the modulus of levers that have 

undergone XeF2 release and SF6 RIE release (including for some levers the Deep reactive 

ion etch process, described earlier in this chapter) or wet etch using hydro fluoric acid 

(HF). 

As well, when the modulus is measured using resonant methods, one should 

consider the effects of stresses on resonant frequency shifts. Fixed-fixed beams often 

suffer residual compressive [23] or tensile stresses which can increase or decrease the 
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resonant frequency.  To understand the origins of these differences fully, it is necessary to 

perform a systematic series of studies comparing UNCD films grown at the same 

temperature, with similar chemistries, such that both films show similar content of sp2 

and sp3 bonds, and comparable nanostructures. However, it is reasonable to assume that 

the different Young’s modulus observed for the HFCVD, high temperature (800 °C) 

grown MPCVD UNCD films, and MCD films may at least partially be attributed to 

volume fraction of grain boundaries which accommodate some amount of disordered 

carbon, dangling bonds, hydrogen, seeding method used and initial nucleation densities.    

         

B. Poisson’s Ratio 

           If a compressively-stressed thin film is partially released from its substrate so that 

it exhibits an overhang, the stress in the film can produce sinusoidal wave-like structures 

as a means of stress relief. The biaxial modulus, E/(1-ν), of such compressively-stressed 

overhanging thin films can be estimated by measuring the period and the amplitude of the 

sinusoidal waves of the fully relaxed portion of the overhang. This requires that 

independently measuring the residual compressive stress. As well, the overhanging ledge 

should be several wavelengths long (in the direction parallel to the edge of the substrate) 

to avoid boundary effects. [28, 29] To ensure the film is completely relaxed, the film has 

to be under-etched to produce an overhang until the ratio of amplitude to wavelength 

does not change with further under-etching.  This condition is satisfied when the 

underetch becomes more than half of the wavelength (λ/2) of the relaxed overhang. For 
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the fully relaxed thin films with sinusoidal amplitude A0 much smaller than 

thewavelength, the biaxial modulus is given by [28, 30]     
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where σ0 is the residual compressive stress and ν is the Poisson’s ratio of the film. The 

residual stress was measured using a Tencor profilometer as discussed earlier, and the 

films were found to have residual compressive stress of 370 ±1 MPa. If the Young’s 

modulus and the residual compressive stress in the film are measured independently, then 

we can determine the Poisson’s ratio ν  using: 

                                                     
b
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(3.3) 

where Eb is the bulk modulus. Residual stress in the film was relieved by underetching 

the substrate using dry etching as described above.  Figure 3.5.2 (a) shows a schematic of 

periodic wrinkles, and the Zygo interferometric image of the underetched overhang. 

Figure 3.5.2 (b) shows the ratio of the amplitude of the undulation A0 to the period λ of 

the overhanging portion of the film as a function of the overhang length.  For overhangs 

less than 50 μm, periodic undulations are barely observed. Beyond an overhang of 160 

μm (∼λ/2), the ratio stabilizes to 0.0067. Thus, the film is fully relaxed by this overhang 

length, and the remaining substrate does not change the stress relaxation behavior of the 

edge of the film.  
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Figure 3.5.3 (a) shows the profile of one such overhang taken using the scanning 

white light interferometer.  Figure 3.5.3 (b) shows the line profile of the overhang at the 

ridge of the sinusoidal undulation. Based on these measurements, we estimate the biaxial 

modulus to be 838 ± 2 GPa. We assume that biaxial residual stress remains the same 

throughout the sample. Using the Young’s modulus of 790±30 GPa determined using the 

resonance measurements described earlier, the calculated Poisson’s ratio of UNCD is 

then 0.057±0.038. The large relative error is due to the subtraction of two large, similar 

values E and Eb to produce a much smaller value.   
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Figure. 3.5.2.(a) A Zygo white light interferometer image of a substrate free overhang 

and a schematic of the same. (b) Ratio of amplitude to wavelength of the overhang as a 

function of the overhang length(for several different samples). For overhangs between 50 

μm and 160 μm, the UNCD film is not fully relaxed from residual stress present in the 

substrate. Beyond 160 μm, A0/λ does not change with further etch depths.  

 



56 

 

The theoretical value of Poisson’s ratio of polycrystalline diamond with randomly 

oriented grains and ignoring the contribution of grain boundaries is 0.069, based on the 

Hershey-Kroner-Eshelby averaging method [5]. A low Poisson’s ratio is a unique 

property of sp3 tetragonal bonded carbon, which shows a higher elastic resistance to bond 

bending compared to bond stretching.  However, for UNCD films, which have a 

significant proportion of grain boundaries containing sp2 bonded carbon, the Poisson’s 

ratio may be expected to be higher than the theoretically predicted value for 

polycrystalline diamond. For example, the Poisson’s ratio of tetrahedral amorphous 

carbon (ta-C) films, which contain much higher sp2 bonding than UNCD (~20% of the 

bonds are sp2 in ta-C) is 0.202±0.054.[31] In comparison with polycrystalline diamond, 

UNCD grain boundaries are atomically abrupt.[32] The influence of grain size on 

Poisson’s ratio has recently been modeled.  
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Figure. 3.5.3. (a) Interferometric image of the UNCD film with a 255 μm etched 

overhang. (b) Line scan of the section shown in 7a showing a near saturation beyond 160 

μm.  The apparent jump in the height at the base of the overhang is simply due to the 

change in reflectivity from the more reflective underlying substrate. 
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A theoretical prediction for Poisson’s ratio of UNCD (calculated from Young’s 

modulus and the bulk modulus) yielded a value of 0.07 for a grain size of 4.41 nm. In the 

modeled material, there was significant (9.12%) non-diamond (sp2) content [26], which is 

substantially more than the sp2 content of 4.3% that we measured for our films using 

NEXAFS. This suggests that a low Poisson’s ratio can still be preserved even with 

significant sp2 content. One limitation of this model is that it does not consider effects of 

the presence of hydrogen in grain boundaries [9]. As well note that the value of Poisson’s 

ratio measured here, like the value for E, does depend on the mass density. The mass 

density could be lower for UNCD as compared to the value single crystal diamond, 

which we have used in our calculations.  A lower density reduces the calculated modulus 

and hence increases the measured Poisson’s ratio. Regardless, overall this model 

demonstrates that the low Poisson’s ratio we have measured is a reasonable finding. 

C. Acoustic velocity: 

As discussed in Chapter 1, for high frequency resonator structures, one of the 

most important material parameters is the acoustic velocity. This can be determined 

accurately by resonance frequency measurements.  The longitudinal acoustic velocity can 

be determined using the following equation,         

            ( )( )
2 16.184

1 1 2L
fLV
h

ν
ν ν
−

=
+ −

     

(3.4) 

where f is the resonant frequency of the beam. Using the measured values of Poisson’s 

ratio and Young’s modulus we determined the longitudinal acoustic velocity to be 15.1 ± 



58 

 

0.3 km/s. This compares very well with UNCD films grown with MPCVD technique 

(Table 3.1.1) [4]. The acoustic velocity of UNCD films measured here is much higher 

than other thin film MEMS materials such as silicon (8.8 km/s), silicon nitride (11.8 

km/s), and aluminum nitride (11.4 km/s), and is only lower than that of theoretically 

predicted value of polycrystalline diamond (18 km/s) as shown in the bar graph. The 

values quoted for Si, polycrystalline diamond (Poly-D), and SiC are from ref. [33]. The 

value for AlN is from ref. [34]. The value for UNCD is from this work. This is a critical 

advantage for the use of UNCD films in high frequency devices.  

 

 

 

 

 

 

 

 

 

 

 



59 

 

References: 

[1]  H. D. Espinosa, B. C. Prorok, B. Peng, K. H. Kim, N. Moldovan, O. Auciello, J. A. Carlisle, D. 
M. Gruen, and D. C. Mancini,  "Mechanical properties of ultrananocrystalline diamond 
thin films relevant to MEMS/NEMS devices," Experimental Mechanics, vol. 43, pp. 256‐
268, Sep 2003. 

[2]  A. V.  Sumant, Auciello, A.  R.  Krauss, D. M. Gruen, D.  Ersoy,  J.  Tucek, A.  Jayatissa,  E. 
Stach, N. Moldovan, D. Mancini, H. G. Busmann, and E. M. Meyer, "Fabrication of MEMS 
Components Based on Ultrananocrystalline Diamond Thin Films and Characterization of 
Mechanical Properties," Mater. Res. Soc. Symp. Proc, vol. 657, 2000. 

[3]  D.  A.  Czaplewski,  J.  P.  Sullivan,  T.  A.  Friedmann,  and  J.  R.  Wendt,  "Temperature 
dependence  of  the  mechanical  properties  of  tetrahedrally  coordinated  amorphous 
carbon thin films," Applied Physics Letters, vol. 87, p. 161915, 2005. 

[4]  O. Auciello, S. Pacheco, A. V. Sumant, C. Gudeman, S. Sampath, A. Datta, R. W. Carpick, 
V. P. Adiga, P. Zurcher, M. Zhenqiang, Y. Hao‐Chih, J. A. Carlisle, B. Kabius, J. Hiller, and S. 
Srinivasan,  "Are Diamonds a MEMS' Best Friend?," Microwave Magazine,  IEEE,  vol. 8, 
pp. 61‐75, 2007. 

[5]  C. A. Klein, "Anisotropy of Young's modulus and Poisson's ratio  in diamond," Materials 
Research Bulletin, vol. 27, pp. 1407‐1414, 1992. 

[6]  C. Sungwoo, C. Ioannis, A. F. Thomas, and P. S. John, "Young's modulus, Poisson's ratio 
and  failure  properties  of  tetrahedral  amorphous  diamond‐like  carbon  for  MEMS 
devices," Journal of Micromechanics and Microengineering, p. 728, 2005. 

[7]  N. Sepulveda, L. Jing, D. M. Aslam, and J. P. Sullivan, "High‐Performance Polycrystalline 
Diamond Micro‐ and Nanoresonators," Microelectromechanical Systems, Journal of, vol. 
17, pp. 473‐482, 2008. 

[8]  F.  Szuecs, M. Werner, R.  S.  Sussmann, C.  S.  J.  Pickles,  and H.  J.  Fecht,  "Temperature 
dependence  of  Young's  modulus  and  degradation  of  chemical  vapor  deposited 
diamond," Journal of Applied Physics, vol. 86, pp. 6010‐6017, 1999. 

[9]  C. Liu, X. C. Xiao, J. Wang, B. Shi, V. P. Adiga, R. W. Carpick, J. A. Carlisle, and O. Auciello, 
"Dielectric properties of hydrogen‐incorporated chemical vapor deposited diamond thin 
films," Journal of Applied Physics, vol. 102, p. 7, Oct 2007. 

[10]  R.  P.  Chin,  J.  Y. Huang,  Y.  R.  Shen,  T.  J.  Chuang,  and H.  Seki,  "Interaction  of  atomic 
hydrogen with  the diamond C(111)  surface  studied by  infrared‐visible  sum‐frequency‐
generation spectroscopy," Physical Review B, vol. 52, p. 5985, 1995. 

