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Abstract 

The thesis discusses the question of how unfamiliar computing systems, particularly 

those with graphical user interfaces, are learned and used. In particular, the approach 

of basing the design and behaviour of on-screen objects in the system's model world 

on a coherent theme and employing a metaphor is explored. The drawbacks, as well 

as the advantages, of this approach are reviewed and presented. The use of 

metaphors is also contrasted with other forms of users' mental models of interactive 

systems, and the need to provide a system image from which useful mental models 

can be developed is presented. 

Metaphors are placed in the context of users' understanding of interactive systems 

and novel application is made of the Qualitative Process Theory (QPT) qualitative 

reasoning model to reason about the behaviour of on-screen objects, the underlying 

system functionality, and the relationship between the two. This analysis supports re

evaluation of the domains between which user interface metaphors are said to form 

mappings. A novel user interface design, entitled Medusa, that adopts guidelines for 

the design of metaphor-based systems, and for helping the user develop successful 

mental models, based on the QPT analysis and an empirical study of a popular 

metaphor-based system, is described. The first Medusa design is critiqued using 

well-founded usability inspection method. 

Employing the Lakoff/lohnson theory, a revised verSIOn of the Medusa user 

interface is described that derives its application semantics and dialogue structures 

from the entailments of the knowledge structures that ground understanding of the 



interface metaphor and that capture notions of embodiment in interaction with 

computing devices that QPT descriptions cannot. Design guidelines from influential 

existing work, and new methods of reasoning about metaphor-based designs, are 

presented with a number of novel graphical user interface designs intended to 

overcome the failings of existing systems and design approaches. 
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"Technical texts are generally understood to report work that their authors have 

done; they are focused on machinery in a broad sense, be it hardware, software, or 

mathematics. They open by making claims - 'Our machinery can do such and such 

and others' cannot' - and they confine themselves to demonstrating these claims in a 

way that others can replicate. They close by sketching further work - more problems, 

more solutions. Critical texts, by contrast, are the work that their authors have done. 

Their textuality is in the foreground, and they are focused on theoretical categories. 

-
They open by situating a problematic in an intellectual tradition, and they proceed by 

narrating their materials in a way that exhibits the adequacy of certain categories and 

the inadequacy of others. They close with a statement of moral purpose." 

- P. E. Agre (1997) Computation and Human Experience, Cambridge University 

Press: xiii. 

"This is the time, and this is the record of the time. 11 

- Laurie Anderson (1979) United States live I-W, Warner Brothers Records. 
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Chapter 1 

Introduction 

"So then I got down to the writing. and it was awful. I don't know why I'd ever 

romanticised it. I don't know why anyone would want to do it. It stinks. It's like a 

disease. It's an illness. writing. It steals your body from you. There's no audience. 

You're alone." 

- Spalding Gray, from the 'Monster in a Box' monologue. 

1.1 The Problem 

Card, Moran, and Newell (1983: vii) claim that: 

"Designing interactive computer systems to be efficient and easy to 

use is important so that people in our society may realise the potential 

benefits of computer-based tools." 

The vast majority of user interface designers and researchers of human-computer 

interaction (HC!) will agree with this view. What is not agreed upon, however. is 

how interactive systems should be designed; or how efficiency and ease of use may 

be designed for and how a completed system can be judged to possess them; or how 

one recognises a member of a society who can be expected to understand and make 

use of a computing system; or how systems should be designed so that they are 

comprehensible and usable in a particular culture or society; or indeed whether 



computing systems, in fact, deliver any benefits to those who use them (Landauer, 

1995). For Herbert Simon (1981), design, like all activity, is a matter of making 

choices from options and actions in a problem space. Confronted by numerous 

options, people engage in a process termed satisjicing - making choices that are 

satisfactory, not necessarily those that are optimal - if they are to not be stuck in a 

state of paralysis, unable to decide between a number of equally valid choices. In 

some sense, we are more fortunate if constrained by time and the limited availability 

of resources. For the user interface designer, there exist many tens of design lifecycle 

models, interaction styles, input and output devices, programming languages, user 

interface toolkits, and usability evaluation techniques which can be combined in 

many \vays during a design task. This multiplicity of choice arises because of what is 

claimed to be a theory gap in HCI (Landauer, 1989; Long and Dowell, 1989). There 

is no theory of user interface design that allows us to construct the best interface 

given a set of requirements and constraints, neither are there sufficient bodies of 

knowledge or of experimental data provided by cognitive psychology which can be 

employed to constrain design choices. If we are to discuss user interface design, we 

are required to constrain the types of system we examine. 

The interfaces we consider are those where, in contrast to command-based interfaces 

where the user converses with an unseen agent in a natural or artificial language 

about an unseen but assumed task domain (the conversation paradigm of 

interaction), the task domain is depicted on-screen and its state may be directly 

altered. These systems are said to be based on the model world paradigm (Hutchins, 

Hollan, and Norman, 1986). Such systems are a subset of those systems termed 

direct manipulation (Shneiderman, 1982, 1983). Direct manipUlation systems are 

characterised by: 

• Continuous representation of the object of interest; 

• Physical actions or labelled button presses instead of complex syntax; 
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• Rapid incremental reversible operations whose impact on the object of interest is 

immediately visible. 

1.2 A Solution - Metaphor Recommended 

Even when the types of systems we consider in this research are restricted to those 

that support the model world paradigm of interaction, many design methodologies 

exist that can be considered and employed in a design task. The approach we 
-

consider in this research is one that is recommended by many influential and best-

selling texts (Hix and Hartson, 1993; Neilsen, 1993; Thimbleby, 1990), which is to 

use a metaphor or analogy in the depiction and programming of the behaviour of on

screen objects. Analogy is recommended as a means of understanding new concepts 

and problem solving in many domains, it is, for example famously advocated by 

P6lya (1945) as a method for mathematical problem solving. The motivation 

underlying user interface metaphors is that users can make use of their existing 

knowledge structures with little modification, making the unfamiliar interactive 

system easier to use and learn than if users need to be acquire new knowledge 

structures (Carroll and Thomas, 1982). An example of how the use of user interface 

metaphors is recommended to students of computer science students is given by 

Evanson and Holland (1996): 

"To make users feel comfortable, successful software surrounds them 

with pictures or icons of familiar objects. Because such environments 

are meant to resemble the everyday world, designers say they're using 

a metaphor. 

Good software uses metaphor, which allows people to draw on their 

mental models of how the world works. All screen objects should fit 

the metaphor and act in sympathy with the user's expectations." 
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1.3 A Solution? Metaphor Also Considered Harmful 

While employing metaphors and analogies in the design of on-screen model worlds 

is often recommended, the metaphor-based user interface design process has not 

been described in detail by researchers. Anderson, Smyth, Knott, Bergan, Bergan, 

and Alty (1994) are exceptions and do provide some details as to how metaphors 

could be employed and how the best metaphor could be chosen from a set of 

alternatives. While metaphor-based design is ill-defined, there is some question as to 

whether metaphors do, in fact, offer the best solution to providing users with systems 

that are easily learned, used, and understood. As detailed in Chapter 4, previous uses 

of metaphor in user interfaces show that the metaphors employed give rise to serious 

usability problems while solving others. Criticisms of the use of metaphor in user 

interface design are long standing. Halasz and Moran (1982) describe the problem 

most often encountered with metaphors, that they break down. There often, if not 

always, exist aspects of the analogical source domain that ,viII not carry over into the 

target domain, or some functionality supported by the target domain of the 

computing system cannot be accounted for by the user interface metaphor. In all 

accounts of the cognitive mechanisms underlying metaphor understanding that have 

been proposed as valuable in user interface design, and in all existing approaches to 

employing metaphors, we see that metaphors are subject to these sorts of failures and 

breakdowns. That metaphors are implemented on computer hardware presents 

additional difficulties, the behaviour of model worlds, system image or system 

illusion, is dictated to an unpredictable degree by the behaviour of the operating 

system and by the hardware on which it, and the user interface process, executes. 

In addition to pragmatic difficulties, and the possibly inherent problem of 

breakdowns and limitations of scope in metaphors, there exist other difficulties with 

the use of metaphor in user interface design. The most serious arise from philosophy 
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and formal semantics, recent work in which fields (for example Putnam, 1981; 

Lakoff, 1987), in addition to a shift from long standing views of mind and cognitive 

science, points to a view that suggests that metaphor plays no role in understanding. 

This work suggests that user interfaces cannot be understood through metaphor, as 

metaphor is currently widely understood in user interface design. 

1.4 A Solution - New Metaphors and New Approaches to 

Metaphor 

Current trends in user interface design show a shift away from the metaphors 

currently widely used in desktop computing systems, toward immersive 

environments and desktop virtual realities, augmented realities, and visual 

formalisms. Also of growing importance are spatial metaphors, where the location 

of objects in the model world is more important for understanding and recognition 

than classification, action, and existing knowledge structures of a real world domain. 

Seeking to avoid the explicit use of metaphors in model worlds that are intended to 

account for much of the target system ignores the major part metaphor plays in 

understanding the real world, and by extension, in understanding model worlds. 

As with many aspects of cognition, metaphor has proved to be far more complex to 

understand than tasks that people themselves consider difficult. With user interface 

metaphors though a poor design can seem as difficult for users to understand and 

interact with as the mental mechanisms of metaphor understanding are to the 

researcher. Human-computer interaction has responded to the problem of metaphor 

and analogy in a number of ways. As mentioned above, current trends are shifting 

away from designs in which the problem of addressing metaphor must be faced. As 

with consciousness, problems can be divided into those that are easy and those that 
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are hardl
• The easy problems of explaining cognitive functions are easy because they 

only require the specification of a mechanism that can perfonn the function. The 

hard problem is that even after all functionality has been explained, the further 

question of why functions are accompanied by experience may remain. Much of the 

previous work on analogy and metaphor surveyed belo\v addresses the easy 

problems. While some avoid either type of problem and regard metaphor in HC! as 

an area in which all problems have been solved or are unworthy of consideration, if 

user interface design is to understand the user experience, the hard problem of 

experience in general \vill eventually have to be addressed. 

The solutions adopted in this research are, firstly, to develop new metaphors to the 

functionality and services provided by systems which existing metaphors seek to 

explain. Secondly, other new metaphors are based on methods of thinking about the 

analysis of systems and metaphors that have previously not been applied to user 

interface metaphors and human-computer interaction, or that have not previously 

been explored in the depth that they are in this research. These methods of thinking 

have a focus on human experience built in and so allo\v some progress on the hard 

problem to be made. Case studies examining existing interface design solutions, and 

also novel interface designs, are undertaken to illustrate the approach adopted. 

