175 research outputs found

    Light on horizontal interactive surfaces: Input space for tabletop computing

    Get PDF
    In the last 25 years we have witnessed the rise and growth of interactive tabletop research, both in academic and in industrial settings. The rising demand for the digital support of human activities motivated the need to bring computational power to table surfaces. In this article, we review the state of the art of tabletop computing, highlighting core aspects that frame the input space of interactive tabletops: (a) developments in hardware technologies that have caused the proliferation of interactive horizontal surfaces and (b) issues related to new classes of interaction modalities (multitouch, tangible, and touchless). A classification is presented that aims to give a detailed view of the current development of this research area and define opportunities and challenges for novel touch- and gesture-based interactions between the human and the surrounding computational environment. © 2014 ACM.This work has been funded by Integra (Amper Sistemas and CDTI, Spanish Ministry of Science and Innovation) and TIPEx (TIN2010-19859-C03-01) projects and Programa de Becas y Ayudas para la Realización de Estudios Oficiales de Máster y Doctorado en la Universidad Carlos III de Madrid, 2010

    Enhancing Expressiveness of Speech through Animated Avatars for Instant Messaging and Mobile Phones

    Get PDF
    This thesis aims to create a chat program that allows users to communicate via an animated avatar that provides believable lip-synchronization and expressive emotion. Currently many avatars do not attempt to do lip-synchronization. Those that do are not well synchronized and have little or no emotional expression. Most avatars with lip synch use realistic looking 3D models or stylized rendering of complex models. This work utilizes images rendered in a cartoon style and lip-synchronization rules based on traditional animation. The cartoon style, as opposed to a more realistic look, makes the mouth motion more believable and the characters more appealing. The cartoon look and image-based animation (as opposed to a graphic model animated through manipulation of a skeleton or wireframe) also allows for fewer key frames resulting in faster speed with more room for expressiveness. When text is entered into the program, the Festival Text-to-Speech engine creates a speech file and extracts phoneme and phoneme duration data. Believable and fluid lip-synchronization is then achieved by means of a number of phoneme-to-image rules. Alternatively, phoneme and phoneme duration data can be obtained for speech dictated into a microphone using Microsoft SAPI and the CSLU Toolkit. Once lip synchronization has been completed, rules for non-verbal animation are added. Emotions are appended to the animation of speech in two ways: automatically, by recognition of key words and punctuation, or deliberately, by user-defined tags. Additionally, rules are defined for idle-time animation. Preliminary results indicate that the animated avatar program offers an improvement over currently available software. It aids in the understandability of speech, combines easily recognizable and expressive emotions with speech, and successfully enhances overall enjoyment of the chat experience. Applications for the program include use in cell phones for the deaf or hearing impaired, instant messaging, video conferencing, instructional software, and speech and animation synthesis

    Context-aware gestural interaction in the smart environments of the ubiquitous computing era

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyTechnology is becoming pervasive and the current interfaces are not adequate for the interaction with the smart environments of the ubiquitous computing era. Recently, researchers have started to address this issue introducing the concept of natural user interface, which is mainly based on gestural interactions. Many issues are still open in this emerging domain and, in particular, there is a lack of common guidelines for coherent implementation of gestural interfaces. This research investigates gestural interactions between humans and smart environments. It proposes a novel framework for the high-level organization of the context information. The framework is conceived to provide the support for a novel approach using functional gestures to reduce the gesture ambiguity and the number of gestures in taxonomies and improve the usability. In order to validate this framework, a proof-of-concept has been developed. A prototype has been developed by implementing a novel method for the view-invariant recognition of deictic and dynamic gestures. Tests have been conducted to assess the gesture recognition accuracy and the usability of the interfaces developed following the proposed framework. The results show that the method provides optimal gesture recognition from very different view-points whilst the usability tests have yielded high scores. Further investigation on the context information has been performed tackling the problem of user status. It is intended as human activity and a technique based on an innovative application of electromyography is proposed. The tests show that the proposed technique has achieved good activity recognition accuracy. The context is treated also as system status. In ubiquitous computing, the system can adopt different paradigms: wearable, environmental and pervasive. A novel paradigm, called synergistic paradigm, is presented combining the advantages of the wearable and environmental paradigms. Moreover, it augments the interaction possibilities of the user and ensures better gesture recognition accuracy than with the other paradigms