[11]  C. Su, K. J. Song, Y. L. Wang, H. L. Lu, T. J. Chuang, and J. C. Lin, "Hydrogen chemisorption 
and  thermal  desorption  on  the  diamond  C(111)  surface,"  The  Journal  of  Chemical 
Physics, vol. 107, pp. 7543‐7558, 1997. 

[12]  C. Lenardi, P. Piseri, V. Briois, C. E. Bottani, A. L. Bassi, and P. Milani, "Near‐edge x‐ray 
absorption fine structure and Raman characterization of amorphous and nanostructured 
carbon films," Journal of Applied Physics, vol. 85, pp. 7159‐7167, 1999. 

[13]  A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C. Mancini, N. 
Moldovan, A. Erdemir, D. Ersoy, M. N. Gardos, H. G. Busmann, E. M. Meyer, and M. Q. 
Ding,  "Ultrananocrystalline  diamond  thin  films  for  MEMS  and  moving  mechanical 
assembly devices," Diamond and Related Materials, vol. 10, pp. 1952‐1961, 2001. 

[14]  R.  J. Cannara, M.  J. Brukman, K. Cimatu, A. V.  Sumant,  S. Baldelli, and R. W. Carpick, 
"Nanoscale  friction  varied  by  isotopic  shifting  of  surface  vibrational  frequencies," 
Science, vol. 318, pp. 780‐783, Nov 2007. 



60 

 

[15]  A. V. Sumant, D. S. Grierson, J. E. Gerbi, J. Birrell, U. D. Lanke, O. Auciello, J. A. Carlisle, 
and R. W. Carpick,  "Toward  the ultimate  tribological  interface: Surface  chemistry and 
nanotribology of ultrananocrystalline diamond," Advanced Materials, vol. 17, pp. 1039‐
+, Apr 2005. 

[16]  A. N. Cleland, Foundations of Nanomechanics. Heidelberg, New York: Springer Verlag, 
2003. 

[17]  E. Q.  J. Mencik,  "Determination of  elastic modulus of  thin  films  and  small  specimens 
using beam bending methods," in Journal of Materials Research. vol. 14, 1999, pp. 2152‐
2161  

[18]  L. Sekaric,  J. M. Parpia, H. G. Craighead, T. Feygelson, B. H. Houston, and  J. E. Butler, 
"Nanomechanical  resonant  structures  in  nanocrystalline  diamond,"  Applied  Physics 
Letters, vol. 81, pp. 4455‐4457, 2002. 

[19]  T. H. Metcalf, X. Liu, B. H. Houston,  J. W. Baldwin,  J. E. Butler, and T. Feygelson, "Low 
temperature internal friction in nanocrystalline diamond films," Applied Physics Letters, 
vol. 86, pp. 081910‐3, 2005. 

[20]  A. B. Hutchinson, P. A. Truitt, K. C. Schwab, L. Sekaric, J. M. Parpia, H. G. Craighead, and 
J.  E.  Butler,  "Dissipation  in  nanocrystalline‐diamond  nanomechanical  resonators," 
Applied Physics Letters, vol. 84, pp. 972‐974, 2004. 

[21]  V. P. Adiga, A. V. Sumant, S. Suresh, C. Gudeman, O. Auciello,  J. A. Carlisle, and R. W. 
Carpick,  "Mechanical  stiffness  and  dissipation  in  ultrananocrystalline  diamond 
microresonators," Physical Review B (Condensed Matter and Materials Physics), vol. 79, 
pp. 245403‐8, 2009. 

[22]  J. Philip, P. Hess, T. Feygelson, J. E. Butler, S. Chattopadhyay, K. H. Chen, and L. C. Chen, 
"Elastic, mechanical, and thermal properties of nanocrystalline diamond films," Journal 
of Applied Physics, vol. 93, pp. 2164‐2171, 2003. 

[23]  M.  Imboden  and  P. Mohanty,  "Evidence  of  universality  in  the  dynamical  response of 
micromechanical  diamond  resonators  at millikelvin  temperatures,"  Physical  Review  B 
(Condensed Matter and Materials Physics), vol. 79, pp. 125424‐5, 2009. 

[24]  J. T. Paci, T. Belytschko, and G. C. Schatz,  "The mechanical properties of single‐crystal 
and  ultrananocrystalline diamond: A  theoretical  study,"  Chemical  Physics  Letters,  vol. 
414, pp. 351‐358, Oct 2005. 

[25]  J. T. Paci, T. Belytschko, and G. C. Schatz, "Mechanical properties of ultrananocrystalline 
diamond prepared  in  a nitrogen‐rich plasma: A  theoretical  study," Physical Review B, 
vol. 74, p. 9, Nov 2006. 

[26]  I.  N.  Remediakis,  G.  Kopidakis,  and  P.  C.  Kelires,  "Softening  of  ultra‐nanocrystalline 
diamond at low grain sizes," Acta Materialia, vol. 56, pp. 5340‐5344, 2008. 

[27]  A. V.  Sumant, D.  S. Grierson,  J. E. Gerbi,  J. A. Carlisle, O. Auciello, and R. W. Carpick, 
"Surface chemistry and bonding configuration of ultrananocrystalline diamond surfaces 
and their effects on nanotribological properties," Physical Review B (Condensed Matter 
and Materials Physics), vol. 76, p. 235429, 2007. 

[28]  R. T. Howe and R. S. Muller, "Stress in polycrystalline and amorphous silicon thin films," 
Journal of Applied Physics, vol. 54, pp. 4674‐4675, 1983. 

[29]  P.  G.  Borden,  "A  simple  technique  for  determining  the  stress  at  the  Si/SiO[sub  2] 
interface," Applied Physics Letters, vol. 36, pp. 829‐831, 1980. 

[30]  S.‐J. Cho, J.‐W. Chung, and K.‐R. Lee, "Characterization of the mechanical properties of 
diamond‐like  carbon  films,"  Diamond  and  Related Materials,  vol.  14,  pp.  1270‐1276, 
2005. 



61 

 

[31]  S. Cho, I. Chasiotis, T. A. Friedmann, and J. P. Sullivan, "Young's modulus, Poisson's ratio 
and  failure  properties  of  tetrahedral  amorphous  diamond‐like  carbon  for  MEMS 
devices,"  Journal  of Micromechanics  and Microengineering,  vol.  15,  pp.  728‐735, Apr 
2005. 

[32]  O. Auciello, S. Pacheco, A. V. Sumant, C. Gudeman, S. Sampath, A. Datta, R. W. Carpick, 
V.  P.  Adiga,  P.  Zurcher,  Z. Ma,  H.  C.  Yuan,  J.  A.  Carlisle,  B.  Kabius,  J.  Hiller,  and  S. 
Srinivasan, "Are diamonds a MEMS' best friend?," Ieee Microwave Magazine, vol. 8, pp. 
61‐75, Dec 2007. 

[33]  W. Jing, J. E. Butler, D. S. Y. Hsu, and T. C. Nguyen, "CVD polycrystalline diamond high‐Q 
micromechanical resonators," in Micro Electro Mechanical Systems, 2002. The Fifteenth 
IEEE International Conference on, 2002, pp. 657‐660. 

[34]  M.  B.  Assouar,  O.  Elmazria,  L.  Le  Brizoual,  and  P.  Alnot,  "Reactive  DC  magnetron 
sputtering of aluminum nitride  films  for surface acoustic wave devices," Diamond and 
Related Materials, vol. 11, pp. 413‐417, 2002/6//. 

 
 



62 

 

Chapter 4. Thermomechanical stability of UNCD films 
 
4.1 Background 
 

The temperature dependence of the mechanical properties, specifically the elastic 

constants, of single crystal diamond and polycrystalline diamond films have been 

measured previously either using acoustic reflection methods [1], by measuring the shift 

in the resonant frequency of a vibrating beam [2-4], or by independently measuring[5] 

mechanical properties using dynamical methods. Some of these studies involved 

Brillouin scattering [6]. However, experimental investigations of the low temperature (< 

300K) mechanical properties of single crystal diamond are rare. There are only two 

articles [1, 2] to date which report measurements of the low temperature mechanical 

properties of single crystal diamond. This is due to the fact that changes in the modulus 

of diamond are extremely small (<0.1% from 0 K to 300 K). As well, diamond has an 

extremely high acoustic velocity (18 km/s) which makes it difficult to detect these 

changes in acoustical measurements.  

The temperature dependence of the mechanical properties is strongly affected by 

the specific heat, and this will be discussed later in this Chapter. Single crystal diamond 

has an extremely high Debye temperature (1860 K) and even at room temperature the 

specific heat follows a T3 temperature dependence, which is the low-temperature limiting 

behavior predicted from Debye theory. Hence, the relative reduction in modulus at finite 

temperature is much lower than many metals and other materials relevant for MEMS, 

including silicon, silicon nitride, silicon carbide, and aluminum nitride.  It is therefore 

interesting to study whether this stable behavior occurs in UNCD, since the 
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nanostructure, grain boundaries, and other defects may affect the temperature dependence 

of the modulus. 

 To determine the expected minute changes in the modulus, we measured shifts in 

the resonant frequency of UNCD cantilevers versus temperature under UHV conditions. 

UHV conditions are necessary to limit the condensation of molecular contaminants onto 

the resonators as the temperature is reduced. In addition, damping due to a surrounding 

gas, which is what will dominate the damping of these cantilevers at ambient pressure, is 

eliminated in vacuum. Shifts in the resonant frequency can be correlated with the 

corresponding change in the modulus according to Eq. 3.1. and is given by: 

1
2

df dE
dT dT

∝      (4.1) 

The changes in the dimension of the cantilever due to thermal contraction or expansion 

and changes in the density with temperature together contributes to an error of the order 

of coefficient of thermal expansion (1× 10-6 /K for single crystal diamond) and can be 

neglected.  To make a comparison between temperature dependent properties of different 

materials, a parameter called the temperature coefficient of frequency (TCF) is 

commonly used. It is defined as  

 

 

where f0 is the resonant frequency at room temperature, and Δf is the shift in the resonant 

frequency from 260 K to 320 K (ΔT =60). A low TCF is important for applications in 

adsorbed mass sensing where thermal fluctuations can overwhelm the change in resonant 

frequency due to the adsorbed mass. Similarly, it is important for stable high frequency 

0
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filters. An XY-cut quartz crystal has an extremely stable resonant frequency near room 

temperature and hence is used commercially as a mass sensor as well for filters in 

electronic circuits. Therefore, the determination of the TCF for UNCD is interesting 

scientifically and important technologically. There are only a few measurements of the 

temperature dependence of the resonant frequency of diamond resonators, and prior to 

this work, none for low temperature measurements of UNCD.  