1.5 Overview of the Thesis 

We present the motivation for a novel user interface to facilities supported by a 

computer's operating system. We also present details of its design and a critique of 

the design based on the results of applying a usability inspection method. This 

I lbis distinction is attributed to, and is frequently discussed in the writing of, the philosopher David 

Chalrners, for example "Facing up to Consciousness" in Rita Carter's (2002) Conrciousnesst 

Weidenfeld and Nicholson: 50-55. 
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interface, rather than employing a single real world metaphor, attempts to make 

mechanisms that would otherwise be implicit and would have to be inferred by 

users, explicit. The interface is designed with the intention that users are more able 

to construct a realistic mental model of the system. Important in this part of the 

thesis is the realisation that the difficulties presented by existing theories of 

metaphor understanding, and their application in design tasks, must be addressed. In 

addressing these difficulties, a contemporary theory of metaphor, not usually applied 

to user interface design, is introduced and its usefulness is explored by undertaking a 

number of small case studies. In these studies, aspects of novel -user interfaces that 

prove difficult to describe and account for are examined. This theory is then 

employed as a predictive tool to help design a revised version of the novel user 

interface design presented earlier. In the revised design, the difficulties of metaphors 

are appreciated, but the pervasive nature of metaphor in understanding is not 

ignored. 

Chapter Two reviews a number of existing, historically important, systems which 

employ metaphors and analogies in providing a user interface to the facilities offered 

by the operating system of a complex computing device. Those systems that had a 

profound impact on future commercially available systems, or on human-computer 

interaction research, are focused on. In particular, systems that have helped to define 

what is commonly understood by the use of metaphor in user interface design, or 

that have employed metaphors when considering interaction using novel or 

unfamiliar modalities, are surveyed. 

Chapter Three presents the results of an empirical study of first-time users of the 

Apple Macintosh computer. This study was undertaken to examine the robustness of 

a previous similar study which explored the usability of another desktop metaphor

based user interface, and to examine the pragmatics of user interface metaphors in 

use in order to question the claim that interfaces based on metaphors have superior 
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usability. Results of the study are also used to constrain the design of the novel user 

interface design presented in Chapters 6 and 7. 

Chapter Four examines the role of metaphors and analogies in learning to use 

unfamiliar computing systems. Analogy plays an important role in learning and 

problem solving. Users \viIl often make use of existing skills and knowledge and 

may make spontaneous analogous connections when they are confronted \vith a new 

system. The use of analogies and metaphors is not without difficulties however. In 

this chapter the drawbacks of specific metaphors; the difficulties that aiise when 

specific theories of metaphor are applied in an attempt to understand what role 

metaphor plays in HCI; and the difficulties of attempting to evaluate chosen user 

interface metaphors, are surveyed. This chapter surveys the theories of metaphor that 

have previously been, or which can be, employed to design, criticise, or reason about 

the usability of, user interfaces. Realising the drawbacks of existing theories of 

metaphor comprehension and the limitations of other forms of mental model 

description, recent work undertaken by George Lakoff and his colleagues, including 

Mark Johnson, on metaphor comprehension is also considered in this chapter. 

Application of Lakoff and Johnson's \vork as a candidate approach to user interface 

metapho~ is then presented. 

Chapter Five places metaphors in the context of other forms of mental models that 

users may possess and employ \vhen interacting with computing systems. It is found 

that many approaches to aiding users by providing them with an account of how 

computing systems work also rely on metaphors. This chapter also seeks to stress the 

importance of users having useful knowledge of how a computing system works. In 

addition to knowing how their tasks should be performed, knowing how the device 

works is useful if interaction with a system is to be successful; if methods for 

performing new tasks are to be generated; if unexpected system behaviour is to be 

explicable and, where needed, correcting tasks must be performed. Using a 
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qualitative reasomng model and notation developed in the field of artificial 

intelligence, a novel attempt to model the behaviour of objects in model worlds, and 

to analyse the relationship between objects in the model world and their 

implementation as functionality in the underlying software, is presented. This 

method of analysis supports a revised view of the domains between which analogical 

mappings should be thought of as being made between when graphical user 

interfaces are required to be understood. This model also reveals and captures the 

mismatches between user interfaces based on a physical world metaphor and the 

actual behaviour exhibited by these systems based on a physical world metaphor. It 

also suggests, as with other means of capturing mental models, that knowledge of 

the underlying functionality, and its actual, and temporal, behaviour is required if 

user interfaces are to be understood fully. Sections of this chapter have been 

previously published as (Treglown, 1994). The ability of the Lakoffllohnson theory 

of metaphor understanding to provide accounts of how problematic features of 

existing user interfaces can be understood, or shown to be inherently difficult to use, 

is demonstrated in a number of case studies presented in this chapter. Sections of this 

chapter have been previously published as (Treglown, 1999; 2000; 2001). 

Chapters Six and Seven present the design of the Medusa system, the motivation for 

which arises from, in particular, the design guidelines discussed in Chapter Five. The 

system architecture and details of a proposed implementation are presented along 

with relevant aspects of the system's specification. Medusa provides a graphical user 

interface to the application programmer interface of the operating system of a 

complex computing device. Medusa also provides a representation of the computer's 

file space and supports file organisation and retrieval tasks. Medusa adopts three 

principles that are applied consistently to every relevant instance of the classes of on

screen objects. These principles are, firstly, the idea of self-representation in icon 

design, where the final form in which a data file is presented is used to generate a 

rich icon design for the file. User interface design is not the only discipline in which 
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metaphors have been commonly used to account for the concepts that make up the 

domain of interest. In cognitive science, particularly in naive psychology, for 

example, metaphors have frequently been used to explain mental states and 

behaviour. Rumelhart (1989: 298) claims that "... the serial processing Von 

Neumann computer has become the dominant approach to the understanding of 

higher mental processes over the past 25 years or so." Rumclhart complains that 

while the metaphor has a great deal of merit, and improved upon many 

conceptualisations of the mind that preceded it, the conceptual baggage carried by 
-

the computer metaphor for the brain has limited, or must inevitably limit, further 

progress in understanding. Rumelhart suggests that more brain-like metaphors must 

replace computer-like metaphors to account for the brain. Rumelhart (1989: 299), in 

short, \vants to " ... replace the computer metaphor with the brain metaphor". In the 

design of Medusa , therefore, we seek for users to have greater understanding of the 

system by replacing traditional user interlace metaphors with a computer metaphor 

to explain a computing system .. This involves providing sufficient description and 

depiction on-screen of the device components, their interconnections, and their 

dynamic behaviour to permit users to easily alter accessible system parameters. In 

addition, unexpected system behaviour should be noticeable and explained in a ,\'ay 

that refers to the state of the hardware and operating system, but which does not 

require breaking the model world's metaphor. The third principle is consistency of 

task sequences, the same interaction style is adopted to permit interaction \vith every 

instance and class of on-screen object. 

Chapter Eight presents a critique of the Medusa system design described in Chapters 

Six and Seven. As no complete working prototype of the Medusa system exists, low

cost usability inspection methods are employed to examine the usability of the 

system design. The usability inspection method chosen is the cognitive walkthrough 

method. This technique is termed an inspection method rather than an evaluation 

method because no user studies are conducted, it is, though, a technique proven to be 
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able to deteInline the usability of a system when users attempt to perfOITI1 tasks that 

the system is designed to support. A number of cognitive walkthroughs are reported 

which consider realistic interaction tasks and which demonstrate the general 

usability of the Medusa system. The walkthroughs, however, also reveal some minor 

usability difficulties and the omission of any interface features that support recovery, 

being able to reach a desired system state after perfoInling an erroneous action. 

Possible design solutions to support recovery are discussed in Chapter 10. Design 

solutions addressing other failings of the Medusa system are presented in Chapter 9, 

the means of analysis used to justify these solutions are presented- in Chapters 4 and 

5. 

Chapter Nine presents details of the design of a second, revised, version of Medusa 

which is based upon employing the account of metaphor understanding presented in 

Chapter Eight as a predictive and critical tool. Motivation for another revised version 

of Medusa, entitled Medusa-'t, is presented. Medusa-'t is closely related to the 

Medusa system, it retains much of the Medusa system's design, but additional 

requirements are considered. These are intended to address the breakdowns in 

system behaviour and understanding that occur due to the uncertain temporal 

behaviour of computing hardware and its user interface. Two approaches to 

addressing the problems of breakdown in interface behaviour can be proposed, one 

can give the user an explanatory account of the source of the breakdown, or one can 

attempt to prevent, through appropriate hardware and software technology, the 

breakdown from occuning. Medusa-'t employs on-going work in fOInlal 

specification of user interface software, software architectures, and the choice, and 

possible development, of appropriate programming languages to prevent temporal 

breakdowns in the behaviour of on-screen objects where possible. This on-going 
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work is described. Sections of this chapter \\'ere accepted for publication2 but are to 

date unpublished. 

Chapter Ten concludes and summarises the thesis. The contributions of the \\'ork arc 

described and suggestions for further work are presented. 

2 At the International Workshop on Physicality and Tangibility in Interaction, (Sienna, Italy, 20-22 

October 19(9). 
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Chapter 2 

Existing Approaches to the Use of Metaphor and 
Analogy in User Interface Design 

"We didn't have metaphors when I was young. We didn't beat about the bush." 

- Fred Trueman. 

2.1 Introduction 

Learning to use an unfamiliar computer system can take a considerable time as users 

acquire the knowledge required to use the system successfully. Carroll and Thomas 

(1982) state that the relevant knowledge structures cannot, by definition, be accessed 

at first, instead related knowledge is accessed and forms a metaphor for the 

knowledge being acquired. Users are often found to devise and employ metaphors 

when learning a previously unfamiliar computer system (Payne, 1991a), but systems 

designers can often aid users by making the metaphor to suitable related knowledge 

explicit in the model world represented on-screen. Metaphors employed in user 

interfaces tend to be copula, directive, instructional, statements of the form "X is 

(like) aY". According to these assertions, an unfamiliar domain, X, can be explained 

by making its similarities to a familiar domain, Y, explicit. 

Metaphors employed in user interfaces may be employed to describe some small 

aspect of the system, or a single application. The lightbox metaphor (Uidtke and 

Nackunstz, 1987), for example, has been employed to present X-ray data, and the 



note card metaphor (Halasz et aI., 1987) has been employed in hypertext systems. 

Metaphors may also be employed to represent many aspects of a computer system, 

for example, the Notebook metaphor (Fox and Gonzalez, 1989) is offered as an 

extension of the sorts of window manager systems discussed in more detail below. 

The metaphors of interest in this thesis are those that attempt to represent the 

facilities offered by a computer's operating system to support tasks such as file 

management. These interfaces are of interest as every user of the computer will 

employ them at some point, and they attempt to represent an artificial domain, that 

of the computer's storage facilities and operating system, \vith which most users will 

not be familiar beforehand. 

