1,676 research outputs found

    Analysis of unmitigated large break loss of coolant accidents using MELCOR code

    Get PDF
    In the framework of severe accident research activity developed by ENEA, a MELCOR nodalization of a generic Pressurized Water Reactor of 900 MWe has been developed. The aim of this paper is to present the analysis of MELCOR code calculations concerning two independent unmitigated large break loss of coolant accident transients, occurring in the cited type of reactor. In particular, the analysis and comparison between the transients initiated by an unmitigated double-ended cold leg rupture and an unmitigated double-ended hot leg rupture in the loop 1 of the primary cooling system is presented herein. This activity has been performed focusing specifically on the in-vessel phenomenology that characterizes this kind of accidents. The analysis of the thermal-hydraulic transient phenomena and the core degradation phenomena is therefore here presented. The analysis of the calculated data shows the capability of the code to reproduce the phenomena typical of these transients and permits their phenomenological study. A first sequence of main events is here presented and shows that the cold leg break transient results faster than the hot leg break transient because of the position of the break. Further analyses are in progress to quantitatively assess the results of the code nodalization for accident management strategy definition and fission product source term evaluation

    Current status of Melcor 2.2 for fusion safety analyses

    Get PDF
    MELCOR is an integral code developed by Sandia National Laboratories (SNL) for the US Nuclear Regulatory Commission (USNRC) to perform severe accident analyses of Light Water Reactors (LWR). More recently, MELCOR capabilities are being extended also to analyze non-LWR fission technologies. Within the European MELCOR User Group (EMUG), organized in the framework of the USNRC Cooperative Severe Accident Research Program (CSARP), an activity on the evaluation of the applicability of MELCOR 2.2 for fusion safety analyses has been launched and it has been coordinated by ENEA. The aim of the activity was to identify the physical models to be possibly implemented in MELCOR 2.2 necessary for fusion safety analyses, and to check if those models are already available in MELCOR 1.8.6 fusion version, developed by Idaho National Laboratory (INL). From this activity, a list of modeling needs that emerged from the safety analyses of fusion-related installations has been identified and described. Then, the importance of the various needs, intended as the priority for model implementation in the MELCOR 2.2 code, has been evaluated according to the technical expert judgment of the authors. In the present paper, the identified modeling needs are discussed. The ultimate goal would be to propose to have a single integrated MELCOR 2.2 code release capable to cover both fission and fusion applications

    Current status of MELCOR 2.2 for fusion safety analyses

    Get PDF
    MELCOR is an integral code developed by Sandia National Laboratories (SNL) for the US Nuclear Regulatory Commission (USNRC) to perform severe accident analyses of Light Water Reactors (LWR). More recently, MELCOR capabilities are being extended also to analyze non-LWR fission technologies. Within the European MELCOR User Group (EMUG), organized in the framework of USNRC Cooperative Severe Accident Research Program (CSARP), an activity on the evaluation of the applicability of MELCOR 2.2 for fusion safety analyses has been launched and it has been coordinated by ENEA. The aim of the activity was to identify the physical models to be possibly implemented in MELCOR 2.2 necessary for fusion safety analyses, and to check if those models are already available in MELCOR 1.8.6 for fusion version, developed by Idaho National Laboratory (INL). From this activity, a list of modeling needs emerged from the safety analyses of fusion-related installations have been identified and described. Then, the importance of the various needs, intended as the priority for model implementation in the MELCOR 2.2 code, has been evaluated according to the technical expert judgement of the authors. In the present paper, the identified modeling needs are discussed. The ultimate goal would be to propose to have a single integrated MELCOR 2.2 code release capable to cover both fission and fusion applications

    Preliminary evaluation of the expansion system size for a pressurized gas loop: Application to a fusion reactor based on a helium-cooled blanket

    Get PDF
    Some considerations to preliminarily design the size of the Expansion Volume (EV) and the relief pipes for a Vacuum Vessel Pressure Suppression System, to be adopted in a fusion reactor based on a helium cooled blanket, are presented. The volume of the EV depends on the total energy of the cooling system and it can be sized based on a required final pressure at equilibrium, by a simple energy balance. Two different EV solutions have been analysed: a “dry” EV and a “wet” EV. In this last, a certain amount of water could be mixed (by spraying or discharging in a pool) with the discharged helium, to reduce its temperature and allowing a lower size of the EV with respect to the “dry” solution. The pressure peak in vacuum vessel (VV) depends mainly on break area and flow area of the relief pipes and a simple formula to be used to size these pipes is suggested. The computer code CONSEN has been used to perform sensitivity analyses and to verify the methodology