4.2. Temperature dependence of Young’s modulus 

 The elastic modulus of materials at 0 K strongly depends on atomic bond energy 

(EB(0)) and the bond length (d0). At finite temperatures, the atoms absorb thermal energy 

and vibrate around their mean positions. Within the bond lengths sampled by these 

oscillations, the potential is harmonic and hence there is no expansion in bond length or 

reduction in the elastic modulus. Hence at low temperatures, the modulus has negligible 

temperature dependence.  However, as the temperature further rises, the anharmonic 

character of the potential begins to be sampled by the atoms. In particular, the potential 

well becomes wider at larger separations. This causes the bonds to expand overall, and 

become less stiff. As a result, the modulus reduces with temperature [7-9] [10]. At higher 

temperatures, most materials show a linear reduction in the Young’s modulus with 

increasing temperature. A typical temperature dependence of Young’s modulus is shown 

in Figure 4.1. 

The analytical solution to thermally driven softening of the Young’s modulus has 

been a challenge. Wachtman et al. [8] developed an empirical solution for temperature 

dependent modulus:  



65 

 

  
0

0( ) exp TE T E AT
T

⎛ ⎞= − −⎜ ⎟
⎝ ⎠  (4.3) 

where E0 is the Young’s modulus at 0 K. Watchtman assumed that A is a temperature-

independent constant related to the Grueneisen parameter γ, and T0 is characteristic 

temperature related to the Debye temperature, ΘD. Later, Anderson et al. [9] derived an 

equation for the temperature-dependent bulk modulus by taking into account anharmonic 

effects of lattice vibrations:   
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 (4.4) 

where B0 and V0  are the bulk modulus and specific volume per average atom at 0 K 

respectively. U is the thermal energy, R is the ideal gas constant, δ is Anderson-

Grueneisen parameter, and H(x) is given by 

   

3

3
0

3( )
1

x

x

xH x dx
x e

=
−∫

 .
 (4.5) 

We can rewrite this equation in terms of the specific heat cv: 

  0
0 0

( )
T

S vB T B c dT
V
γδ

= − ∫
 .
 (4.6) 
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This relation assumes that temperature-dependent volume changes are negligible, and γ 

and δ are temperature-independent [9]. In terms of Young’s modulus we can write this 

relationship as: 

                                                0
0 0

( )
3

T

S vE T E c dT
V
γδ

= − ∫
 .

                                        (4.7) 

This relation assumes that 3S SE B≈  (Poisson’s ratio ν << 1) and that ν has negligible 

temperature dependence. [7] Taking the first derivative with respect to T, we obtain:  

                                               

∂ES (T )
∂T

∝ cv
 .                                                          (4.8)

 

 At low temperatures specific heat reduces and has a T3 dependence and is zero at 

0 K. Hence at very low temperature, the predicted rate of change of the bulk modulus and 

Young’s modulus with temperature decreases and is zero at 0 K so as to satisfy the 

Nernst Law [7]. In the high temperature limit, the specific heat saturates (3R) and we see 

a linear reduction in modulus with temperature. In this high temperature limit, the Debye 

temperature can be estimated by comparing (4.7) and (4.3). This yields, 
0

RA
V
γδ

=  and 

0 2
DT Θ

≈ [9].     
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4.3 Temperature dependence of elastic properties of diamond and      
nanocrystalline solids 

The temperature dependence of the elastic constants, including Young’s modulus, 

for single crystal diamond has been studied [2, 5, 6] and theoretically predicted 

previously [11]. As shown in Fig. 4.1, the rate of change of the Young’s modulus of 

single crystal diamond with respect to temperature is dramatically reduced below 150 K. 

                     

Figure 4.1. Temperature dependence of Young’s modulus (the authors have used symbol 

of Y instead of E) of single crystal diamond and tetrahedral amorphous carbon (ta-C)[11]. 

Melting temperature (Tm) of single crystal diamond is 3820 °K. 

 

However, in nanoscale materials the temperature dependence of the specific heat 

and the elastic moduli can be substantially different than that of bulk materials. Recent 

progress [12] has shown that it is possible to correlate changes in the Young’s modulus of 

nanoscale particles (nanoparticles, shells, or rods, as opposed to nanostructured bulk 

materials) to atomistic parameters [10, 13] by the bond-order-length-strength (BOLS) 
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correlation, by taking into account the bond nature, bond order, bond length, and bond 

strength. Broken bonds at the surfaces can make the remaining bonds stronger or weaker, 

depending on the nature of bond, co-ordination number, and bond length. In metals, a 

higher fraction of surface atoms results in lower elastic moduli, and a higher temperature 

dependence of the moduli and specific heat at lower temperatures.[12, 13] However, in 

silicon, which has much stronger bonds than metals, a higher fraction of surface atoms 

results in higher moduli and a lower specific heat at low temperature. [12] There exists a 

core-shell structure, wherein undercoordinated surface atoms can have different local 

bulk moduli compared to the core. M. X. Gu et al. [13] proposed expressions for the size 

and temperature dependence of Young’s modulus and the Debye temperature of 

nanoscale materials. Gu also showed that the Young’s modulus, specific heat, and Debye 

temperature of nanoscale materials can increase or decrease compared to the bulk 

depending on the nature of the bonds, size of the nanostructure and temperature [13].  

In extended nanocrystalline solids however, we have solid interfaces (grain 

boundaries), wherein some of the bonds are broken but others are not. Grain boundaries 

also contain undercoordinated atoms, strained bonds, and impurities. The temperature 

dependence of the thermal properties of nanocrystalline solids at low temperatures can be 

significantly different than nanoscale materials, since long wavelength phonons are 

allowed. Similarly, nanocrystalline solids can have very different thermal properties 

compared to bulk single crystals, since high frequency phonons are scattered by grain 

boundaries. The vibrational density of states (VDOS) can be significantly different in 

nanocrystalline solids compared to bulk crystals or nano crystals which strongly 

influences the specific heat and it can significantly deviates from the T3 dependence.  We 
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can expect there to be some degree of size effects at high vibrational frequencies, but at 

low frequencies the influence of the VDOS will be characterized by the intrinsic 

properties of the grain boundaries. Recalling that these can account for approximately 

30% of the atoms in the solid, these effects may be significant. Thus, measurements of 

the temperature dependence of the elastic properties will be helpful in understanding the 

influence of grain boundaries in UNCD and nanocrystalline solids more generally. As 

mentioned before, such measurements also provide extremely useful and important data 

for implementing UNCD in high frequency devices. Further discussion on the influence 

of grain boundaries will provided in later in this chapter in the context of the 

experimental results we have obtained.  

4.4 Experimental results 
 

4.4.1 Temperature dependence of resonant frequency, and influence of 
overhang 
 

Our measurements of the temperature dependence of the resonance frequency 

were typically performed from 63 K to 450 K (Fig. 4.2). The upper and lower 

temperature limits we can reach are determined by heat exchange between the sample 

stage and the rest of the chamber in the UHV AFM system. Even though it is possible to 

reach 1000 K with the built-in heater, the Curie temperature of the actuation piezo and 

the softening temperature of the solder joints limit the maximum attainable temperature 

to approximately 450 K. The thermocouple on the top of the die is calibrated before 

mounting it onto the stage. The AFM has three different thermocouples which 

independently measure the temperature at the cryostat, the sample stage, and on top of the 
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sample itself. While the cryostat can be cooled to 10 K, the stage and the sample can only 

be cooled to ∼60 K.  
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Figure 4.2. (a) The temperature dependence of the resonant frequency of UNCD 

cantilever with no overhang. (b) The relative change in the corresponding resonant 

frequency.  Overhangs of the cantilever were reduced by FIB cuts at the cantilever base. 

These curves include data points taken during both heating and cooling cycles and are 

reproducible. Heating and cooling rates are approximately 1 K/ min.  

Fig. 4.2. shows the resonant frequency shift with temperature for a typical, overhang-free 

UNCD cantilever.  For all the measured cantilever beams, we observed little change in 

the resonant frequency below 160 K, followed by a transition to a nearly linear decrease 

with frequency.  Overall, the resonant frequency reduction is only 0.3% over the whole 

temperature range. The TCFs of the resonators were approximately ∼13.5 ppm/K near 

room temperature. This is among the lowest measured TCF of all materials (see Table 

4.1), and is only 8% higher than the predicted value for single crystal diamond (averaged 

over all directions) and the measured value nanocrystalline diamond disk resonators.  
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Table 4.1 lists the TCF for most promising MEMS materials. Except for 

nanocrystalline diamond and polycrystalline silicon, UNCD has the lowest temperature 

dependence of resonant frequency. The polycrystalline silicon measurements are reported 

only once, and the measurements were performed using capacitive technique which 

requires a metal layer deposited directly onto the Si structure. Hence the resultant shift in 

the frequency may not be intrinsic.  

Material Type of 
resonator 

TCF (ppm/K) 

Silicon Cantilever 50 [14] 

Silicon carbide Comb drive 22.3 [15] 

Aluminum nitride Contour mode 25 [16] 

Polycrystalline diamond  
(grain size >100 nm) 

Disk  12.1 [17, 18] 

Polycrystalline silicon Fixed-fixed 12.5 [19] 

UNCD Cantilever 13.5 - present work 

Polycrystalline diamond  
(grain size ∼300 nm) 

Cantilever 18.5-25.5 [4] 

Table 4.1. A comparison of the TCF of different MEMS materials. Only polycrystalline 

diamond[17] and polycrystalline silicon (with a metal coating) [19] show a lower TCF 

than UNCD (present work). Single crystal silicon [7] and silicon carbide[15], aluminum 

nitride[16, 20], silicon nitride[20] show a much stronger temperature dependence.  

 Cantilevers are stress-free structures and hence the frequency shifts are intrinsic to 

the material. However, even though the cantilevers are free of stress, the overhangs at 

their base are not. Residual compressive stresses in UNCD films result in wrinkles at 

overhanging cantilever bases, as discussed in Chapter 3. Residual stresses are partly due 
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to thermal mismatch stresses which change as a function of temperature, as does the 

period and amplitude of the wrinkles at the cantilever base. A discussion regarding the 

evolution of this curvature is provided in Chapter 3. Even though changes in the thermal 

expansion coefficient contribute negligibly to the changes in resonant frequency, the 

changes in thermal stresses can significantly alter the temperature-dependent response of 

the resonant frequency for resonators which have wrinkles at their base.  
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Single crystal diamond
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30 micron, Lever 2
30 micron, lever 1
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85 micron, lever 1

f2  / 
f 02

T K  

Figure 4.4. Temperature dependence of the resonant frequency for cantilevers with 

overhangs ranging from 0 (no overhang) to 85 μm overhang. The square of resonant 

frequency is propositional to modulus, and is compared with that of single crystal 

diamond (averaged over all directions). Above 55 μm of overhang, wrinkles start to form 

and the temperature dependence of the modulus strongly depends on the length of 

cantilever and its position on the wrinkles. Levers are numbered from 1 to 4, largest (400 

μm) to smallest (100 μm).  
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We investigated the effects due to the presence of wrinkles at the cantilever base 

on the temperature dependence of the resonant frequency for these cantilever beams. For 

cantilevers with small or negligible overhangs, the shift in the resonant frequency 

compares very well with that of the single crystal diamond, as shown Figure 4.3. 