2.1.1 WIMP Systems 

Many of the systems discussed in this chapter, and considered in the rest of this 

thesis, are collectively termed WIMP systems. They are characterised by the use of 

Windo\vs, Icons, Menus and a Pointing device (or Windows, Icons, Mice, and Pull

down menus, according to some interpretations of the acronym). An early discussion 

of the concept of windows may be found in Kay (1969), although many of the 

concepts and problems raised by windows date back through systems such as 

Sutherland's (1963) Sketchpad to early research in computer graphics. A window 

provides a view onto data or a data structure. Windows allow a portion of the data to 

be seen where the data is too large to be comfortably displayed on-screen in its 

entirety. Large graphics images and multi-page documents are examples of such 

data. Douglas Engelbart's rejection of the windows paradigm, as implemented in 

WIMP systems, and much of the discussion about post-WIMP interface design (for 

example, Van Dam, 1997) is due to the idea that " ... WIMP interfaces are still 

'marking interfaces' that in effect use 'digital ink' to make marks on digital 'paper' on 

a digital 'desktop'" (Bardini, 2000: 225). The complaint offered by critics is that 

windows are tied to these limiting metaphors. The power of, and the advance made 

14 



by, windows as proposed by Alan Kay was" ... in part to eliminate the modality of 

applications. He also wanted to eliminate the distinction between operating system 

and applications but succeeded primarily in making the functioning of of the 

operating system visible in the form of the desktop." (Raskin, 2000: 141). The 

fundamental metaphors that critics argue underlie the window concept are not, 

however, faithfully implemented in real systems. Kohler (1987) observes that with 

many systems, notably text editors, the space in which data is displayed, which is 

viewed through the window, may itself depend on quite complex metaphors which 

must be recognised and interpreted by users. Only a portion of the entire display is 

visible within a window. In order to view the remaining portions of the large display 

scrollbars are often attached to windows. The scrollbar determines and represents the 

portion of the view currently visible in the window. The scroll bar can also give an 

idea of the size of the extract visible in relation to the size of the document as a 

whole, and the approximate position of the visible extract within the document. 

Smith (1987) discusses the notion of features which are literal to the metaphor 

employed by the system, or which are considered magical, in that they lie outside the 

metaphor yet increase the ease with which functions may be performed. Windows 

are powerful user interface features based on a metaphor, scroll bars have no 

analogue in the real world and are therefore magical, yet are demonstrably useful 

interaction objects. A more complex fundamental metaphor is discussed in detail in 

Section 4.4. 

Smith (1977: 71) describes icons as "two-dimensional, visual, analogical, concrete 

descriptions of concepts." In the Xerox Star, icons simply denoted a closed window, 

whether this window provides a view onto the files in a directory in the file store, or 

it is a window employed by a currently active program. Icons are increasingly 

fundamental objects in user interfaces, they are usually visually atomic in that they 

have no internal structure, and hence may be employed as lexemes in human

computer dialogues. Unlike command-based user interfaces, the result of a command 
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may not merely be a description of the result of carrying out the conlmand, but may 

provide objects which may be used direclly in the user's subsequent task. 

Menus are often implemented as a form of window, but with simplified mechanisms 

for scrolling through their contents. The menu, like its restaurant namesake, presents 

the user with a list of items from which a selection may be made. In user interfaces 

they are employed to present the user with a list of actions acceptable at the current 

point in the user's dialogue \vith the system. Users select and interact with the objects 

displayed on-screen using some form of pointing device. Light pens and dataglovcs 

are examples of such devices, the most commonly used are mice and trackballs, 

however, which convert the motion of the mouse, or the rotation of the suspended 

trackball, into changes in the position of an on-screen cursor. Input from buttons 

attached to the pointing device is used to select on-screen objects or cause operations 

on objects to be performed. A requirement of any pointing device is that a sense of 

spatiomimesis (Hutchins, Hollan, and Norman, 1986), immediate and appropriate 

feedback in the position of the on-screen pointer in response to movement of the 

pointing device, be perceived by the user. The importance of such system behaviour 

will be considered further below. 

In the design of user interfaces which employ icons as a major component of the 

system, it has been noted (Gittins, 1986) that the model world of the system may be 

represented in terms of a useful metaphor by designing the icons according to a 

collective theme. A well-known metaphor employed in user interfaces, in which this 

is demonstrated, is the desktop metaphor. The desktop metaphor \vas devised for the 

user interfaces of the Xerox Alto and Star computer systems (Johnson et al., 1989) 

and was subsequently adopted by the Apple Lisa and Macintosh computers. Unlike 

some WIMP user interfaces, the desktop metaphor consistently employs icons 

designed according to the collective theme of an office environment. 
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2.2 The Desktop 

The desktop builds on the ideas presented in the discussion of user interfaces which 

employ windows, icons, menus and some form of pointing device in employing a 

consistent metaphor in the design of the user interface. The path of development of 

the desktop metaphor has been a subject of much historical, and legal, argument. 

Johnson et al. (1989), Kay (1993), and Levy (1994) all provide details of the 

principal influences on the desktop's development. The desktop metaphor arose from 
-

work by the Xerox corporation into the design of systems to support the 

development of the electronic office. Smith et al. (1982a; 1982b) identified the 

option available to designers of employing metaphors in the design of user interfaces 

resulting in on-screen objects familiar to potential users from their everyday working 

environment. An example of an electronic desktop can be seen in Figure 2.1. 
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Figure 2.1 A Desktop 

Smith and his colleagues, the designers of the Xerox 'Alto' and 8010 'Star' systems, 

the first commercially available systems to employ the desktop metaphor, recognised 
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that familiar analogies and metaphors may be used to introduce new concepts and 

functions to a potential user. The approach chosen by Smith and his colleagues \vas 

to create electronic counterparts of objects in the physical office with which the 

intended user population were familiar. In this \vay, the icons denoting text files are 

analogous to, and resemble, paper documents, directories on disks are analogous to 

folders, and electronic mail facilities are analogous to in and out trays. The design of 

the icons used in the Xerox 8010 Star's model world were the result of considerable 

design and testing effort (Bewley et al., 1983). Operations performed on objects are 

also analogous to operations that would be performed in the real world: filing a 

document requires moving it to the picture of a folder, whereas in the real world it 

would be carried to the physical folder itself. 

Even in the design of the earliest desktop metaphor system, the Xerox Star, the 

system's designers appreciated the distinction between literal and magical features. 

The file storage system of the Star does not completely resemble real-world filing 

cabinets in that it adds a search mechanism which allows files or folders required by 

the user to be located without him or her having to browse the file structure tree. In 

the empirical study reported in Chapter 3 of first-time Macintosh users, such search 

facilities were used in preference to having to browse the file space. Search facilities 

are magical features, however, knowledge of a typical file organisation relics on the 

memory of a filing clerk, or on some some external catalogue. Certainly a request for 

the whereabouts for a file will tend not to produce the file ready for use, as is 

possible in direct manipulation user interfaces. 

2.3 Rooms 

The Rooms metaphor extends the notion of the WIMP user interface. It provides 

display structures that collect together related on-screen windows and addresses the 

particular issue of supporting task switching as a part of working practice and 
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computer use. Analysis of users' command histories (Bannon, Cypher, Greenspan, 

and Monty, 1983) has shown that users spend periods of time performing a certain 

task, but will interleave the commands employed in performing that task with the 

commands used to perform other tasks. Users this way spend periods of time on 

tasks punctuated by transitions and time spent performing other tasks. 

In basie WIMP systems, the software tools employed in order to perform some task 

will each require one or more windows to be open on-screen. However, as users 

switch their attention from one sub-task to another, they are forced to switch their 

attention from one set of windows to another. The arrangement of windows on

screen has a great effect on the time it takes to switch attention from one window to 

another. The amount of real estate on-screen is often limited, and the number of 

windows visible at one time, or the size of the visible windows will be limited as a 

result (Billingsley, 1988). To overcome this space contention problem windows may 

be either tiled, or may overlap (Bly and Rosenberg, 1986). In a tiled window system, 

no window is obscured by any other window, however tiled windows may be very 

small. If a window is enlarged by the user in order to make its contents legible, then 

the other windows must be resized in order to remain visible on the screen. The 

recently developed elastic windows (Kandogan and Shneiderman, 1997) model is a 

space-filling tiled window, but one in which hierarchies of windows may be 

constructed to suit user roles and tasks, and in which operations, such as closing, 

may be performed on an entire hierarchy, not just a single window. Overlapping 

windows are more complex in that, in addition to having to be resized, windows not 

relevant to the current sub-task may have to be closed, or hidden behind windows 

that the user is interested in. 

This problem of switching between windows has been likened by Card et al. (1985) 

to the use of virtual memory within a computer's operating system. Virtual memory 

allows a computer system to run programs which require larger amounts of physical 
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memory than the computer has available. This is achieved by storing the contents of 

memory locations that have not recently been accessed onto a secondar), storage 

device and retrieving them into main memory when these data are required. Card 

and Henderson (1987a) employ terminology analogous to that of virtual memory in 

their discussion of the Rooms metaphor. They describe the requirement of having to 

ready an engaged tool, a software application used in performing some task, by 

manipulating its window, or by running the required application, as being initiated 

by a tool fault. If data located in secondary storage is needed in main memory, the 

terminology of virtual memory describes this as a page fault. Every time a user is 

forced to switch between \vindows on a computer screen, there is a delay as the user 

makes the required windo\v visible. The Rooms metaphor attempts to minimise this 

overhead. The need to switch rapidly between tasks was noted by the Xerox Star's 

designers (Johnson et al., 1989) and led to tiled windows being employed in that 

system's user interface. As the number of tools required to perform the major task 

increases, the time spent s\vitching between tools increases. In extreme cases, as with 

computer operating systems, the phenomenon of thrashing can occur; where users 

spend more time switching between tasks than they spend actually performing their 

tasks. 

The design of the Rooms user interface is influenced by the observation that work 

conducted using a computing system is made up of phases of activity spent on 

particular sub-tasks using software tools punctuated by transitions to other sub-tasks 

performed using other software tools. The need to minimise transitions between sub

tasks and the software on \vhich they are performed and hence reduce the time taken 

to complete the user's larger tasks is a particular issue addressed by Rooms. Central 

to the Rooms metaphor is the notion that all of the software tools engaged to 

accomplish a major task, such as reading electronic mail, are placed within one 

"room", or screen-sized work space. Tasks, however, may not be independent, an 

engaged tool may be used when performing two or more tasks. Also, it may be 
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desirable to have some tools, such as a clock, visible at all times in all rooms. An 

engaged tool may have a different role in one task to the role it has in another task, it 

should therefore be possible to adapt a tool to match the task. Figure 2.2 shows the 

relationships between tasks and engaged tools and Rooms and windows. 
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SUBTASKS 
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I Rooms System Concepts I 
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INCLUSIONS 

PLACEMENTS 

WINDOWS 

Figure 2.2 Relationships between tasks, engaged tools, Rooms and windows 

(Henderson and Card, 1986: 380). 

A Room is a named screen-sized work space; in each room are the windows opened 

by the programs used to perform a major task. A Room containing a number of tools 

for reading and sending electronic mail, taken from Henderson and Card (1986: 

224), can be seen in Figure 2.3. Each room also contains a number of icons 

resembling doors, these doors symbolise paths from one Room to another. To switch 

between tasks, the user clicks on the door to the Room that contains the engaged 

tools for the other major task. 
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Figure 2.3 Mail, a Room for reading electronic mail 

In case the user wishes to return to the Room that they entered the current Room 

from, Back Doors are provided. These special doors overcome the difficulty raised 

by most doors in the Rooms system that only permit one-way travel between Rooms, 

and help the user who may not remember the name of the Room they have just left. 