    NPP Krško Station Blackout Analysis after Safety Upgrade Using MELCOR Code

    Get PDF
    The analysis of a Station blackout (SBO) accident in the NPP Krško including thermalhydraulic behaviour of the primary system and the containment, as well as the simulation of the core degradation process, release of molten materials and production of hydrogen and other incondensable gases will be presented in the paper. The calculation model includes the latest plant safety upgrade with addition of Passive Autocatalytic Recombiners (PAR) and the Passive Containment Filter Venting (PCFV) system. The code used is MELCOR, version 1.8.6. MELCOR is an integral severe accident code which means that it can simulate both the primary reactor system, including the core, and the containment. The code is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission. The analysis is conducted in two steps. First, the steady state calculation is performed in order to confirm the applicability of the plant model and to obtain correct initial conditions for the accident analysis. The second step is the calculation of the SBO accident with the leakage of the coolant through the damaged reactor coolant pump seals. Without any active safety systems, the reactor pressure vessel will fail after few hours. The mass and energy releases from the primary system cause the containment pressurization and rise of the temperature. The newly added safety systems, PAR and PCFV, prevent the damage of the containment building by keeping the thermalhydraulic conditions below the design limits. The analysis results confirm the capability of the safety systems to effectively control the containment conditions. Results of the analysis are given with respect to the results of the MAAP 4.0.7 analysis for the same accident scenario. The MAAP and MELCOR codes are the most popular severe accident codes and, therefore, it is reasonable to compare their results. In addition, sensitivity calculations performed by varying most influential parameters, such as the hot leg creep failure, blockage of a pipe connecting the cavity and the sump, inclusion of a radionuclide package in the MELCOR, etc. are done in order to demonstrate correct physical behaviour and the accuracy of the developed NPP Krško MELCOR model

    NPP Krško 3 inch Cold Leg Break LOCA Calculation using RELAP5/MOD 3.3 and MELCOR 1.8.6 Codes

    Get PDF
    NPP Krško input deck developed at Faculty of Electrical Engineering and Computing (FER) Zagreb, for severe accident code MELCOR 1.8.6 is currently being tested. MELCOR is primarily used for the analyses of severe accidents including in-vessel and ex-vessel core melt progression as well as containment response under severe accident conditions. Accurate modelling of the plant thermal-hydraulic behaviour as well as engineering safety features, e.g., Emergency Core Cooling System, Auxiliary feedwater system and various containment systems (e.g., Passive Autocatalytic Recombiners, Fan Coolers and Containment spray) is necessary to correctly predict the plant response and operator actions. For MELCOR input data verification, the comparison of the results for small break (3 inch) cold leg Loss of Coolant Accident (LOCA) for NPP Krško using MELCOR 1.8.6 and RELAP5/MOD 3.3 was performed. A detailed RELAP5/MOD 3.3 model for NPP Krško has been developed at FER and it has been extensively used for accident and transient analyses. The RELAP5 model has been upgraded and improved along with the plant modernization in the year 2000. and after more recent plant modifications. The results of the steady state calculation (first 1000 seconds) for both MELCOR and RELAP5 were assessed against the referent plant data. In order to test all thermal-hydraulic aspects of developed MELCOR 1.8.6 model the accident was analysed, and comparison to the existing RELAP5 model was performed, with all engineering safety features available. After initial fast pressure drop and accumulator injection for both codes stable conditions were established with heat removal through the break and core inventory maintained by safety injection. Transient was simulated for 10000 seconds and overall good agreement between results obtained with both codes was found