However, for larger overhangs (for overhangs >55 μm, wrinkles form at the base) we 

observed that smaller cantilever beams had a higher temperature coefficient of frequency 

compared with larger ones. This indicates that wrinkles strongly influence the observed 

shifts. The observed frequency shifts were also strongly dependent on the position of the 

cantilever with respect to the wrinkle feature, i.e., on a trough, a ridge, or in between.  

   

Figure 4.4. Thermal expansion coefficient of diamond [21] and silicon[22]. Below 150 K 

thermal expansion of diamond is negligible and for silicon it reverses the sign.  
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We observed a slight increase in the resonant frequency for cantilevers (2 of 

them) with 85 μm of overhang as we increased the temperature from 138 K to 160 K. 

Fig. 4.4 shows the thermal expansion coefficient of single crystal diamond (a) and silicon 

(b) respectively. Thermal mismatch between single crystal diamond and silicon decreases 

as the temperature is reduced and changes sign below 160 K. A slight increase in the 

resonant frequency with temperature from 138 K to 160 K could be due to a reduction in 

the thermal mismatch stress due to the fact that thermal mismatch changes from negative 

to positive. Further studies are needed to understand the effects of overhang on the shift 

in the resonant frequency of the beams with temperature. However, since we had 

structures available with no wrinkling at the base because of a sufficiently short overhang 

(Fig. 4.2), we are confident that those results represent intrinsic mechanical behavior of 

UNCD. Clearly, it is critical to use cantilevers with sufficiently low overhangs to 

investigate the true nature of the resonant frequency shifts and the associated thermo-

mechanical properties in materials made of these cantilevers.  

4.4.2 Thermomechanical stability of UNCD films 
 

The relative change in the Young’s modulus of UNCD in comparison with single 

crystal diamond and silicon is shown in Figure 4.5.  Single crystal diamond values are 

averaged over all directions using the Voigt-Reuss-Hill approximation. [1, 2] The 

experimental results for single crystal diamond match theoretical predictions very well. 

[11, 13, 23-25] UNCD shows a slightly higher temperature dependence than single 

crystal diamond, but a much lower dependence than that of single crystal silicon. This is 

an extremely important practical result which demonstrates the suitability of UNCD for 

variable-temperature resonators and other applications. 
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Figure 4.5 (a) Temperature dependence of Young’s modulus of UNCD in comparison 

with single crystal diamond. Data for single crystal diamond are from references [2] (**) 

and [1] (∗). A comparison with single crystal silicon is provided in (b) [7]. 

 

In order to understand the temperature-dependent properties of UNCD below 300 

K, it is important to consider the contribution from the grain boundaries which account 

for considerable a volume fraction of UNCD. Grain boundaries are locations of 

impurities such as hydrogen [14], and defects. Carbon atoms at the grain boundaries may 

be two-fold (sp1) and three-fold (sp2) coordinated, or may form bonds at different lengths 

or angles from those observed in diamond due to the grain boundary structure. Even 

though bonds between two-fold coordinated sp1 atoms or between three-fold coordinated 

sp2 atoms are normally stronger than bonds between fourfold coordinated sp3 atoms, 

bonds between sp2 or sp1 atoms are stabilized by p-bonding, which is very sensitive to the 

geometry [26]. As a consequence, the local bulk moduli of sp1 and sp2 atoms could to be 

significantly lower than the bulk moduli of sp3 atoms [27]. Recently, an atomistic model 

of UNCD was conducted by Remdiakis et al. [27] who determined the mechanical 
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properties of UNCD films as a function of grain size, finding a reduction in modulus with 

grain size. The simulations were performed using a continuous-space Monte Carlo 

method using many body Tersoff potential. Figure 4.6 shows a map of local bulk moduli 

of atoms at grain boundaries compared to atoms within the individual grains [27] which 

show large fraction of atoms with lower local bulk modulus compared to atoms within 

the grains.  Such weaker bonds will then bend or stretch with greater ease compared to 

the bonds in the crystalline region, and may have a different (i.e., stronger) temperature 

dependent behavior. 

 

 

Figure 4.6 Map of local bulk moduli in UNCD.[27] Atoms at grain boundaries have 

higher or lower local bulk moduli compared to bulk of the atoms in the grains depending 

on coordination number.  
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Interestingly, the temperature dependence of Young’s modulus for 

microcrystalline diamond (MCD) films (grain size ∼100 μm) has been measured to be 

much higher compared with either single crystal diamond or UNCD [5]. The 

measurement was performed using a dynamic mechanical analyzer (DMA) with 

temperature variation capability. The MCD film exhibited an increase of approximately 

3% in modulus compared to less than 0.2% for single crystal diamond (averaged over all 

directions) as the sample was cooled from room temperature to 150 K, below which the 

changes were negligible.  We do not know the reason for the higher temperature 

dependence of MCD films. However, it could be due to larger and weaker grain 

boundaries compared to UNCD (grain boundaries of UNCD films are very abrupt (Figure 

1.2)).   

 

Figure 4.7.Specific heat and Debye temperature (above) and the difference in the specific 

heats (below) of graphite and diamond as a function of temperature [23]. 
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Elevated temperature (>300 K) measurements of resonant frequency shifts in 

resonators made from ta-C (Fig 4.1)  [28], which contains 80% sp3 content, and 

nanocrystalline diamond (grain size 300 nm, TCF of 17 – 25 ppm/K) [4] thin films have 

demonstrated a slightly higher reduction in Young’s modulus with respect to single 

crystal diamond and UNCD. Some ta-C films show a far more drastic drop in modulus, 

from 700 to 100 GPa, [29] as the temperature is raised from 250 °C - 400 °C.  

The temperature dependence of the modulus depends on the specific heat of 

UNCD according to equations 4.6 and 4.7. The temperature dependence of the specific 

heat of single crystal diamond and graphite are shown in Fig. 4.7. Graphite has a slightly 

higher temperature dependence of the specific heat at lower temperatures compared to 

diamond [23]. The behavior of graphite cannot be directly related with the behavior 

attributable to sp2–bonded carbon in the grain boundaries of UNCD, and therefore a more 

robust model which considers the phonon density of states for different types of bonding 

in grain boundaries, nano grains and the structure as a whole is necessary.  Modeling the 

heat capacity of ultrananocrystalline diamond at low temperatures should also take into 

account the influence of defect transitions by low frequency acoustic phonons (Discussed 

in Chapter 5). Similarly, contribution from carbon atoms with sp2 and sp1 bonding and 

the presence of impurities like hydrogen and interfacial energy should be taken into 

consideration. As mentioned earlier, the specific heat of nanocrystalline solids have 

shown a significant departure from the T3 temperature dependence at low temperatures 

[13, 30]. Estimating the temperature dependent specific heat of ultranocrystalline 

diamond films using theoretical models is necessary in order to understand the 
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temperature dependence of Young’s modulus of UNCD at low temperatures (<300 K). 

Efforts are underway to determine this through molecular dynamic simulations [31].  

In summary, we have seen only a slightly higher temperature dependence of the 

specific heat of UNCD at low temperatures compared to single crystal diamond, and a 

much lower dependence than seen for larger grained diamond films. Overall, UNCD 

films exhibit extremely good thermomechanical stability of compared many potential 

MEMS materials.   
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5. Dissipation in mechanical resonators 

5.1. Loss mechanisms in mechanical resonators     

Dissipation in mechanical resonators has many physical origins. These can be 

generally classified as being of either intrinsic or extrinsic origin. Viscous damping from 

a surrounding fluid medium (e.g., air), clamping losses (irreversible energy flow from 

resonator to resonator support), and dissipation due to the measuring system itself are 

examples of extrinsic losses. Loss mechanisms due to the intrinsic dissipation 

mechanisms include dissipation at surfaces and interfaces [1], thermoelastic dissipation 

(TED) [2-4], coupling between acoustic and thermal phonons,[5] and, most importantly 

for this study, strain-assisted relaxation of defects [6]. In other words, measuring the 

intrinsic mechanical dissipation can provide a window into the structure and physics of 

defects in the material, and the understanding gained can be used to help develop 

materials and structures with desired amounts of dissipation. As mentioned in the 

introduction to this thesis, low dissipation resonators are particularly crucial for next-

generation MEMS and NEMS components including resonators, oscillators, and filters. 

Experimental results and discussion of the dissipation mechanisms relevant to UNCD 

cantilever structures will be discussed in the chapter.  

Experimentally, dissipation in mechanical resonators is discussed in terms of quality 

factor. The quality factor is defined as follows: 

.                       

(5.1) 
   

    

2 stored in the oscilator

energy dissipated in one cycle

EQ
E

π=
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From this equation, we can easily derive 

                                              2
Q ω ω

ω γ
= ≈

                                                        (5.2)                         

where ω is the resonant frequency of the oscillator, Δω the full width at half maximum, 

and γ the viscous damping term in the equation for motion of the oscillator. When 

discussed as a physical quantity, the terms “dissipation” or “internal friction” specifically 

refers to the quantity Q-1: a high Q structure like a tuning fork has low dissipation and 

will oscillate for long time before the oscillations are damped out. In particular, for a 

damped harmonic oscillator, it takes Q cycles for the initial amplitude to reduce to 1/e of 

its original value. Overall the dissipation we measure for a resonator structure is a 

summation of contributions from individual factors as follows: 

 

                                                                                              .                                         (5.3) 

For these experiments, we have conducted measurements in ultra high vacuum 

(UHV) conditions, and hence air damping can be neglected [7] and this mechanism will 

not be considered further. We note in passing that the measurement of air damping is 

used commonly in AFM to calibrate the stiffness of the cantilever [8, 9]. 

Similarly, we are able to rule out significant contributions to dissipation from the 

measurement system itself in our experiments. As will be shown below, a lower bound on 

dissipation from the measuring system was determined by carrying out a measurement of 

dissipation on a structure known to have a high Q. 

intrinsic extrinsic

1 1 1
Q Q Q
= +
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Therefore, in this Chapter we fill focus on the extrinsic effect of clamping losses, 

and intrinsic effects in resonators. 

5.1.1. Clamping losses 

There are several models for clamping losses [10-12], which we will represent as 

Qclamping, for out-of-plane flexural cantilever resonators attached to supports of different 

dimensions. A complicating factor here is that not all of these models are in agreement, 

and there are different assumption made in calculating the clamping losses. One key 

assumption concerns the dimensions of the base to which the cantilever is attached, 

specifically its thickness.  

   

Figure 5.1.(a) Schematic of a cantilever of finite width attached to a base of thickness tb. 

Theoretical models assume both the base and the cantilever are made from same material. 

In our experiments we have UNCD cantilevers attached to a thickness-matching UNCD 

base (i.e., a continuous film) which is grown on silicon substrate. Some of the cantilevers 

have no overhang (b) and others have finite overhang (c) and so the energy can be 

reflected back to the lever.   
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Jimbo et al.[12] predicted the clamping losses of cantilever beam of infinite width 

attached to a base of semi-infinite thickness to be given by                                                                           

                                                      

3
1

clamping

LQ
t

−
− ⎛ ⎞∝ ⎜ ⎟

⎝ ⎠
                                                   (5.4) 

where L is the length and t the thickness of the cantilever. However, in many cases, the 

base thickness is not necessarily much larger than the cantilever thickness.  