Card and Henderson (1987a) state that as the number of Rooms increases, the 

complexity of the interconnections between Rooms can create an electronic maze, 

for this reason t\VO other mechanisms to aid the user navigate a network of Rooms 

are provided. 

The first user navigation aid is a pop-up menu listing the names of all the Rooms in 

the net\vork, from which the desired destination Room may be selected. The second 

solution is the Overview. The Overview displays a grid of pictograms of all of the 

Rooms currently in use arranged by the rooms' names in alphabetical order. To help 

the user find a particular window, window pictographs may be expanded to allow the 

user to browse through the windows in the entire set of Rooms.The paths between 
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doors and the Rooms they connect onto may, in addition, be superimposed on the 

Overview to show the web of interconnections between Rooms. These features, 

while improving the Rooms system, lie outside the basic Rooms metaphor, although 

the menu (as was mentioned in Section 2.1.1), and the use of a plan view of the 

network of Rooms in the Overview both rely on analogies and metaphors. 

Other features that support users employ analogies that are closer to the central 

theme of moving between a number of inter-connected rooms. Users may wish to 

have an engaged tool, and the data associated with that tool, for example a text file 

and the editor used to prepare the file, accompany them as they move from one 

Room into another. The concept of baggage permits this. Baggage is simply the 

identification of tools that should travel with the user as they move into the next 

Room. If a number of tools are to travel with the user at all times, they are said to be 

placed in the user's pocket and appear in a Room within every Room the user visits. 

The notion of Room inclusion, having a Room contained within the current Room is 

the solution provided to the problem of defining the location and position attributes 

of tools that must remain constant across workspaces. If a change is made to any of 

the engaged tools in the collection, the change is propagated throughout the entire 

network of Rooms. 

The Rooms metaphor provides a user interface which allows users to switch quickly 

between tasks without being delayed by the overhead of having to resize windows or 

to search for data files; the Rooms themselves, however, require a great deal of time 

to configure. In order to overcome this problem, Card and Henderson (l987b) 

devised the mail-order catalogue metaphor. The mail-order catalogue metaphor 

allows users to install and configure Rooms far more quickly than would otherwise 

be possible. Users may configure a network of Rooms by simply ordering pre

defined Rooms, Suites (small, pre-defined networks of Rooms) and engaged tools 

from the catalogue. By employing the catalogue, the user can define a network of 
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Rooms which will be available instantly when the user starts the machine, users can 

also use a previously unused software application with far less difficulty than if they 

were using the basic Rooms system. 

2.4 The Alternate Reality Kit 

The Alternate Reality Kit (henceforth ARK) was developed by Randall Smith 

(Smith, 1986). ARK shares many of the features of the systems, and is influenced 
-

by, the same systems that influenced the development ?f the systems mentioned 

discussed above. Its name, for example, follows from David Canfield Smith's 

(Smith, 1977) Pygmalion system's provision of an alternate reality for supporting 

creative thinking in its users. ARK's principal influence is the Small talk 

programming language and the principal aim of the Small talk environment to be a 

system for developing microworlds, interactive simulated environments.Motivation 

for ARK followed from Smith's observation that students of physics demonstrate 

difficulties in understanding the abstractions encountered in physics. Studies 

conducted using ARK, which shall not be discussed further, have shown that ARK is 

helpful in overcoming students' difficulties in understanding Newtonian and 

relativistic physics. An example of an ARK simulation, taken from (Smith, 1987: 

62) can be seen in Figure 2.4. 
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Figure 2.4 An ARK simulation of bodies moving under mutual gravitational 

attraction 

ARK simulations are constructed by providing access to object-oriented 

programming in Smalltalk-80 for non-expert programmers. ARK provides a number 

of pre-defined objects from which simulations may be constructed, prototypes of 

these objects are all held in the warehouse (shown in Figure 2.5) from where the 

instances of objects required for a particular simulation may be retrieved. ARK 

provides other on-screen objects that are used to alter variables encapsulated within a 

simulation object. Slider switches are used to specify numbers, they allow values of 

properties associated with an object to be easily altered. Buttons (shown in Figure 

2.6) are the means by which users communicate directly with objects. Buttons 

contain a simple command to be applied to an object and are invoked by being 

picked up using the hand pointer and dropped onto the object. If the user wishes to 

remove an object from a simulation, the user drops the "vaporize" message onto that 

object, the object will then disappear. Message passing is the mechanism by which 
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objects communicate with each other, message passing can also be thought of as the 

means by which users interact \vith on-screen objects as suggested by Card, Moran, 

and Newell (1983). This concept will become important when human-computer 

dialogues in a ne\v user interface design are considered in Chapter 6. 

Figure 2.5 The ARK warehouse (Smith, 1987: 65). 

Figure 2.6 ARK buttons (Smith, 1987: 65). 

Message boxes provide a general message passing facility, a message box consists of 

the name of the message it sends and a plug that connects to the object which is to 

receive the message. If the object is to return a value as the result of being sent a 

message, the message box will contain a region in which the result is displayed, for 

example, an object might be "asked" for its mass and this value would be displayed 

within the message box. Representatives (shown in Figure 2.7) often appear as an 

object that contains text describing the object being represented. Representatives 

allow instances of any Smalltalk-80 class to be represented and used within an ARK 

simulation. Interactors (shown in Figure 2.8) allow users to manipulate physical laws 

within a simulation. Interactors define an object's behaviour, or define constraints 

that apply between a number of objects, for example Newton's inverse square law of 
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gravitational attraction, and they also maintain a list of the objects within a 

simulation subject to that constraint The power of an interactor lies in users being 

able to adjust its attributes in the same way that they can adjust the attributes of other 

objects. The user could, for example, reduce the gravitational constant, or switch it 

off entirely. 

Figure 2.7 ARK representatives (Smith, 1987: 65). 

Figure 2.8 An ARK interactor (Smith, 1987: 65). 

Users interact with all ARK simulations using the hand. The hand, like other on

screen pointers, is used to select and manipulate the on-screen objects. ARK permits 

several alternate reality simulations to run at the same time, each within its own 

window. A number of simulations could, for example, show the same set of objects 

interacting with different sets of physical constants as a way of comparing how 
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changing the value of one constant affects the simulation. The hand (shown in Figure 

2.9) is not a part of any of these realities, it exists in a meta-reality. ARK complicates 

the simple physical \vorld metaphor with the concept of a reality structure. The 

alternate reality simulations are self-contained, but all lie on onc plane of reality. The 

hand exists in a meta-reality where it is free to move \vithout being subject to any 

influences from the alternate realities, and from where it casts a shadow in the reality 

belo\v. Any object picked up by the hand is taken into the meta-reality and the 

objects left behind behave as if the object were no longer there. Buttons attached to 

objects also cast a slight shado\v signifying that they intrude into the meia-reality. 

An object's position in the reality structure is meant to aid novice programmers by 

eliminating the confusion between editing and execution, the object's appearance 

denoting its current role. 

Figure 2.9 The ARK hand (Smith, 1987: 65). 

Although the ARK is based on a physical-world metaphor, some features of the 

ARK's interface, such as attaching buttons to objects, would be very difficult to 

achieve if they were activities literal to the metaphor. Actions such as attaching 

buttons to an object by simply dropping the button onto the object lie outside the 

physical-world metaphor and are considered magical in Smith's (1987) distinction. 

The use of magical features that lie outside the metaphor has implications when 

users are learning to use the ARK. Smith (1987: 62-63) says: 
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" one of the lessons of ARK is that the literal aspects of the 

interface are often obvious while magical capabilities are harder to 

learn. In ARK, the time to explain the basics is actually measured in 

seconds. Every piece of added magic is relatively 'expensive' because 

it requires its own explanation: it does not 'come for free' as it does 

when the user realizes there is a physical metaphor." 

2.5 Metaphor and Non-visual Representations 

In the sections above the use of metaphor in visual forms of representing software 

objects in a small number of computing systems was considered. These systems all 

rely on the visual modality to communicate the system state and in the depiction of 

the metaphor employed. In all of the systems discussed above, sound is either absent 

or limited to a few simple indications that an event of some sort has occurred. And 

while the mouse, or some equivalent device, is used to point to and select objects 

and operations on objects, these systems cannot be said to employ the haptic channel 

to communicate system feedback, or to communicate the user's intentions to any 

great extent. In Section 2.6, we consider the role metaphor plays in systems that 

employ the haptic channel to a greater extent than in the systems described above. In 

this section, we consider the role of metaphor in systems that employ other 

modalities to a larger extent than in what are typically deemed metaphor-based 

systems. 

We are unaware of the olfactory channel, the user's sense of smell, being currently 

employed to communicate information about the state of an interactive system 

(except in the case of some severe hardware failures). While Morton Heilig's 

Sensorama arcade rides, which are cited as early immersive reality systems 

(Rheingold, 1991), would, in one ride, blow the smells of combustion fumes at the 

rider of a virtual motorcycle, the rides themselves were not interactive. The user was 
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simply a passenger on a ride filmed earlier and projected onto eyepieces giving a 3D 

display. In Smith's (1996: 231) terms, however, as the user can "sce through" the 

projection to the actual events and objects it presents, the display does not stand in 

metaphorical relation to other events and objects and so this system does not require 

further consideration in this thesis. Sound, however, as a means of communicating 

infonnation about the current state of a computing system, is \vorth some discussion. 

2.5.1 Auditory Icons 

It is claimed that other than its use in computer games, sound still tends to be 

neglected as a means of conveying information in computer systems. Where sound is 

used, if at all, in most systems, it is restricted to "beeps" and other simple warning 

sounds. Gaver (1986) noticed this neglected modality and outlined an approach that 

uses sound to convey a great deal of information about a computer system to the 

user. This approach, tenned auditory icons, uses caricatures of naturally occurring 

sounds to represent both conceptual objects and dimensional data within the 

computer system to the user. Auditory icons are mentioned as they can evoke 

metaphors in the way that they communicate information. The auditory icon 

approach is not concerned with the proximal stimulus, meaning the dimensions of 

sound such as pitch, loudness and duration that describe the variations of air pressure 

near the ear, but rather is concerned with the diBtal stimulus, \vith the physics of the 

source of the sound. 

Gaver (1986: 168) described the infonnation that might be conveyed by an auditory 

icon saying: 

"One can imagine how a single sound could be used to give 

infonnation about a file arriving in a message system. The file hits the 

mailbox, causing it to emit a characteristic sound. Because it is a large 
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message, it makes a rather weighty sound. The crackle of paper 

indicates a text file - if it had been compiled program, it would have 

clanged like metal. The sound comes from the left and is muffled: 

The mail box must be in the window behind the one that is currently 

on the left side of the screen. And the echoes sound like a large empty 

room, so the load on the system must be fairly low." 

If a sound is to be used to represent a source of information, the mapping between 

the information and the representation, the relationship between the source and the 

sound, must be considered. Gaver (1986) identifies three mappings between source 

and sound; nomic, termed iconic in (Gaver, 1989); metaphorical; and symbolic. 