    NPP Krško Station Blackout Analysis after Safety Upgrade Using MELCOR Code

    Get PDF
    The analysis of a Station blackout (SBO) accident in the NPP Krško including thermalhydraulic behaviour of the primary system and the containment, as well as the simulation of the core degradation process, release of molten materials and production of hydrogen and other incondensable gases will be presented in the paper. The calculation model includes the latest plant safety upgrade with addition of Passive Autocatalytic Recombiners (PAR) and the Passive Containment Filter Venting (PCFV) system. The code used is MELCOR, version 1.8.6. MELCOR is an integral severe accident code which means that it can simulate both the primary reactor system, including the core, and the containment. The code is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission. The analysis is conducted in two steps. First, the steady state calculation is performed in order to confirm the applicability of the plant model and to obtain correct initial conditions for the accident analysis. The second step is the calculation of the SBO accident with the leakage of the coolant through the damaged reactor coolant pump seals. Without any active safety systems, the reactor pressure vessel will fail after few hours. The mass and energy releases from the primary system cause the containment pressurization and rise of the temperature. The newly added safety systems, PAR and PCFV, prevent the damage of the containment building by keeping the thermalhydraulic conditions below the design limits. The analysis results confirm the capability of the safety systems to effectively control the containment conditions. Results of the analysis are given with respect to the results of the MAAP 4.0.7 analysis for the same accident scenario. The MAAP and MELCOR codes are the most popular severe accident codes and, therefore, it is reasonable to compare their results. In addition, sensitivity calculations performed by varying most influential parameters, such as the hot leg creep failure, blockage of a pipe connecting the cavity and the sump, inclusion of a radionuclide package in the MELCOR, etc. are done in order to demonstrate correct physical behaviour and the accuracy of the developed NPP Krško MELCOR model

    Assessment of Accident-Tolerant Fuel with FeCrAl Cladding Behavior Using MELCOR 2.2 Based on the Results of the QUENCH-19 Experiment

    Get PDF
    To ensure the applicability of accident-tolerant fuels, their behaviors under various accidental conditions must be assessed. While the dependences of the behavior of single physical parameters can be investigated in single- or separate-effect experiments, and more complex phenomena can be investigated using integral-effect tests, the behavior of an entire system as complex as a nuclear power plant core must be investigated using computer code modeling. One of the most commonly used computer codes for the assessment of severe accidents is MELCOR 2.2. In version 18019, the authors enabled the modeling of the behavior of the nuclear fuel with FeCrAl cladding (namely, alloy B136Y3) for the first time, using the GOX model. The ability of this model to reasonably accurately predict the behavior of FeCrAl cladding in accident conditions with quenching was verified in this work by modeling the QUENCH-19 experiment carried out in the Karlsruhe Institute of Technology on the QUENCH experimental device and by subsequent comparison of the MELCOR calculation results with the experiment. This article proves that the GOX model can be used to evaluate the behavior of FeCrAl cladding and that the results can be considered conservative

    Application of FFTBM with signal mirroring to improve accuracy assessment of MELCOR code

    Get PDF
    This paper deals with the application of Fast Fourier Transform Base Method (FFTBM) with signal mirroring (FFTBM-SM) to assess accuracy of MELCOR code. This provides deeper insights into how the accuracy of MELCOR code in predictions of thermal-hydraulic parameters varies during transients. The case studied was modeling of Station Black-Out (SBO) accident in PSB-VVER integral test facility by MELCOR code. The accuracy of this thermal-hydraulic modeling was previously quantified using original FFTBM in a few number of time-intervals, based on phenomenological windows of SBO accident. Accuracy indices calculated by original FFTBM in a series of time-intervals unreasonably fluctuate when the investigated signals sharply increase or decrease. In the current study, accuracy of MELCOR code is quantified using FFTBMSM in a series of increasing time-intervals, and the results are compared to those with original FFTBM. Also, differences between the accuracy indices of original FFTBM and FFTBM-SM are investigated and correction factors calculated to eliminate unphysical effects in original FFTBM. The main findings are: (1) replacing limited number of phenomena-based time-intervals by a series of increasing time-intervals provides deeper insights about accuracy variation of the MELCOR calculations, and (2) application of FFTBM-SM for accuracy evaluation of the MELCOR predictions, provides more reliable results than original FFTBM by eliminating the fluctuations of accuracy indices when experimental signals sharply increase or decrease. These studies have been performed in the framework of a research project, aiming to develop an appropriate accident management support tool for Bushehr nuclear power plant. 2016 Elsevier B.V. All rights reserved
    corecore