Correspondingly, Cross et al.[10] later proposed equations for dissipation of 

energy for out-of-plane flexural resonators of finite width attached to a base whose height 

matches the thickness of the cantilever. For a base thickness (tb) smaller than the 

wavelength of the elastic wave in the base (λb), dissipation due to clamping losses to the 

thickness-matching base are inversely proportional to the aspect ratio of the levers 

(L/w)[10, 11]. However, this model does not take into account the fact that thickness-

matching bases can be overhangs attached to thicker substrates, where the energy can be 

reflected back to the oscillator as shown in Figure 5.1 (c) [10]. Photiadis et al [11] 

developed a model for clamping losses of flexural cantilever resonators with finite (tb < 

λb, tb ≥ t) and semi-infinite bases (tb > λb, tb ≥ t). For finite base (tb < λb, tb ≥ t), [11]  

                                         

2
1

clamping
b

w tQ
L t

− ⎛ ⎞
∝ ⎜ ⎟

⎝ ⎠
      .                                (5.5) 

In our experiments we have UNCD cantilevers attached to thickness matching 

UNCD bases grown on silicon substrate (i.e., a continuous film from which the cantilever 

was fabricated). Some of the cantilevers have finite overhangs and others do not (Fig 5.1 
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(b), (c)). None of the models are suitable for determining the clamping losses for this 

structure. However, equation 5.5 can be used to find approximate upper and lower 

bounds for the clamping losses. A detailed discussion of this is provided in the 

experimental section (5.2) .   

    5.1.2. Surfaces and interfaces 

Another important form of intrinsic dissipation occurs at interfaces of high 

frequency, e.g., RF, resonators, especially at the surfaces of resonators. Dissipation at 

surfaces could dominate the losses in oscillators that have a high surface-to-volume ratio 

[1, 13] and could arise from the presence of a large number of defects at the surface, the 

presence of extraneous material (contamination), defects induced by processing steps 

such as etching, or simply roughness on the surfaces of the structure. However, for low 

frequency devices with much lower surface-to-volume ratio dissipation is mainly due to 

the presence of defects within the films. The specific nature of dissipation due to surfaces 

is not well understood at present and quantitative models for comparison to experiments 

are lacking. 

5.1.3. Thermoelastic dissipation 

Flexural oscillations in resonators cause local volume changes. These volume 

changes result in a temperature gradient being set up across the thickness of the 

cantilever. This causes irreversible heat flow across the temperature gradient, resulting in 

dissipation of the mechanical energy. This is known as thermoelastic dissipation (TED). 

The relaxation time for such heat flow strongly depends on the thermal diffusivity and 

thickness of the oscillator. Zener et al. [2, 3] developed an approximate equation for 

TED, which for flexural beams is given by:  
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where α, CP, and T are the coefficient of thermal expansion, specific heat, and 

temperature of the material respectively; ω is the oscillation frequency; and τz is the 

relaxation time for TED given by:  

                                                          

2

2z
t

D
τ

π
=                                             (5.7) 

where D is the thermal diffusivity.  For UNCD, the thermal diffusivity will be much 

smaller than single crystal diamond due to the lower thermal conductivity of UNCD [14] 

caused by the scattering of thermal phonons by the grain boundaries in UNCD. 

Maximum dissipation occurs when the product ωτz = 1.  

              TED in polycrystalline materials is discussed by Srikar et al. [4] and the 

essential properties are summarized here. In polycrystalline materials, grains have higher 

thermal conductivities than the grain boundaries. Hence, relaxation times for heat flow 

for individual grains (intracrystalline relaxation time) are much smaller than the structure 

as a whole (Zener relaxation time). This causes the splitting of the dissipation peak, (one 

at lower frequencies, Zener) and the other at higher frequencies (intracrystalline).  

Similarly at higher frequencies, there exists a separate dissipation peak due to a 

characteristic heat flow in the lateral direction. This lateral heat flow arises due to the 

strain matching conditions at grain boundaries and relaxation times (intercrystalline 

relaxation times) are determined by the size of the grains and their thermal conductivity.  
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For low frequency (kHz) UNCD micro-cantilevers, TED due to Zener damping will be 

much larger than TED due to intracrystalline and intercrystalline damping mechanisms, 

since these are active at GHz frequencies. This is due to the extremely high thermal 

conductivity of individual diamond grains and to their nanoscale dimension [4]. 

               Later in this chapter we discuss measurements of the temperature dependence of 

the quality factor.  It is important to remember that the dissipation due to TED is a strong 

function of temperature and resonant frequency. For diamond, assuming a T3 dependence 

for specific heat (which is appropriate for temperatures below 300 K), dissipation due to 

TED follows the relation: 

        . 

Where α is the thermal expansion coefficient of diamond. This was shown as a function 

of temperature in Figure 4.3. At low temperature thermal expansion coefficient reduces to 

zero and hence the contribution to dissipation from thermoelastic effects reduces to zero.   

5.1.4. Dissipation due to interaction between thermal and acoustic 
phonons 

Another important form of intrinsic dissipation occurs due to the interaction 

between high frequency thermal phonons and the low frequency acoustic phonons 

associated with the mechanical oscillations of the resonator. If the wavelength of the 

acoustic wave is much larger than the mean free path of the thermal phonons, then this 

low frequency mechanical oscillation locally perturbs the thermal phonon distributions 

away from equilibrium [6]. Restoring this equilibrium causes dissipation in the oscillating 

beam. Dissipation produced by such an interaction is given by: 

2

2

1

TEDQ T
α
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where γ is Grüneisen’s constant, v the sound velocity, C the heat capacity per unit 

volume, and τph the phonon relaxation time, which for flexural beams is given by 

                                                     2

3
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κτ =

                                                       (5.9) 

where  vD is the Debye sound velocity which depends of the transverse and longitudinal 

sound velocities,[6] and κ is the thermal conductivity. Again, it can be seen from 

equation 5.8 that at low temperatures, dissipation due to phonon-phonon interactions goes 

to zero since the phonon population reduces with temperature.  

5.1.5. Dissipation due to defect transitions 

5.1.5.1 “Universality” in the dissipation of glasses and defective materials     

Dissipation in most oscillators, including cantilevers, is often dominated by 

intrinsic dissipation due to the stress-assisted relaxation of defects. When subjected to 

stress, impurity atoms, dislocations, and other defects at grain boundaries and surfaces 

may undergo a transition from one state to another state which are separated by an energy 

barrier. This is often described generically as a two level system, although the detailed 

configuration of each state is rarely if ever defined. Regardless, dissipation in such 

systems exhibits certain characteristics which have been widely observed. Specifically, 

characteristic Debye peaks associated with particular defect transitions are observed, and 
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they possess a characteristic relaxation time τ which is unique to that transition. The 

frequency-dependent dissipation in such systems is given by [15] 

   (5.10) 

where A is a dimensionless constant which depends on the nature of the defect and the 

defect concentration (number of defects per unit volume) and τ is the relaxation time 

which follows the Arrhenius relation given by [15] 
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where EA is the activation energy for the process, kB the Boltzmann constant, and τ0 the 

characteristic atomic vibration frequency. In UNCD, due to the presence of a large 

fraction of grain boundaries as well as amorphous carbon in the seeding layer, there is a 

large number of defect states. Because of the energy barrier between the defect states, the 

strain assisted defect transitions are aided by the presence of thermal energy at higher 

temperatures. Temperature-dependent measurements of the quality factor will therefore 

yield information regarding the defect transitions.[16-18] At lower temperatures we 

expect to freeze more and more defect transitions.  

However, for systems with large fraction of defects, as the temperature is reduced, 

the dissipation typically reaches a plateau which is then followed by a sharp drop in 

dissipation below ∼1 K (typical tunnel splitting energies are of the order of 1 K) when the 

transition related to fastest relaxation rate freezes. This is evident in disordered crystals 

[19], amorphous solids [20], and polymers[20]. The defects states may be separated by an 

1
2 *

1 ( )defectQ A ωτ
ωτ

− =
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extremely small activation barrier, and therefore atoms can tunnel from one potential 

minimum to another in the presence of low frequency acoustic phonons. The study of this 

behavior has been carried out for decades, but progress has been stymied for quite some 

time due to a lack of understanding of the defective structures and their dynamics. Here 

we summarize the understanding developed in this field so far. 

In several glasses, evidence of dissipation due to tunneling between two states 

was determined from low temperature thermal conductivity measurements. The thermal 

conductivity of crystalline, electrically insulating materials is given by:  

 

                                                                                                                                     (5.12) 

where CD is the Debye specific heat, vD the Debye sound velocity, and l the phonon mean 

free path. At the lowest temperatures, the mean free path is determined by the boundaries 

or the defects in the crystalline sample and is independent of temperature. Above that, but 

still at low temperatures, the thermal conductivity shows a cubic temperature dependence 

because the specific heat of crystalline materials shows a cubic temperature dependence 

at low temperatures. At higher temperatures, l reduces due phonon-phonon scattering 

from Ümklapp processes. This reduction in l is more drastic than the increase in specific 

heat with temperature. Therefore, the thermal conductivity reaches a peak and then 

begins to fall off (Fig. 5.2(a)). 

Initially, many argued that there should be little difference in the low temperature 

thermal conductivity of amorphous and crystalline materials. This was based on the 

1 ( )
3 D DC v l Tκ =
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argument that the low temperature thermal properties are dominated by long wavelength 

 

Figure. 5.2(a) Thermal conductivity of crystalline and amorphous silicon dioxide and 

crystalline KCl with less than 0.1% impurities. Such a small fraction of defects cause 

KCl’s thermal conductivity to be below that of glass (Pure KCl crystal has a thermal 

conductivity similar to that of crystalline quartz) [21]. (b) Internal friction in different 

glasses as a function of temperature. At low temperatures most of the amorphous and 

some crystalline materials with defects show a characteristic plateau which falls within 

the 10-3 and 10-4. 
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phonons, and these phonons can be described by low frequency sound waves traveling 

through an elastic continuum. It was assumed that long wavelength sound waves will not 

able to ‘see’ the microstructure in the amorphous and polycrystalline materials. However, 

in glasses for T < 1K, κ has a T2 dependence. At higher temperatures, it has a 

characteristic plateau, and then it again rises with temperature. This behavior is observed 

for many disordered solids; an example of vitreous silica is shown in Fig. 5.2 (a), where κ 

approaches the value for crystalline quartz at higher temperatures. Similarly, dissipation 

in various amorphous solids at low temperatures often rises steeply at the lowest 

temperatures, then reaches a characteristic plateau above 1 K.   