Symbolic mappings have an arbitrary mapping between the information and its 

representation, they rely on social convention for meaning, examples of symbolic 

mappings include sirens and telephone bells. Earcons, "which are short, rhythmic 

sequences of pitches with variable intensity, timbre and register" (Brewster, Wright, 

and Edwards, 1993: 222), another form of auditory feedback that have received 

some attention, have only a symbolic mapping to the object, location, operation, or 

interaction that they denote. Nomic, or iconic, mappings in auditory icons depend on 

the physics of the source of a sound to convey meaning, an example is the auditory 

icon described above representing a file being placed in a mailbox. 

Metaphorical mappmgs rely on similarities between the represented and the 

representing systems to convey meaning. A metaphorical mapping may either be a 

structural mapping where similarities between the structure of two symbols or 

objects are exploited, or it may be a metonymic mapping, where a feature of the 

object is used to represent the whole object. Gaver (1986) gives the example of a 

hiss being used to represent a snake as an example of a metonymic mapping. Other 

metaphorical mappings rely on the notion of temporal progression of sound and the 

events the sounds stand for, or on the notion of a dimensional metaphor, " ... in which 
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one ordered dimension is used to represent another" (Gavcr, 1986: 171). An example 

Gaver (1986) gives of the use of a dimensional metaphor is of the change in pitch of 

an object at different heights. 

The mappings bet\\'een the represented object and the representation are not distinct 

descriptions, it is possible for an auditory icon to employ a mapping that lies 

between two of the classes of mappings described. If a metaphor is weak, or is 

poorly understood, then the mapping becomes increasingly symbolic. Also, nomic 

mappings depend on models of the source events for understanding, as models 

become more approximate, the result becomes more like a metaphor. Nomically 

mapped auditory icons also depend in some sense on metaphors, the icon's mapping 

will, Gaver (1986: 172) claims, " ... be nomic to some event in the model world 

presented to the user, not to underlying events in the computer itself." Auditory icons 

have, to date, been implemented within two important systems, the SonicFinder 

(Gaver, 1989) and SharedARK (Gaver, Smith, and O'Shea, 1991), these are briefly 

discussed below. 

2.5.2 SonicFinder 

The SonicFinder (Gaver, 1989) augmented the desktop metaphor of the Apple 

Macintosh Finder user interface with auditory icons. The auditory icons were added 

to the Finder system to provide auditory information whenever the user interacted 

with an object on the model desktop. For example', if the user clicked on the visual 

icon representing a file and dragged the icon across the screen, the user heard the 

sound of the object being hit (clicked on) and a scraping sound as the object was 

dragged. Further sounds were added to typical actions that can be performed within 

Finder; the actions of opening windows and scrolling the contents of a window, for 

example, had auditory icons associated with them. 
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Gaver (1989) realised that this use of auditory infonnation is redundant, the Apple 

Macintosh had been used successfully for some time without sound being employed 

to the extent it was in the SonicFinder. His claim, however, was that learning and 

remembering the system is aided by this redundant infonnation, by these 

confirmatory sounds (Gaver and Smith, 1990), and that users' perceived senses of 

direct engagement with on-screen objects should be enhanced - although no studies 

exist to substantiate these claims. 

2.5.3 SharedARK 

SharedARK is a multiuser version of the Alternate Reality Kit (described in Section 

2.4). In ARKola, a simulation implemented in SharedARK, auditory icons were used 

to convey infonnation about hidden processes in a soft-drinks bouling plant (Gaver, 

Smith, and O'Shea, 1991). The ARKola bottling plant is made up of a number of 

interconnected component machines, but only a few machines can be seen on a 

user's workstation at anyone time so much of the operation of the plant will be 

invisible. Auditory icons were used to convey infonnation about these invisible 

machines. 

The use of auditory icons in such an application is likened to the way in which some 

people, especially trained and experienced mechanics, can detennine the status of a 

machine with which they are familiar depending on the noise that the machine is 

making. If there is a fault within a machine, it is assumed to cause a characteristic 

noise which can aid diagnosis of the fault. Within the ARKola factory, users are able 

to tell if the factory as a whole is running well from the noises made by the separate 

component machines. If there is a fault in the running of the factory, users are able to 

tell which machine to examine from the characteristic noise made by the faulty 

machine, for example if the bottle storage area is being overfilled, the sound of 
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breaking bottles can be heard. Studies of collaborating users undertaken using 

ARKola (Gaver, 1991; Gaver and Smith, 1990; Gaver, Smith and O'Shea, 1991) 

demonstrated that for some states of the system the use of audito!)' icons assisted 

users in determining which tasks they should attend to next. Some sounds were less 

effective than others, the absence of critical sounds \vas in particular not regarded 

\vith the urgency it should have been. The results, however, lead Gaver and his 

colleagues to claim that auditory icons are useful for communicating semantic 

information, rather than just for event notification or communicating simple status or 

mode information, which are the typical uses of sound in interactive systems. 

2.6 The "Reality" Metaphor and New Interaction Styles 

The systems described above are landmarks in metaphor-based user interfaces. All 

of these systems are confined to the (physical) desktop and to running on a 

conventional workstation (\ve shall ignore personal digital assistants for now). The 

"reality" metaphor is a term coined by the researchers working on the Wearable 

Computers project at the MIT Media Laboratory. The "reality" metaphor describes 

the presence of both real physical objects and computer-generated artefacts in the 

user's visual field. A growing movement in computer science is the design of 

systems that are mobile, ubiquitous, or a natural part of the environment. \Ve are 

required to consider such systems, not just because of their growing importance, but 

also because of the role metaphor plays in the design and understanding of them. We 

shall not revie\v all the systems that can be termed as applying the "reality" 

metaphor, but shall briefly discuss illustrative examples of the different interaction 

styles that fall under this heading. We discuss in greater detail the fundamental 

metaphors claimed to be the foundation for many systems designed according to the 

"reality" metaphor. 
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Ubiquitous computing, as the term suggests, is concerned with making computing 

systems a part of the everyday environment. This can be achieved by introducing 

computing machinery into artefacts that have previously not contained computing 

systems, such as LEGDI bricks (Resnick et al., 1996) or office whiteboards 

(Stafford-Fraser and Robinson, 1996), or by making computing systems smaller and 

mobile, as in the form of PDA's (personal digital assistants). Whereas in ubiquitous 

computing systems, the computing system and the physical artefact occupy the same 

object, be it a LEGO brick, doorknob, running shoe, and so on, in augmented reality 

systems the external world provides implicit input into a computing system. In 

augmented reality the user interacts with a real world augmented by computer

generated information. Examples of such systems include repair assistants (Sass et 

al., 1997) where instructions can be displayed over the image of the actual object 

being repaired. A CCTV camera mounted in the computing device, or head-up 

display provides an input source to the device and possibly relays the image of what 

it is looked at to the user. Devices with such an arrangement of camera and display 

are described as employing a magnifying glass metaphor (Rekimoto and Nagao, 

1995). This term is a true metaphor (the "information is detail" metaphor) in that it 

describes a system, but not one where the image of the world seen by the camera is 

magnified In the display and more detail can be seen. Instead" the image is 

magnified 10 terms of the information available, additional information being 

supplied by the computing device, not the world itself. 

Some systems employ the reality metaphor to support the task domains supported by 

the workstation-bound user interface metaphors discussed above. The desktop 

metaphor is typically used to support tasks that are performed in an office setting, 

the desktop metaphor, however, mirrors the environment into which it is introduced, 

it is not fully a part of it. Documents must be printed if they are to be stored in 

1 LEGO is a trademark of LEGO Systems, Inc. 
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physical filing cabinets, but a printed document is unavailable for manipulation in 

the electronic domain. The DigitalDesk (Wellner, 1991), for example, overcomes 

these problems, by use of image projectors, cameras linked to image processing 

software, and a touch- and gesture-sensitive physical desk surface. In the 

DigitalDesk, electronic and physical documents have equal status within the system, 

images of electronic documents may be projected onto the desk's surface and real 

documents may be scanned and an electronic version of them created. Systems 

developed as part of the Tangible Media project at the MIT Media Laboratory (Ishii 

and Ullmer, 1997; Ullmer and Ishii, 1997) demonstrate a similar equality of physical 

and electronic objects within the representation and embodiment of the task domain .. 

2.6.1 Optical Metaphors 

The tangible user interfaces developed by Ishii and his colleagues are based on 

metaphors of light, shadow, and optics, which are claimed to be "particularly 

compelling for interfaces spanning virtual and physical space." (Ishii and UlImer, 

1997: 240). The activeLENS system, an arm-mounted flat-panel display is described 

as being modelled in both its form and function as a jeweller's magnifying lens, the 

same notion drove the design of the passiveLENS, a simpler transparent glass 

surface onto which the metaDESK display projects information. The metaDESK 

greatly extends the use of optical metaphors. 

The metaDESK concept, depicted in Figure 2.10 (MetaDESK itself is shown in 

Figure 2.11), is an effort to integrate both computer and physical worlds. Via the 

desktop metaphor, aspects of the physical world are emulated in the 2D model world 

implemented by a PC. The metaDESK concept simultaneously attempts to 

physically instantiate windows, icons, menus, handles, and control metaphors back 

into the real world (denoted A in Figure 2.10), as well as expoiting affordanccs of 
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real world instrument and artifacts made obsolete 1n the development of the 

personal computer (denoted B in Figure 2.10). 

desktop 
metaphor 

Figure 2.10 The metaDESK concept (Ullmer and Ishii, 1997: 224). 

Figure 2.11 MetaDESK (taken from Dourish (2001: 45) 

The metaDESK concept is illustrated by the prototype application Tangible 

Geospace. In this system, small physical replicas (collectively termed phicons) of 

landmarks found on the MIT campus can be placed on the surface of a desk onto 
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which a map of the MIT campus rotated and translated appropriately to match the 

orientation and location of the phicons is back-projected. Viewing the desk through 

the activeLENS \vill cause an appropriate 2D projection of the 3D scene that could 

be 'seen' from the comparable location of the lens in the real world to be displayed in 

the lens' panel. Placing a second phi con on the desk causes the map to be scaled, 

\varped, and rotated so that the phi con lies on the appropriate location in the map. 

Moving the relative positions on the ph icons causes the projected map to be adjusted 

accordingly. Table 2.1 lists the tangible user interface counterparts of common 

graphical user interface components. 

G VI: Graphical Vser Interface TUI: Tangible User Interface 

Windo\v Lens 

Icon Phicon 

Menu Tray_ 

Handle Phandle 

Widget Instrument 

Table 2.1 Physical Instantiation of GUI Elements in a TUI 

In terms of optical metaphors, phicons are linked with the notion of "digital 

shado\vs". As illuminated objects cast shadows, so phi cons cast digital shadows that 

project information as to their virtual contents. Thus Ishii and Ullmer suggest that a 

suitably modified torch (flashlight) can be used to project different wavelengths of 

virtual, or semantic, light onto the desk. One fonn of light might render physically 

constrained shadows of the physical building, while another might cause funding for 

the faculty to be rendered. 