    Supporting multimedia user interface design using mental models and representational expressiveness

    Get PDF
    This thesis addresses the problem of output media allocation in the design of multimedia user interfaces. The literature survey identifies a formal definition of the representational capabilities of different media.as important in this task. Equally important, though less prominent in the literature, is that the correct mental model of a domain is paramount for the successful completion of tasks. The thesis proposes an original linguistic and cognitive based descriptive framework, in two parts. The first part defines expressiveness, the amount of representational abstraction a medium provides over any domain. The second part describes how this expressiveness is linked to the mental models that media induce, and how this in turn affects task performance. It is postulated that the mental models induced by different media, will reflect the abstractive representation those media offer over the task domain. This must then be matched to the abstraction required by tasks to allow them to be effectively accomplished. A 34 subject experiment compares five media, of two levels of expressiveness, over a range of tasks, in a complex and dynamic domain. The results indicate that expressiveness may allow media to be matched more closely to tasks, if the mental models they are known to induce are considered. Finally, the thesis proposes a tentative framework for media allocation, and two example interfaces are designed using this framework. This framework is based on the matching of expressiveness to the abstraction of a domain required by tasks. The need for the methodology to take account of the user's cognitive capabilities is stressed, and the experimental results are seen as the beginning of this procedure

    Analysing, visualising and supporting collaborative learning using interactive tabletops

    Get PDF
    The key contribution of this thesis is a novel approach to design, implement and evaluate the conceptual and technological infrastructure that captures student’s activity at interactive tabletops and analyses these data through Interaction Data Analytics techniques to provide support to teachers by enhancing their awareness of student’s collaboration. To achieve the above, this thesis presents a series of carefully designed user studies to understand how to capture, analyse and distil indicators of collaborative learning. We perform this in three steps: the exploration of the feasibility of the approach, the construction of a novel solution and the execution of the conceptual proposal, both under controlled conditions and in the wild. A total of eight datasets were analysed for the studies that are described in this thesis. This work pioneered in a number of areas including the application of data mining techniques to study collaboration at the tabletop, a plug-in solution to add user-identification to a regular tabletop using a depth sensor and the first multi-tabletop classroom used to run authentic collaborative activities associated with the curricula. In summary, while the mechanisms, interfaces and studies presented in this thesis were mostly explored in the context of interactive tabletops, the findings are likely to be relevant to other forms of groupware and learning scenarios that can be implemented in real classrooms. Through the mechanisms, the studies conducted and our conceptual framework this thesis provides an important research foundation for the ways in which interactive tabletops, along with data mining and visualisation techniques, can be used to provide support to improve teacher’s understanding about student’s collaboration and learning in small groups

    Need for speed:Achieving fast image processing in acute stroke care

    Get PDF
    This thesis aims to investigate the use of high-performance computing (HPC) techniques in developing imaging biomarkers to support the clinical workflow of acute stroke patients. In the first part of this thesis, we evaluate different HPC technologies and how such technologies can be leveraged by different image analysis applications used in the context of acute stroke care. More specifically, we evaluated how computers with multiple computing devices can be used to accelerate medical imaging applications in Chapter 2. Chapter 3 proposes a novel data compression technique that efficiently processes CT perfusion (CTP) images in GPUs. Unfortunately, the size of CTP datasets makes data transfers to computing devices time-consuming and, therefore, unsuitable in acute situations. Chapter 4 further evaluates the algorithm's usefulness proposed in Chapter 3 with two different applications: a double threshold segmentation and a time-intensity profile similarity (TIPS) bilateral filter to reduce noise in CTP scans. Finally, Chapter 5 presents a cloud platform for deploying high-performance medical applications for acute stroke patients. In Part 2 of this thesis, Chapter 6 presents a convolutional neural network (CNN) for detecting and volumetric segmentation of subarachnoid hemorrhages (SAH) in non-contrast CT scans. Chapter 7 proposed another method based on CNNs to quantify the final infarct volumes in follow-up non-contrast CT scans from ischemic stroke patients
    • …
    corecore