Figure 5.2(b) shows the internal friction as a function of temperature in many 

amorphous materials which are characterized by the presence of a large number of 

defects. Interestingly, the intrinsic friction (Q-1) plateau falls within a factor of 20 for 

most of the amorphous materials including some quasi crystals, polymers, and materials 

with significant proportion of defects [22]. Hence, the dissipation behavior is referred to 

as “universal”. What is more puzzling is the observation of the plateau in both thermal 

conductivity and acoustic dissipation measurements starting at ∼1 K.  The dominant 

phonons which contribute to thermal conductivity at 1 K have frequencies in the THz 

range, whereas acoustic dissipation in glasses has been measured in low frequency 

resonators down to few hundred Hz. Hence, disorder in the material influences the 

measured properties up to 10 orders magnitude of frequency higher.  Similarly, low 

temperature measurements of the specific heat of glasses (T < 1 K) showed a linear 

temperature dependence, and specific heat is approximately two orders of magnitude 

higher than crystalline quartz [21].  
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These puzzling measurements are successfully described by the 

phenomenological tunneling model [23] [20] which takes into account the presence of 

two level states (TLS) where transitions between the two states occurs via quantum 

mechanical tunneling. Detailed discussions of the tunneling model are given in [20, 23, 

24]. Here, we summarize the main features. This model assumes the presence of atomic 

tunneling entities with a broad distribution of energy splittings. According to this model, 

lower frequency acoustic phonons are attenuated by the relaxation of tunneling defects, 

while higher frequency phonons that carry the heat are resonantly scattered by low 

energy excitations. The scattering cross section of the defects for phonons is a strong 

inverse function of phonon wavelength.  Higher specific heat at lower temperatures can 

be explained by the presence of low energy excitations.  For acoustic measurements in 

the temperature-independent plateau region, the tunneling states are relaxed via a 

relaxational process in the strain field of sound waves mediated by thermal phonons. In 

the plateau region (ωτ <<1, low frequency, high temperature regime (T>1K)), internal 

friction is given by  
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where P is the spectral density of tunneling states, γ the energy with which they are 

coupled to  the lattice vibrations, v the sound velocity and ρ the density. Below a 

characteristic temperature called the crossover temperature (typically ∼1 K), the acoustic 

dissipation dramatically decreases with temperature because the two level systems can 
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not relax fast enough with the oscilating strain field.  At low temperatures (ωτ >> 1, high 

frequency, low temperature regime) internal friction is given by[25]                                   

                                                                                                                             (5.14) 

where, TCO is the cross over temperature corresponding to ωτ =1. This corresponds to 

relaxation of the fastest tunneling state. This crossover temperature depends on material 

parameters and the resonant frequency of the oscillator.  β is a scaling factor and depends 

strongly on the type of material, and the nature of the defects. For example, for the 

standard tunneling model (STM), β = 3, for the Phillips model β = 1, for the soft potential 

model β=0.75, and β is 0.33 for oscillators with high surface to volume ratio [26, 27]. 

These differences arise due to different assumptions on the distribution of energy 

splittings and the density of states [27].   

In recent years it has been observed that internal friction in amorphous films of 

silicon (a-Si) and carbon (a-C) does not follow the universal behavior observed in other 

amorphous materials [22]. These films showed departures from the universal behavior 

depending on their deposition and annealing conditions, as shown in Figure 5.3 [19]. The 

measurements which showed departure from universality were conducted after depositing 

a-Si and a-C films on single crystal silicon double paddle oscillators (torsional 

oscillators) and measuring the dissipation of the torsional mode at low temperatures. 

Intrinsic dissipation in single crystal paddle oscillator as a function of temperature is also 

shown in Figure 5.3.  For example, e-beam deposited a-Si shows an internal friction in 

the plateau region which is 10 times lower than observed value in glasses (Figure 5.3). It 

has been speculated that the high coordination number of tetrahedrally bonded atoms /  
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Figure 5.3 A comparison of intrinsic friction in amorphous silicon, silicon dioxide, 

polycrystalline SiN cantilevers (stress free), and high tensile stress SiN membranes. A 

tensile stress of 1 GPa in membranes causes the intrinsic friction to drop by 2 orders of 

magnitude. 

materials (Si, Si3N4, C) inhibits the tunneling, and higher hydrogen content 

measured in some of these high Q (low dissipation) structures led many to believe that 

additional hydrogen results in more perfect fourfold coordination, thus reducing the 

tunneling states. However, the higher hydrogen content may also lead to changes in the 

residual stresses in the films. Similarly, there may be additional stresses due to thermal 

expansion mismatch with underlying silicon paddle oscillator.  Craighead’s group in 

Cornell University conclusively reported that quality factors of amorphous SiN beams 
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(flexural fixed-fixed beams[28]) and membranes[19] improved by 2 orders of magnitude 

in the presence of tensile stress as shown in Fig 5.3 (filled green data points). [19] While 

stress free SiN cantilevers followed universal behavior (empty data points). Both of these 

are flexural, monolithic resonators as opposed to torsional composite oscillators (which 

also showed departure from universal behavior). Stress alters either the density of 

tunneling states or the energy with which they are coupled to the lattice vibrations [19]. 

5.1.5.2 Characteristics of dissipation in diamond 

The thermal conductivity of single crystal diamond is extremely high compared to 

most other materials: at room temperature, its value is 900- 2000W/mK compared to 401 

W/mK for copper. At lower temperatures, its thermal conductivity further increases by 2 

to 3 orders of magnitude. Even though diamond is a sp3-bonded single element molecule, 

there is still scattering at low temperatures due to the presence of 13C isotopic impurities 

as shown in Fig 5.4 (a), and from the boundaries of the sample. Since diamond has an 

extremely high Debye temperature, the thermal conductivity strongly depends on the 

reduction in phonon mean free path due to the scattering by imperfections (dopants, 

defects, isotopes) even at room temperature. 

The thermal conductivity of polycrystalline diamond is significantly lower than that 

of single crystal diamond at room temperature. This is due to the scattering of thermal 

phonons by grain boundaries, and the defects and impurities in the grain boundaries, as 

shown in Fig 5.4 (b). Correspondingly, the reduction compared to single crystal diamond 

is larger the smaller the grain size.  For UNCD, the thermal conductivity is approximately 
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2 orders of magnitude lower than that of single crystal diamond and is comparable to that 

of many glasses which follow universal behavior.   

 

 

Figure 5.4 (a) Thermal conductivity of single crystal diamond as a function of 

temperature for natural diamond, which contains 1.1% C13 (empty circles, filled squares, 

and pluses) and isotopically enriched diamond containing 0.1% C13. Theoretical 

prediction of thermal conductivity as a function of temperature and  C13 isotope 

concentration is shown in inset. The thermal conductivity peak strongly depends on the 

isotope concentration [29]. (b) Thermal conductivity of polycrystalline diamond as a 

function of grain size. UNCD has a thermal conductivity of 1.5 - 10 W/mK which is 

comparable to glass [14]. 
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Figure 5.5. Comparison of thermal conductivity of polycrystalline diamond (grain size, 2 

μm) and NCD films (a), and of NCD films grown with different nitrogen content in the 

plasma (b) as a function of temperature [30]. Authors measured a grain size of 17-26 nm 

for all of these films and hence these are NCD films and not UNCD films.  Our UNCD 

films have a grain size in the range of 2-5 nm.  

The temperature dependence of the thermal conductivity of polycrystalline diamond 

films has been studied recently [30]. For NCD films (grain size 17 nm – 26 nm), a 

reduction of thermal conductivity with temperature is seen at lower temperatures (Fig 

5.5).  Low temperature thermal conductivity measurements of UNCD films (grain size 2-

5 nm) do not exist. Whether relaxation processes similar to the ones observed in 

amorphous glasses influence the thermal conductivity of UNCD is still an open question.   

Internal friction of UNCD thin films has rarely been studied to date either; only one 

other study exists [27]. The low temperature measurements of intrinsic friction in UNCD, 

NCD, and other forms of carbon will be discussed later in this chapter in more detail, 

along with our experimental results on dissipation in stress free UNCD cantilevers as a 

function of temperature. As well, the influence of stress on the intrinsic dissipation in 
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diamond has never been discussed. This has been difficult to address experimentally 

because diamond films tend to have substantial residual compressive stresses which tend 

to buckle fixed-fixed beams and membranes which one would like to use as test 

structures. This makes it extremely difficult to actuate such devices either by electrostatic 

means or by magnetomotive force. Low temperature measurements (<10 K) of stress free 

cantilevers and stressed (tensile) resonators are necessary to fully understand the nature 

of defect transitions.  A review of specific findings in the literature on the dissipation in 

diamond and amorphous carbon films will be discussed later in this chapter. 

5.2 Dissipation in UNCD cantilevers at room temperature 

In this thesis, the quality factor of stress-free UNCD cantilevers were measured at 

room temperature with the ring-down measurements or by measuring the full width at 

half maximum at their fundamental resonant frequencies under UHV conditions, using 

the technique described in Section 2.1.3. The curve fit to the damped oscillation yielded 

quality factors in the range of 5000-16000 for all the cantilevers measured, which had 

different dimensions and overhangs. Fig 5.6 (a) shows measured quality factors as a 

function of the fundamental flexural resonant frequency. There was no specific 

dependence of dissipation on the dimension of the cantilever and the overhang length, as 

shown in Fig. 5.6 (b). Furthermore, the quality factors were observed to be stable with 

time.  

We measured quality factors up to 170,000 on single crystal silicon cantilevers of 

similar dimension using the same experimental setup. This indicates that extrinsic 

dissipation due to the measuring apparatus is negligible. Furthermore, the absence of any 
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metal coating on these cantilevers means that the observed dissipation can be attributed to 

clamping losses and/or intrinsic dissipation in the UNCD itself. 

 

 

 

 

 

Figure 5.6. (a) Quality factor of UNCD cantilevers with different lengths. (b) Quality 

factors as a function of resonant frequency.  

With reference to Section 5.1.1, the clamping losses for our cantilever beams with 

overhangs are difficult to model. Due to the low resonant frequencies of our beams (∼10 

kHz), the wavelength of the elastic wave in the base λb (acoustic velocity ∼15,000 km/s, 

λb ∼ 1 m) is much greater than the thickness of the base tb. In our geometry, we have 

thickness-matching overhangs at the cantilever base (the wider UNCD overhang with 

t=tb) and this thin overhanging membrane attaches to thick base (the UNCD on top of the 

Si die, Figure 5.1). No model for this situation has yet been developed. Therefore, we 

discuss reasonable approximations that may come close to describing the clamping 

losses. First, if we ignore the overhang and treat the base as one material instead of two 

layers (UNCD on top of Si), equation 5.5 yields dissipation values much less than the 

observed ones. Second, if we consider the overhang to be of infinite length and thus 

energy does not flow back to the resonator, then the equation predicts dissipation values 4 
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orders of magnitude higher than what we measured. A more elaborate approach which 

considers the finite extent of our overhang and the presence of different layers attached to 

this thin overhanging membrane is required to estimate the clamping losses.  

However, as mentioned earlier, we did not see a systematic dependence of quality 

factors on either the dimension of the beam or the extant of the overhang. This strongly 

indicates that we can safely assume that clamping losses make a negligible contribution, 

and that the losses in our beams are dominated by intrinsic dissipation mechanisms, such 

as TED, internal friction due to defects, or dissipation due to interaction between thermal 

phonon and acoustic phonons. 