The ambientROOM system provides information not only to 'foreground' perception, 

as with the metaDESK, but also to peripheral perception through ambient media, 
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light, shadow, sound, air and water flow. Where ambient information needs to 

brought into the foreground for closer attention, the ambientROOM provides 

phicons that act as sources of the ambient information, which may be moved into the 

proximity of an information sink, such as a loudspeaker where the information can 

be suitably rendered. The use of optical metaphors in all of these systems is justified 

by Ishii and Ullmer's (1997: 240) claim that: 

"Perhaps the most compelling aspect of the optical metaphor is its 

seamless consistency with the physics of real space. By not only 

invoking but also obeying the optical constraints metaphorically 

imposed on our physical interface prototypes, we are able to 

maximize the legibility of interface in our creations. People know 

what to expect of a flashlight, know what to expect of lenses. By 

satisfying these expectations, we can truly realize truly seamless 

'invisible' integration of our technologies with the physical 

environment. " 

We shall consider these claims further in Chapters 6 and 9. 

2.7 Conclusions 

This chapter served to review a number of existing user interface designs which 

employ metaphors in order to attempt to represent a large part of the underlying 

computer system. While the systems described above revolutionised, and continue to 

revolutionise, the usability of computing systems and make them accessible to a far 

larger number of users, the use of metaphors in the designs of their model worlds is 

not a perfect solution to the problem of improving system usability. In the following 

chapter we examine user interface metaphor in general, and the problem of 
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understanding and interacting with computing systems in terms of metaphors and 

analogies. In particular, we survey the difficulties that user interface metaphors pose 

for the user. 
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Chapter 3 

An Empirical Study of First-time Macintosh Users 

"/ feel/am beyond metaphorical assistance. " 

- 'Cher' in "Clueless", the television series. 

In the previous chapter a number of important and influential computing systems and 

user interface designs that implement user interface metaphors or which rely on 

metaphor comprehension in order to be understood and used successfully were 

reviewed. These systems helped to make the personal computer the pervasive 

technology that it is in many parts of the world. They also helped make the computer 

accessible to a wider range of users than other visions of personal computing might 

have seen come about. The design principles of these systems can be contrasted, for 

example, with Douglas Engelbart's "bootstrapping" concept and NLS technology 

(Bardini, 2(00), which was intended for use by knowledge workers who were 

expected to invest tens of hours in the initial training period. Many of the systems 

described in the previous chapter have not been subjected to usability testing that 

would make the case for their usability and usefulness compelling. Alternatively, 

usability testing might have been undertaken, but the results of such testing might 

have been withheld for commercial reasons. The study reported below, for example, 

seeks to copy one whose results were withheld for some time at the behest of the 



company that sponsored the original work (John M. Carroll, personal 

communication). 

The systems described in the previous chapter all use or rely on metaphor for their 

understanding and use. A survey of the HeI literature, however, finds that metaphor 

is also a source of users' difficulties. In this chapter we report on a small study of 

first-time users of the Apple Macintosh to test the notion that metaphor is always 

advantageous in interface designs. This study also seeks to examine the findings of 

Carroll and Mazur (1986) who undertook an empirical study of the Apple' Lisa (the 

forerunner of the Macintosh) and found a number of usability faults that wcre not 

resolved by the use of the desk top metaphor. Indeed they found (their study is 

described in more detail in the following chapter) that the use of metaphor can be a 

source of users' difficulties. 

In Carroll and Mazur's (1986) study, a small number of subjects from thc staff of 

IBM were recruited \vho used an Apple Lisa for weekly sessions lasting between two 

and three hours to undertake a medium-scale project and report. Due to constraints 

imposed on the study reported below, our study examines a much shorter period of 

initial use of the DESKTOP metaphor. Like Carroll and Mazur, though, we also 

found that the DESKTOP metaphor used in the user interface, while it is an 

improvement over command-based interfaces, was a source of users' difficulties. 

These difficulties, among others, that are due to the use of metaphor arc explored 

further in the next chapter. 
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3.1 Overview of the study 

3.1.1 The Subjects 

Seven subjects. recruited from the staff of the Open University. participated in the 

study. The subjects were selected on the basis of availability. and were all paid a 

nominal fee. All of the subjects were familiar with IBM PC compatible computers • 

. and. over the group. were familiar with spreadsheets. database ·software, terminal 

emulators, C language compilers and word processing packages. All of the subjects 

were users of the Microsoft Windows graphical user interface to MS-DOS. As 

subjects were only available during their lunch break, sessions were planned so 

significant progress could be make in no longer than an hour. 

3.1.2 Methodology 

Subjects were supplied with a copy of the Apple Macintosh manual (Apple, 1990) 

and a blank, pre-formatted floppy disk. Subjects were also given a list of short 

exercises to perform (shown below). These exercises were designed to be similar to 

the sorts of tasks that users of the Apple Macintosh would perform every day, and 

were designed to force those subjects who attempted them into using particular parts 

of the system. The subjects were not obliged to perform the exercises, although they 

all attempted them. The subjects were then free to begin to investigate the Macintosh 

system. Subjects were asked to "think aloud" as they worked, otherwise they were 

free to work as they wished. No advice was offered as the subjects worked. When 

they could see no solution to their problems, the session was considered to be at an 

end and advice was given. Notes were taken and the subjects' screen activity was 

videotaped and their speech recorded. The time subjects spent working ranged 

between forty minutes and an hour and ten minutes. 
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3.1.3 Tasks Performed by Subjects 

Participants \vere provided \vith the list of tasks below, as mentioned they "'ere 

under no obligation to attempt them, although all participants did, with mixed 

success. Participants were told before attempting the first exercise: 

Try to do as many of the exercises as you can. Don't worry if you 

cannot complete an exercise or if you haven't completed an exerCise 

ber ore time runs out. 

The instructions for the tasks were as follows: 

Exercise 1 

Write down the names of the files in the folder Experiment 1 

Exercise 2 

Delete all of the picture files from the folder Experinlent 1 

Exercise 3 

Copy the application program in the folder Experinlent 1 to the 

floppy disk provided. 

Exercise 4 

Find the file Mary's lamb, open it, and add the line the lamb was 

sure to go to it. Save the file and make a duplicate copy of it. Place 

the duplicate copy of the file on the floppy disk. 
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Exercise 5 

Eject the floppy disk from the computer. 

3.1.4 Caveats 

Although Carroll and Mazur's (1986) study was taken as the starting point for this 

study, this study differs in a number of respects. Firstly the machine used was not an 

Apple Lisa, instead an Apple Macintosh SEl30 running the System 7 revision of the 

operating system was used. This machine was chosen as one of the particular aims of 

the study was to investigate users' understanding of the mechanism which allows the 

computer to have a number of programs active at one time and which allows the user 

to switch between these programs. 

The internal floppy disk drive of the machine used was faulty, and an external floppy 

disk drive had to be used instead. The Apple Macintosh supports three methods of 

ejecting floppy disks from machine. The "proper" way is to drag the icon of the disk 

to be ejected to the trashcan, the automatic mechanism within the disk drive will then 

eject the disk. The second method, which is commonly used when copying files from 

one floppy disk to another, is to select the Eject Disk option from the SpeCial 

menu or to use the XE shortcut. Again the automatic mechanism will eject the disk, 

but a greyed out image of the disk's icon will remain visible on the desktop. At some 

point in the future the system will request that the disk be replaced so that any 

outstanding or final operations on it may be performed. The third method, which is 

only recommended should the machine crash and there is no other way of retrieving 

the disk, is to push a rod (such as a straightened paper clip) into the hole to the right 

of the disk drive, this action will manually eject the disk. The external drive, unlike 

internal Macintosh disk drives, had an eject button, which acted in the same way as 

the HE key combination. Whilst this study used an atypical hardware configuration, 
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many flaws in the subjects' understanding of the computer system were brought to 

light as a result. 

The principle differences between this study and Carroll and Mazur's are the time 

students used the system for, and the tasks they were asked to perfonn during that 

time. Subjects could only give up an hour of their time, so many aspects of the 

Macintosh user interface could not be encountered by them. The exercises that the 

subjects were set (see above) were considered reasonable for the length of the 

session, although those subjects that completed the exercises did so in less than the 

time available. The subjects in Carroll and Mazur's study were available for two 

three-hour sessions, hence were able to perform a much more complex task using the 

Lisa, and many more aspects of the Lisa's interface were encountered by their 

subjects. 

3.2 Observations 

3.2.1 Using the Manual 

The subjects were all provided with a copy of the user manual supplied with the 

Macintosh computer (Apple, 1990), none of the subjects, ho\\'ever, found it to be of 

much use. Subjects 2 and 7 were the only participants to attempt to make much use 

of the manual, the other subjects who used the manual did so only as a last resort 

(three of the subjects did not refer to the manual at all). 

One problem that arose \\'as the layout of the manual; subjects would find the page 

number of a topic they were interested in, but would find that the contents of that 

page addressed a different topic. Because of the method of instruction used by the 

manual, subjects had difficulty searching from the page containing information that 

they did not want to the information that they did require. Subjects would be 
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presented with the sequence of steps to be followed to perform some specific task, 

but they were unable to apply this action sequence in the particular context of the 

task they wanted to perform. 

Using the manual to search for information on a specific topic was complicated by 

some subjects re-phrasing the terminology of the desktop metaphor into terminology 

with which they were familiar. this re-phrasing was also evident when users 

attempted to perform certain other tasks. This meant that subjects would re-phrase a 

problem in the list of exercises into terminology they knew, and then search the 

index for the familiar term rather than the correct term. The subjects would then be 

unable to obtain the correct information, if they were able to obtain any useful 

information at all. 

3.2.2 Using the On-line Help Facility 

The computer system used for this study was equipped with an on-line help facility 

called Balloons. When the user runs this program, a small speech balloon appears 

next to an object that the user points to using the mouse. The balloon contains a 

small piece of text that describes the object and its possible uses. A typical speech 

balloon can be seen in Figure 3.1. 

Subject 2 made particular use of these balloons, usmg them initially to gain 

information about all of the on-screen objects, then, as the session progressed. she 

used them to gain information about single objects that she had not encountered 

before. On-line help such as this proved initially very helpful. As the session 

progressed, however. some shortcomings became apparent. Firstly, speech balloons 

had only been defined for a limited number of objects, and had not been defined for 

objects used by a number of application programs. Thus there was no information 

about objects that were new to the subject. Secondly, Subject 2 in particular became 
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frustrated by the text that appears in the speech balloon being a constant piece of 

"canned text", the infotmation does not change according to the particular state of 

the machine or in relation to the task the user is trying to perform. 

This is an application-a program 
",Hh which you can perform a 
task or create a document. 
Applications includE' word 
procE'ssors I graphics programs J 

database programs I games I and 
spreadshE'E'ts. 

Figure 3.1 An on-line help speech balloon 

3.2.3 Interpreting the Desktop Metaphor 

The subjects were all familiar with the Microsoft Windows user interface. so they 

already possessed many of the basic skills needed to use the Macintosh. Some of the 

subjects' existing skills, however, \vere particular to the Windows environment and 

interfered with their attempts to learn the Macintosh. The aspect of the Macintosh 

that caused most problems when subjects attempted to apply their existing 

knowledge is not one which is covered by the desktop metaphor, hence discussion of 

this will be delayed until Section 3.2.4. Some problems with the desktop metaphor 

did, however arise. 

Most of the problems observed by Carroll and Mazur were caused by the 

terminology used to describe the system, this also caused problems in this study. The 

notion of an application file caused problems for some subjects, they simply were 

not sure what was meant by this term. Even when they had double-clicked on an 
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application's icon and could see the program running, some subjects (especially 

Subject 6) could not associate an application with a runnable program. The concept 

of a folder caused some confusion, most of the subjects at some point remarked that 

they assumed by the new term "folder" that the more familiar term "directory" was 

meant. Folders caused a problem for Subject 7. He did not relate the icons that 

appeared in the window that opened when he double-clicked on a folder's icon to the 

files contained within that folder, he assumed them to be more folders, even though 

none of the files had a folder-shaped icon attached to them. 

The terminology used to describe the Macintosh and its user interface created more 

serious problems when users tried to perform certain tasks. The exercises listed in 

Section 3.1.3 were all phrased in the terminology used in the system documentation, 

but as users attempted to perform these exercises, especially in the case of Subject 3, 

the terms used were translated into more familiar terms. However, in reformulating 

the description of the task it was sometimes then impossible to perform the task. 

When, for example, Subject 3 came to delete a file on the hard disk, she saw the task 

as one of "erasing" a file. She was then forced to use a number of elaborate strategies 

in order to perform the act of "erasing" when she could find no information on 

"erasing" files in the manual. For example, she carried out a lengthy search of the 

options listed on the pull-down menus and even opened the file in the hope that she 

would find an option within the application that would be capable of erasing the file. 

The trashcan was also found to create problems for the subjects. Users seemed not to 

notice that a desktop metaphor was being used as far as the trashcan was concerned. 

Only Subject 1 knew that files could be deleted by dragging them to the trashcan, 

and she admitted that she had been told about this before the session. The other 

subjects tried to apply their knowledge of Microsoft Windows and went on, often 

lengthy, searches for a delete option on a menu. Most subjects resorted to the manual 
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after this searching proved fruitless. It occurred to Subject 4 that dragging files into 

the trashcan might delete them, which he then tried. This provoked him to remark: 

"It's that easy is it? ... I suppose if I'd taken the time to read the 

manual I'd have found that out." 

Once subjects had learned to delete objects, some still did not infer some other tasks 

that could be perfonned using the trashcan, Subject 2, for example, asked: 

"Ho\v do I retrieve things from the wastebasket?" 

Only one subject discovered that disks can be ejected from the disk drive by 

dragging their icon to the trashcan, but she discovered this infonnation by stumbling 

across it in the manual. All of the subjects initially used the eject button on the drive. 

This, as was mentioned in Section 3.1.4, causes the user to be frequently prompted 

by the system to re-insert the disk. These frequent requests prompted only one user 

to ask if there \\'as another way to eject disks, the others were seemingly content, and 

did not notice that the system had not completed any outstanding operations on the 

disk before ejecting it. 

The design and use of icons on the Macintosh were not as successful as might have 

been assumed. For example, only one subject was able, from looking at the icon 

alone, to deduce that the icon shown in Figure 3.2 represented a picture created using 

a graphics soft\vare package. The remaining subjects used combinations of t\\'O 

strategies to detennine the contents of the file. Onc method used was to simply 

double click on the icon of every file installed on the system's hard disk that they 

were interested in discovering the contents of. This had the effect of running the 

application used to create the file, or ran the application itself, and the subjecl~ 

would then decide the nature of the file from what appeared on the screen. The other 
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method was to use the Get I nfo option on the Finder's File menu. This has the 

effect of displaying information such as the size, creation date, and the nature of a 

file, whether it is a document or application and so on. 

m 
~ 

Figure 3.2 Icon denoting a file produced by SuperPaint1. 

Again, similar strategies were adopted to determine which was the application file to 

which the exercises referred, (the shape that all application icons should have, shown 

in Figure 3.3, is described on the very first page of the Macintosh manual, but went 

undiscovered). This is surprising as all of the subjects had experience of a graphical 

user interface, it suggests that an association is learned between the icon shape and 

the file and the software package used to create that file. Subjects were unable to 

decide which icon denoted a picture because they had not learned the association, 

but it had been assumed before the study began that subjects would be able to infer 

the nature of the file from the design of the icon. 

Figure 3.3 An application program 

1 SuperPaint is a trademark of Silicon Beach Software, Inc. 
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3.2.4 Basic User Interaction 

All of the subjects were familiar with the Microsoft Windo\\'s user interface, hence 

they already possessed much of the knowledge required to use the Apple ~1acintosh 

system. This knowledge, however, also interfered with their attenlpL~ to learn the 

new system. An example of this was the subjects' use of the mouse button. To pull 

down a menu within the Microsoft Windows system, for example, the user has only 

to press and release a mouse button. On the Macintosh, however, thc mc·nu remains 

visible only while the mouse button is presscd, if the uscr releases the button \\'hile 

an option on the menu is highlighted, thcn that option is selected. Thc subjccts all 

required several attempts at pulling down a menu beforc they learned that they 

needed to keep the mouse button prcsscd, once they had learned this, most of them 

had no further problem using menus. 

Problems that seemed to bother all of the subjects, but which posed particular 

problems for Subject 5, were the inconsistent results of sclecting options on mcnus 

and the results of pressing buttons on windows. Mostly, operators are o\'erloaded, 

that is, the same operator is ablc to pcrfonn the same function on a number of 

different objects. These are the generic operations, such as ope 11 , close, and print 

that are discussed by Rosenberg and Moran (1985) and which werc invoked by keys 

on the Xerox Star keyboard labelled with the operator's namcs. Somc opcr~tors are, 

by contrast polymorphic, operators with the same namc havc different semantics 

depending on which object they are applied to. On the Macintosh system used in this 

study, the same operator name, or button on a window, provided a number of 

different operations but no information was provided by the display to tell users 

which operation would occur. The close window button (shown in Figure 3.4) is an 

example of this, sometimes clicking on this button causes a window to close, but the 

application continues to run, sometimes the application is closed down. Without 
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checking the list of active programs on the Finder menu, it is often difficult to tell 

which operation has occurred. 

§D-- -- -

Figure 3.4 Close window button 

The Open ... operator on the File menu caused particular problems for Subject 5, 

again due to inconsistent assignment of operators to names and buttons. The version 

of Microsoft Word installed on the machine used in the study had the behaviour that 

if the user pulled down the File menu and dragged the pointer to the Open ... 

option - but not release the mouse button - a sub-menu listing readable files in the 

current directory would appear. Subject 5 tried to apply this knowledge at the 

desktop level of the Macintosh's interface. This caused her to be unable to perform a 

seemingly simple task. Exercise 4 asks the subject to find a file that contains a few 

lines of text and to add a further line of text. Most subjects, possibly because of the 

way in which they use Microsoft Windows, did not browse the hierarchy of files on 

the hard disk, rather they used the Find option on the File menu. Subject 5, again 

rather than search for the file, remained at the root folder of the file space tree and 

attempted to discover the contents of each of the sub-folders. She did so by selecting 

the folder of interest, highlighting it, and choosing the Open option from the File 

menu. Rather than release the mouse button she waited for the sub-menu to appear, 

when it did not, she falsely concluded that the highlighted folder was empty. A 

possible explanation for this is the subject perceiving the keyboard shortcut HO on 

the menu as #0, meaning that the number of items in the folder is zero, that the folder 

is empty. 
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Making the underlying state of a computer system visible, or easy to infer, has been 

stressed as important when considering what makes a systenl usable and when 

considering how successful mental models are formed. A large number of problems 

that arose \vere due to information about the system's state not being made as explicit 

as it should have been. The System 7 revision of the Finder user interface allo\\'s a 

number of programs to be resident in memory at one time, if there is sufficient main 

memory, and the user can then switch between these programs. If the user clicks on 

the Finder menu icon (see Figure 3.5) a menu listing the programs currently resident 

in memory \vill appear, the user may then make one of these programs active by 

selecting it from the menu. 

Figure 3.5 Finder menu icon 

We described above ho\v the close window button was thought by Subject 5 in 

particular (although this problem was encountered by all subjects to some extent) to 

close down an application rather than simply close the window. This effect was 

compounded by the occasional use of the close window button actually shutting 

down the application. This result is interesting as the system is still said to be 

predictable (Dix, 1991). After the user closes a window, the menu bar at the top of 

the screen states that the system will behave as if it is still running Microsoft Word, 

say, because the system is still running Microsoft Word. This on-screen information 

was ignored, however, by users who believed instead that they had achieved their 

goal of closing down the application program. Roast and Harrison (1994) discuss 

templates, areas of the display that contain information about the state of the system 

relevant to the user's goals when performing tasks. In this situation it seems that the 

desktop appearing from beneath the closed window confirms the user's hypothesis 
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that the application has been closed down, and that the information contained in the 

menu bar (a far smaller section of the screen) is ignored. A further source of 

information that would inform users that the application was still active, the list of 

resident applications, is hidden in the Finder menu and by the time subjects 

discovered this menu, they were unable to relate the list of programs to their 

command history. They did not know that the list of applications presented by the 

Finder menu was a list of applications that they had previously run and which had 

not been closed down. Subjects seemed to persist in the belief that they had closed 

down applications even when problems arose when they attempted to run other 

additional applications. One subject was informed by the system that there was 

insufficient RAM to run the application that she wished to, but it did not occur to her 

that other programs were idle and taking up space in main memory that could be 

otherwise used by shutting down some unused programs. 

The problems that arise due to subjects not being aware of programs still being 

resident in the computer's memory are compounded by the hiding of information 

about the state of the underlying machine, but one can understand why. For users to 

successfully use this version of the Finder user interface, called MultiFinder, they 

need to be aware of the program switching mechanism and need to be aware of some 

mechanism which can focus its attention on a single program and run it. Users need 

to be aware of a (however vague) notion of a hidden processor, but this lies outside 

the scope of the DESKTOP metaphor. In providing this mechanism for allowing 

uses to switch between a number of programs, the advantage to the user of 

employing a metaphor, making the underlying computer system invisible, has been 

lost. Also, in trying to reconcile the program switching mechanism and the 

DESKTOP metaphor, information in the display needed to make the system usable 

has been hidden. 
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3.3 Conclusions 

The results of this study concur with those of Carroll and ~1azurs study (which is 

described in more detail in the next chapter). Subjects were found to ha\'e problems 

\vith basic user interaction with the system as well as in conlprehending the desktop 

metaphor. Many of the problems with the basic aspects of the systenl appeared to be 

a result of subjects' prior knowledge of a different graphical user interface being 

applied to the new system. A number of these problems, however, were compounded 

by the design of the Macintosh user interface itself, and by infonnation that would 

have helped subjects learn a correct model of the system being hidden. 