The dissipation (Q-1) vs. resonant frequency measured for UNCD cantilevers, and 

the predicted Q-1 calculated for possible intrinsic loss mechanisms (TED and phonon-

phonon dissipation), are all shown in Fig. 5.7. These are the upper bounds for the 

achievable quality factor, higher quality factors are not possible due aforementioned 

dissipation mechanisms. Table 5.1 shows the constants used in the calculations for 

dissipation that are plotted in Fig. 5.7. The measured dissipation values are at least 1000 

times higher than the theoretical predictions for TED and phonon-phonon dissipation put 

together.  This indicates that TED and phonon-phonon dissipation are insufficient to 

explain the dissipation we measure. Having ruled out extrinsic loss mechanisms as well, 

we are left to conclude the observed dissipation is mainly due to the relaxation of defects 

in the bulk or the surface of the film. 
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Figure. 5.7. Solid lines: calculated dissipation in UNCD cantilevers (thickness = 1 μm) 

due to TED and phonon-phonon dissipation as a function of resonance frequency [31].  

Data points: measured dissipation for the cantilevers used in this study. Since diamond 

remains an ideal Grüneisen’s solid independent of the pressure [32], a Grüneisen’s 

constant (γ) of 1 has been used in the models.   

Table 5.1. Constants used for estimating dissipation due to clamping losses, phonon-

phonon dissipation and thermoelastic dissipation. * Values used are for single crystal 

diamond.  

We next consider these results in comparison to other measurements of 

dissipation in various forms of diamond or highly sp3-bonded carbon films. Table 5.2 

summarizes the results reported by other groups [5, 18, 25, 31-33] as compared to ours  

Parameter Values 
used 

Cp (J Kg-1K-1) 502* 

α (×10-6K-1) 1* 

γ 1* 

T (°K) 300  

C (×106 J m-3K-1) 1.767* 

ρ  (Kg/m3) 3500*  

E (GPa) 800  

κ (Wm-1K-1) 10 

vD; v  (×103 ms-1) 11.357, 

15.33 
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Structure Resonant 
frequency 

Material Q Growth 
technique 

Actuation 
method 

Fixed-
fixed[35] 

17-66 MHz NCD 600-2400 MPCVD Magnetomotive

Fixed-
free[5] 

8-50 KHz PCD 4000-
100,000 

MPCVD Piezo-electric 

Doubly 
clamped 
paddle[36] 

6-30 MHz NCD 2400-3500 MPCVD Piezo-electric 

Fixed-free 
(our work) 

12-45 KHz UNCD 5000-16000 HFCVD Piezo-electric 

Fixed-
fixed[18] 

14-157 MHz NCD ∼3000 MPCVD Magneto 
motive 

Fixed-
free[34] 

KHz ta-C 3500 PLD Piezo-electric 

Table 5.2. Quality factor of flexural resonators from our work, as well as reported by 
other groups. 

for different flexural beams fabricated using NCD, UNCD, or ta-C films. Sepúlveda et al. 

[5] reported Q values for polycrystalline diamond (PCD, grain size ∼300 nm) micro-

cantilevers of 4000-100,000 (Table 5.2). These include values higher than the Q’s 

observed for UNCD cantilevers with comparable dimensions reported in this thesis. They 

suggested that as the percentage of the film composed of the initial nucleation layer, 

which contains finer-grained diamond, is increased, the quality factor of the resonators is 

reduced [33]. This is consistent with the idea that the higher dissipation in the UNCD 

resonators described here and in general is mainly due to the higher proportion of grain 

boundaries and defects. Cantilever resonator structures made from tetrahedral amorphous 

carbon (ta-C), which have a significant sp3 content, (80% sp3, 20 % sp2) showed a lower 

Q of 3500 [34]. This value, being in the range of the “universal” values for amorphous 
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systems, indicates that dissipation in ta-C is dominated by the two-level tunneling states 

described above [25]. 

Hutchinson et al. [18] measured the dissipation of composite metal / 

nanocrystalline diamond (NCD) fixed-fixed beams (columnar grains, grain size 5-15 nm). 

These high frequency (MHz) resonators (dimensions ∼0.8 μm × 0.5 μm × 10 μm) have a 

lower quality factor (∼3000, at room temperature) than the low frequency UNCD 

cantilever resonators studied here. Higher dissipation in the NCD resonators can be 

attributed to the fact that as the resonator dimensions become smaller, dissipation due to 

surface effects plays a greater role [1, 13]. This argument is supported by the 

investigations of scaling of dissipation with the dimension of the NCD fixed-fixed 

resonators, as reported by Imboden et al [35]. Factors that contribute to the higher 

dissipation in these high frequency, metal-coated fixed-fixed flexural resonators may also 

include clamping losses, losses that occur at interface between metal-diamond interfaces, 

nucleation layer and the dissipation in the metal layer of the composite beams [1]. 

Similarly, as discussed earlier stress also plays an important role in the measured 

dissipation and these fixed-fixed beams are under compressive stress. 

To consider the influence of surface as opposed to bulk defects, we terminated the 

surface with atomic hydrogen at 800°C in our HFCVD system. Details of this procedure 

are given in Chapter 3. This treatment removes contaminants, oxides, and non-diamond 

(sp2) carbon bonds, leaving an ideal UNCD surface with a predominantly monohydride 

termination. We observed a slight improvement in the quality factor after H-terminating 

the UNCD cantilever surface (Fig. 5.8). This stable, inert surface results in the 

reproducible quality factors even after the exposure to air, unlike silicon resonators 
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whose Q degrades substantially upon air exposure which leads to oxidation and 

adsorption of water [37, 38]. The stability of the hydrogen terminated UNCD surface is 

likely due to the fact that it is relatively hydrophobic (contact angle ~99.6±1.7° [39]), and 

has a low surface energy. This stability upon air exposure has substantial practical 

benefits for device applications, where some ambient exposure will occur between 

processing and packaging steps.  

 

 

 

 

 

 

 

Figure 5.8: Quality factor of UNCD cantilever beams before and after hydrogen 

termination. 

However, this improvement in Q may not be solely attributable to surface effects. 

The nucleation layer on the underside of the cantilevers tends to have more sp2 carbon 

than the bulk of the resonator [40]. Hydrogen termination can remove this non-diamond 

carbon, and therefore produce an increased Q if the atomic hydrogen reaches the 

underside of the cantilevers during the H-termination process.  
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As well, the cantilevers’ deflection after the hydrogen treatment generally 

increased, indicating an increase in the residual stress gradient. As mentioned earlier in 

this chapter, stresses can alter the defect motions and hence contribute to significant 

changes in dissipation. Therefore, it is difficult to attribute the observed change in quality 

factor solely to surface defects.  

Even though these are limited measurements of the influence of surface effects, the 

increase in the Q is not significant, indicating that the influence of bulk defects on the 

dissipation is dominant. Further understanding the contribution of the defects requires 

temperature dependent (<300 K) measurements of dissipation. This was carried out and is 

discussed next.  

5.3. Temperature dependence of the Quality factor 

               Figure 5.9 (a) shows the quality factor as a function of temperature in a 350 µm 

long UNCD cantilever beam with a large overhang (85 μm). We conducted similar low 

temperature dissipation measurements of three other cantilevers. Two had 85 μm 

overhang (with lengths of 400 μm and 250 μm respectively) and one with 30 μm 

overhang (with a length of 400μm) from room temperature to 138 K in the RHK 350 

AFM in UHV conditions. The quality factors showed a weak temperature dependence 

from room temperature down to 138 K. We did not observe any characteristic Debye 

peaks in the measured temperature range, unlike observations by others of single crystal 

silicon cantilevers [16] and nanocrystalline diamond fixed-fixed beams [18]. A moderate 

improvement in quality factor can be seen.  
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The observed quality factors remained within a few percent during both heating 

and cooling cycles. To explore this behavior further, a much broader temperature range 

of measurements of dissipation was then used. Measurements were conducted from 450 

K to 63 K, and then from 63 K to 450 K. Heating are cooling rates are approximately 1 

K/min. The temperature was stabilized before each measurement. These measurements 

were conducted using a liquid helium-cooled stage in the RHK 750 UHV AFM described 

in Chapter 2. Successful measurements were obtained for two different UNCD 

cantilevers. Lever 1 has no overhang and lever 2 has an overhang of about 30 μm, with 

both of these levers being on the same die. The resonant frequency shifts of these 

cantilevers with temperature were reported in Chapter 4.   

 

Figure 5.9. Quality factor of a 350 μm long cantilever as a function of temperature [41]. 

These measurements are performed under UHV conditions in a liquid nitrogen cooled 

RHK UHV 350 AFM. The cantilever is attached to an 85 μm overhang at its base. The 

heating and cooling rates are about 1 K/min. The experiment was started at 300 K, then 

cooled to 138 K, then heated back to 300 K.  
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The dissipation measured for the two cantilevers are in remarkable agreement. As 

with the results shown in Fig. 5.10 the cantilevers also show a moderate reduction in the 

dissipation Q-1 from 450 K to 180 K, below which it tapers off to a value of ∼10-4, which 

is near the lower bound value for the so-called “universal behavior”. The dissipation 

measured for the two cantilevers are in remarkable agreement. There are a handful of 

results (on intrinsic friction in diamond or amorphous carbon films) in the literature that 

merit comparison to these. But all these results show an existence of a low temperature 

plateau confirming the presence of two level systems.  

 

            

 

 

 

Figure 5.10. Quality factor of two UNCD cantilevers as a function of temperature. Lever 

1 has no overhang and lever 2 has an overhang of approximately 30 μm. Data include 

both heating and cooling measurements. Below 150 K dissipation reaches a plateau 

characteristic of the amourphous materials and crystalline materials with defects. The 

value of Q-1 ∼10-4 is in agreement with the so-called “universal behavior”.  

Recent investigation [27]of quality factor of metal-coated UNCD fixed-fixed 

beams at extremely low temperatures (<10 K) indicated a very weak temperature 

dependence (β=0.35 for T < 5K) followed by a plateau for a 5.1 MHz frequency  
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Figure 5.11(a) Dissipation in UNCD/metal composite fixed-fixed beam resonator 

structures from 5 K down to 0.03 K. [27] The Q values at 5 K for the resonators are 

∼2500-6600.  Below ∼5 K, dissipation reduced dramatically with temperature. Lower 

frequency resonator (5.1 MHz) shows a cross over temperature at 3 K. As discussed in 

section 5.1.5.1, the crossover temperature, Tco, is higher for higher resonant frequencies 

[22] which were not reached in this experiment due to experimental limitation. The 

authors do not discuss the low temperature plateau (below 0.2 K) The departure of the 

dissipation from the Tβ dependence at lower temperatures (<0.2 K) has been observed 

before and has been attributed to interactions between different tunneling states or to 

thermal decoupling from the sample, i.e. where the sample is not actually being cooled to 

the desired temperature since thermal transfer is very challenging at this low temperature 

[42] (b) Dissipation as a function of temperature for our UNCD cantilevers. We have 

explored the intrinsic friction at higher temperatures, i.e. the transition from the 

dissipation plateau to gradually increasing values.  As shown in Fig 5.2 (b), this transition 

temperature depends on the material. 
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resonator [42]. These fixed-fixed flexural beams, shown in Fig. 5.11 (a), exhibited quality 

factors ranging between 2500-6600 close to the dissipation plateau, which is only slightly 

lower than what we have measured. Figure 5.11 (b) is our experimental data from fixed-

free coating free UNCD cantilevers at higher temperatures. Here, Fig. 5.10 (b) replotted 

as Q-1.  

 

Figure 5.12. Temperature dependence of dissipation for NCD and tetrahedral amorphous 

carbon (ta-C) resonators. The ta-C films are deposited by pulsed laser deposition under 

different laser intensities which are indicated in the legend.[25, 43] These also show a 

plateau below 100 K. For NCD, the observed dissipation is ∼2 orders of magnitude lower 

than many glasses (which show universal behavior) whereas for ta-C it is well within the 

range of universal behavior. 
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We emphasize that, unlike the data in Fig. 5.11 (a), these are for fixed-free, coating-free 

UNCD cantilevers, and the measurements are over a higher temperature range. Fixed-

fixed beams suffer a serious disadvantage compared to cantilevers or torsional double 

paddle oscillators, namely, that the thermal stresses can bend the beams and influence the 

dissipation in ways are hard to gauge. Similarly presence of metal coating influences the 

observed dissipation.   

Temperature dependent measurements of tetrahedral amorphous carbon and 

nanocrystalline diamond films deposited on silicon double paddle oscillators (torsional 

oscillators) are reported by Metcalf et al [25, 43]. The data also showed a plateau below 

100 K, followed by a Tβ(very weak power law dependence, β < 1) dependence below ∼2 

K shown in Figure 5.12. While nanocrystalline diamond (NCD) films showed dissipation 

in the plateau region less than what is observed for UNCD, ta-C showed values 

comparable to UNCD. As mentioned earlier in the discussion in section 5.1.5.1, the 

influence of residual and thermal stresses cannot be ignored in these composite resonator 

structures. Similarly two level systems couple differently to flexural and torsional modes 

[26]. What we have measured for our stress free, coating free cantilevers conclusively 

points to the presence of a dissipation plateau in UNCD which follows the universal 

behavior. The measurements are over a higher temperature range. The relative phonon 

mean free paths (λ/l) can be calculated from the dissipation plateau and is given by [22] 

                                                                                                                                    (5.15) 

From our measurements, the relative phonon mean free path for UNCD is 

approximately 6×10-4, which is slightly higher than that of other amorphous materials but 

1 1 
2

Q
l
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well within the universal behavior.  Further studies are needed to understand the role of 

residual stresses, grain boundary structure, and impurities on the observed dissipation in 

UNCD films. Measurements of internal friction below 10 K on stress free cantilevers are 

key to understanding the nature of dissipation in UNCD due to the presence of TLS, 

mainly at grain boundaries, and to understand their structure. This also suggests that 

altering the grain boundaries and the stresses is the key to controlling and increasing the 

Q of UNCD resonators at room temperature.  

To conclude, we observed a very weak temperature dependence of dissipation 

from 450 K down to 63 K. Dissipation in UNCD shows a characteristic plateau observed 

in many amorphous solids and falls within the limits of universal behavior. This suggests 

that dissipation is dominated by defects in the bulk of the film. Controlling the residual 

stresses and the grain boundary structure are key to achieving high frequency, high Q 

UNCD resonators for RF-MEMS applications and resonant mass sensing applications. 
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6. Conclusion: 

We have demonstrated through this work that the elastic properties and 

mechanical dissipation in nanocrystalline diamond is significantly influenced by the 

nature of interfaces at grain boundaries. The results are important for application to high 

performance resonant mass sensors and high frequency RF-MEMS devices.  A summary 

of the achievements of thesis is presented below.  

6.1 Summary of results: 

• Development of instrumentation for the studies of nanomechanical properties:  

An ultrahigh vacuum atomic force microscope was assembled and tested for 

normal mode operation of AFM and characterization of UNCD cantilevers. The 

instrument allows variable temperature operation and surface science analysis 

(High pressure XPS, Auger, LEED)  of sample properties. We also developed a 

novel custom-built UHV AFM compatible stage for measuring the temperature 

dependent mechanical response of microcantilever beams.  

 

• Characterization of HFCVD-grown UNCD films and fabrication of UNCD 

devices:   Conformal uniform UNCD films were grown on 6” silicon wafers using 

the HFCVD technique at 680 °C by our collaborators Advanced Diamond 

Technologies, Inc. These medium temperature films represent an important step 

toward growing diamond at temperatures that are compatible with the important 

CMOS semiconductor process. These films exhibited a residual compressive 

stress of 370 MPa.  The films show characteristic diamond features in NEXAFS 
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spectra with a very low fraction of sp2 content (< 5%) at the surface. The films 

contained 1-1.5% hydrogen content in the bulk (measured by FRES). We 

designed and fabricated UNCD cantilever devices using conventional lithographic 

techniques. Fabrication of wafer scale devices shows the maturity of UNCD 

device fabrication methods.  

 

• Elastic properties of ultrananocrystalline diamond films: The Young’s modulus 

of the 680 °C HFCVD-grown UNCD films is measured to be 790 ± 30 GPa. This 

value is approximately 25-30% lower than the theoretically predicted value for 

the Young’s modulus of randomly oriented polycrystalline diamond having much 

larger grains, and ∼15% lower than the experimentally determined value for the 

Young’s modulus of traditional UNCD films. However, it is significantly higher 

than values measured for metal-coated UNCD beams grown at lower temperature. 

Non-diamond imperfections in the carbon atom bonding disordered carbon, 

dangling bonds, hydrogen, and increased sp2 bonding at the grain boundaries is 

the likely cause of the reduction in the modulus in UNCD films. The biaxial 

Young’s modulus of the films was determined to be 838 ± 2 GPa by measuring 

the amplitude and wavelength of fully relaxed substrate-free overhangs of the 

compressively stressed films. Based on these measurements, the Poisson’s ratio 

was estimated for the first time for any UNCD film to be 0.057 ± 0.038, which is 

comparable to that of single crystal diamond and, like single crystal diamond, is 

much lower than amorphous diamond like carbon films.  
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• Temperature dependence of Young’s modulus of UNCD films: UNCD films have 

shown remarkable thermomechanical stability despite the presence of a large 

fraction of under-coordinated atoms, defects, and disorder at the grain boundaries. 

The temperature dependence of Young’s modulus is slightly greater than that of 

single crystal diamond (averaged over all directions) but is much lower than that 

observed in microcrystalline diamond films, nanocrystalline diamond films, and 

tetrahedral amorphous carbon films and many other MEMS materials including 

SiN, Si, SiC and AlN. Reduction in modulus is less than 0.25% from 63 K to 

room temperature. This has important implications for resonator devices 

fabricated from UNCD, as they can have extremely stable resonant frequencies 

relative to changes in temperature. Understanding this temperature dependence 

requires understanding the nature and contribution of grain boundaries to the 

temperature dependence. MD simulations on temperature dependent mechanical 

response of the UNCD films will be helpful in this regard.  

 

• Dissipation in the ultrananocrystalline diamond resonators at room temperature: 

Dissipation in UNCD cantilevers ranged from 2×10-4–6×10-5 at ∼kHz resonance 

frequencies. The UNCD cantilever resonators exhibited higher dissipation 

compared to PCD cantilevers with comparable resonant frequencies, but less 

dissipation than amorphous carbon cantilever resonators. By quantitative 

comparison to established and new models for various dissipation mechanisms, 

we attribute dissipation in the UNCD resonators mainly to the presence of defects 

including nondiamond bonding at grain boundaries, and surfaces. 
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• Temperature dependence of mechanical dissipation: Dissipation in UNCD 

reduced with temperature and reached a characteristic universal plateau below 

160 K. A “universal” low temperature dissipation plateau (10-4 <Q-1<10-3) has 

been observed before in amorphous solids, polymers, and crystals with significant 

fraction of defects. Ultrananocrystalline diamond, which has significant fraction 

of defects at the grain boundaries, yielded dissipation values similar to those 

observed in defective solids in the plateau region.  This indicates the presence of 

two level tunneling states in UNCD which couple low frequency acoustic 

phonons to other modes. Dissipation measurements at extremely low temperatures 

(<1K) are necessary to further quantify the nature of these transitions. In recent 

years it has been discovered that residual stress in the films strongly influences 

measured quality factors in amorphous films. Stress either alters the distribution 

of the tunneling states or the energy with which they are coupled to the lattice. 

The influence of stress on dissipation in UNCD resonator devices will be helpful 

in achieving resonators with extremely high quality factors. Further studies should 

elucidate the nature of these transitions and influence of stress on these 

transitions.  

 

6.2: Future directions 

 There are many unresolved issues in understanding the temperature dependence 

of mechanical properties and mechanical dissipation of nanocrystalline materials. While 

understanding the influence of grain boundaries on elastic properties and dissipation is 

crucial for achieving thermally stable, high frequency, high Q resonators, the physical 
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origin of the temperature-dependent mechanical softening and dissipation (which is 

possibly explained by the so-called “two level system” model) are still not clear. In fact, 

the lack of a clear model for the structural and dynamic features of the two level system 

model is a significant hindrance in further interpreting these results. In this regard, 

experiments aimed at manipulating the growth conditions to modify the grain boundary 

structure will be helpful and potentially highly useful for applications. This could involve 

growing UNCD films under different temperature and gas chemistry to alter the grain 

size, grain boundary structure and impurities. Structural and compositional 

characterization as well as temperature-dependent measurements of modulus and 

dissipation will help to determine the structure-property relationship. Similarly, 

determining the specific heat of the UNCD films as a function of temperature will help us 

to understand the temperature dependence of mechanical properties.  

As mentioned earlier, theoretical modeling of the specific heat of this structure is 

being attempted using MD simulations.  This will be helpful in understanding the 

structure and influence of disorder at grain boundaries.  Understanding the dissipation of 

flexural or torsional modes of vibration of MEMS devices by the disorder in the materials 

is still a challenge.  Extremely low temperature (<10K) measurements are necessary to 

understand the nature of the tunneling-based energy dissipation mechanisms fully. 

Similarly influencing the growth chemistry to achieve high residual tensile stresses and 

grain boundary structure is necessary to understand the nature of coupling between 

excitations (such as those postulated in the two level systems model) and lattice strain 

fields. Temperature-dependent measurements of dissipation of devices made from UNCD 

films grown under different conditions will therefore be useful to both understand these 
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tunneling processes and to achieve high quality factors in UNCD-based devices. The 

overall impact will be to put the science of dissipation in solids on a firmer and more 

deterministic foot that is based on known structural and dynamic properties, and to 

exploit this knowledge for the design and development of high performance micro- and 

nano-mechanical devices.  
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