The documentation supplied with the Apple Macintosh appears to rely on rote 

learning of the skills needed to use the system successfully. This contrasts with the 

active learning approach adopted by the subjects, who would tl)' any seemingly 

useful approach to achieving some goal before "resorting" to the manual. Indeed. 

three subjects announced that they were totally confused and left the session early 

after trying to perform comparatively simple exercises, when the information they 

required was easily obtainable from the manual, and should have been deducible 

from the desktop metaphor. 

Subject 3 gave some hint as to how learning this sort of interactive system could be 

made more successful. She remarked that the method adopted by the study where 

subjects worked alone without human advice was not her preferred \vay of learning, 

she preferred to have an adviser on hand should she need someone to answer her 

questions. Certainly a facility, human (such as a work colleague or helpdesk advisor) 

or otherwise (such as an intelligent help system or agent), able to offer some fonn of 

context sensitive advice would have been useful to the subjects and help, if offered at 

the right time would probably have prevented the subjects who left early from doing 

so. Context sensitivity was something lacking from the balloon on-line help, the 
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subject who made great use of the balloons bemoaned the use of canned text in them 

and would have preferred more specific help. 

The introduction to this thesis hinted that while metaphor is a widespread and useful 

technique in user interface design, it can also be a source of users' difficulties and 

usability problems. In the next chapter drawbacks and usability problems arising 

from the use of metaphor-based user interfaces will be described in more depth. A 

number of these drawbacks were observed during the small empirical study that was 

reported in this chapter. In order to go on to present new user interface designs based 

upon a fuller account of metaphor as it applies in HeI, we must examine the 

difficulties that metaphors can give rise to. This is the task of the next chapter. 
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Chapter 4 

Drawbacks to Employing Metaphors and Analogies 
in Interactive User Interfaces 

"So the question is, willlhey see the metaphor? 11 

- Arthur Miller. 

4.1 Introduction 

In Chapter 2 a number of computer systems which exploit metaphors in order to 

support file management, support object-oriented programming, provide a user 

interface for application programs, and provide mechanisms for switching between 

application programs \\'ere discussed. Although metaphors and analogies are 

suggested as a partial solution to the problem of designing usable software, 

metaphors often cannot account for aspects of a software system, and sometimes the 

use of a metaphor can create new usability problems while solving others. In this 

chapter some of the dra\vbacks of employing metaphors in user interface design are 

presented. 

Carroll, Mack, and Kellogg (1988) identify three strands in research in the use of 

metaphor in human-computer interaction. They make a distinction bet\\'een 

operational and structural approaches to metaphor, and the praglnalics of metaphors 

in use. This distinction is adopted in the consideration below of some of the 

drawbacks in adopting metaphors in user interface design. In the following 



discussion, the seeming convention of considering analogy and metaphor to be 

synonymous in user interface design is adopted, but this will be challenged later. 

4.2 Operational Metaphors 

Operational metaphors are applied in an educational context in order to make the 

process of teaching some concept simpler. Metaphors are provided by the teacher or 

instructional material and their value is judged by the learning gain that results over 

circumstances where no explicit metaphor is employed. Operational approaches to 

metaphor, according to Carroll et al. (1988), therefore attempt to provide examples 

of "good" and" bad" metaphors for certain concepts. 

The work of Richard Mayer is often cited as an example of employing operational 

metaphors to teach and explain computing systems. Mayer demonstrated the value of 

teaching programming in the BASIC programming language with relation to a 

concrete analogical model of the underlying system. The model taught to some of 

Mayer's subjects is described in Mayer (1976). Input to the system is said to pass 

through a physical window in the form of cards with some data written on them. 

Output from the system resulting from the execution of WRITE commands, is 

written on the topmost available line on a pad of paper. The flow of execution 

through a program is monitored by the commands making up the program being 

listed on a card, and the current command being pointed to by an arrow. The current 

values of the program variables is written into boxes on a chalkboard, each box is 

labelled with the name of the corresponding program variable. As the variable's 

value is altered, the learner erases the current value from the relevant box on the 

chalkboard and writes in the new value. This model of program variables has been 

shown by Burstein (1986) to be insufficient to prevent some learner errors arising, 

however. 
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Mayer (1981), as well as considering the teaching of programming languages, also 

provides a concrete model for a computer's file storage system and file management 

command language. This again is presented in the form of concrete analogies, a 

\vriting pad is used for output from the system, and a chalkboard is used for 

representing the list of variables used by the program. Program instructions are listed 

on a pad and a pointer is used to indicate the current instruction, as in the case of the 

set of analogies used to teach BASIC programming. The file management system 

differs from BASIC alone in having a filing cabinet used as an analogy for the 

storage of a set of files. Each file exists in a separate drawer in the cabinet, and is 

said to be made up of a number of records on cards. Files are read by removing the 

cards from the filing cabinet drawer and placing them in an IN tray on a desk. As the 

file is processed, some record cards might be discarded, these cards are placed in a 

DISCARD tray. Cards that are altered and are to be saved are placed in a SA VE tray, 

from where they are returned to the appropriate drawer in the filing cabinet. 

Mayer's studies of employing such analogies showed demonstrable positive effects 

on learning if learners \vere given such models of the system before reading 

conventional user manuals. Mayer suggested that the analogies provide a framework 

into which the new information contained in the manuals may be assimilated. As 

will be discussed further in Section 4.5, properties associated with the metaphorical, 

or analogical, explanation may not match properties associated with the system to be 

explained. In the case of the explanation provided for the file management system, 

Mayer is forced to tell learners that only one drawer of the filing cabinet may be 

open at a time. The reason for this is that only one file in the computer's storage 

system may be accessed and altered at a time for reasons that are well known in the 

design of database and operating systems. Learners may be aware that more than one 

file of a typical real-world filing cabinet may be opened, hence the filing cabinet 

analogy does not provide a perfect match for the storage of computer files. The 

learner may demand some reason for the mismatch, which will have to be given in 
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terms of the actual properties of the file management system. Real filing cabinets 

may indeed only permit one drawer to be open at a time, but it is difficult to explain 

the prevention of file corruption through mutual exclusion of file updates in terms of 

the weight of open filing cabinet drawers causing the cabinet to topple over. While 

Mayer reports positive outcomes from providing students with a concrete analogy 

for the BASIC language, the evidence for the usefulness of such advance organisers 

is mixed. A similar study conducted by Foss et al. (1982), in which learners of a new 

system were given a model very similar to that given by Mayer in order to explain 

the file save facility of a text editor demonstrated a far less· clear advantage. 

Experiments conducted by Payne (1988), by contrast, show advantages in learning 

device semantics and command abbreviations when metaphorical instruction is 

provided. 

Rumelhart and Norman (1981) present a model of learning in which new knowledge 

structures in the form of schemata (Bobrow and Norman, 1975), are developed 

initially by applying existing schemata which may be employed analogously to the 

problem at hand. The example they give is of drawing a pentagon in the Turtle 

graphics system of the LOGO programming language, which is described as an 

analogous procedure to drawing a square. In this example, the structure of the 

schemata which is employed in the operation of constructing the command to draw a 

square stays the same, but the loop parameter used to specify the number of sides is 

altered, and the internal angle between sides of the intended polygon is adjusted. 

Rumelhart and Norman go on to examine their model of analogical use of schemata 

in the context of the result of a study of users learning to use the UNIX text editor 

Ed. They suggest instances of the system's commands which can be employed using 

schemata analogous to schemata representing understood commands, and they 

suggest that evidence from protocols taken during the study support the view that 

learners do employ such mechanisms in learning. Problems arose, however, when 

learners reasoned analogously from the known results of some known commands to 
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the expected effect of other unknown commands. The result of issuing a command to 

print a line, for example, is for the contents of that line of the document to appear on 

the display. Learners reasoned that the result of deleting a line would cause that line 

to disappear from the display, which it did not. Rumelhart and Norman's suggestion 

is that the mental models that learners bring to the learning of the system play roles 

in the analogies they apply when using the system. The role of mental models in 

system learning will be discussed in Chapter 5. In order to overcome the problems 

raised by the system not behaving as the learners' analogical reasoning predicted, 

Rumelhart and Norman were forced to give the learners further information about Ed 

more appropriate to its use than the analogical predictions made. Rather than give 

information about the system inappropriate to the learners who had little knowledge 

of computers, a solution similar to Mayer's operational accounts of BASIC \\'as 

adopted, and the system \vas described in terms of a 'secretary' model, a 'tape 

recorder' model, and a 'card file' model. The secretary model is used to account for 

the mixing of commands and text supplied to Ed by the learncr. It is oflcn found, 

however, that when a system displays some intelligent behaviour, users often bestow 

more intelligence upon the system than it actually possesses. Describing Ed in tcrms 

of an intelligent system, a secretary, led to users behaving as if the system should be 

able to recognise typed input that should be interpreted as commands when in Ed 

was in the append mode (where typed input is merely appended to the text file). The 

tape recorder model overcomes this problem, termed the append-lnode trap, by 

providing the model of a system which records everything faithfully until explicitly 

ordered to stop recording. This model, however, cannot account for delete functions 

that Rumelhart and Norman described using the card file modcl. Each line of tcxt is 

thought of as being typed onto a record card. Dcletion commands removc relevant 

cards from the stack that makes up the entire document. Such difficulties are not the 

only ones encountered when using text editors, as will be discussed in the next 

section. The operational metaphors given by Rumelhart and Norman in their study, it 

may be noted, impose on learners the need to recognise which metaphor is to be 
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employed to help describe the system and their current task where metaphors overlap 

to describe the same aspect of the system. 

4.3 Structural Approaches to Metaphor 

Hall (1989: 43), from a survey of existing work, identifies the following components 

of a process model of analogical reasoning: 

1. Recognition of an analogical source. 

2. Elaboration of an analogical mapping between source and target. 

3. Evaluation of the elaborated analogy. 

4. Consolidation of information generated while using an analogy. 

The operational metaphors discussed in the previous section address the recognition 

component of Hall's analysis where, given a target domain and a set of source 

domains, the problem is to find a promising set of candidate sources. This set may be 

then employed in a tutorial context or further refined to produce the most suitable 

. candidate with which to solve problems (Carbonell, 1983). The elaboration and the 

evaluation components address the problems of finding a mapping, the analogical 

inferences, and mapping preferences between a source and target domain, and 

evaluation of a mapping given a source and target domain and analogical inferences, 

respectively. These components are the consideration of structural approaches to 

metaphor and analogy. 

Hall (1989) describes the elaboration component of analogical reasoning as the 

problem of finding a mapping and a set of analogical inferences given the target and 

source domains and mapping preferences. Existing accounts of finding mappings 

between the metaphorical base, or source. domain and the previously unfamiliar 

target domain mostly rely on knowing the structure of both domains. 
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A number of approaches to the representation of analogical source domains and a 

destination target domain, the method of determining a mapping between source and 

target, and the evaluation of the mapping have been proposed. Rumelhart and 

Abrahamson (1973) model similarity between domains as a distance metric between 

points (which denote concepts) in a multi-dimensional space. Such models cannot, 

ho\vever, account for asymmetric similarities considered central to understanding 

metaphors. An example of asymmetry cited by Tversky (1977: 328) is that people 

say that "an ellipse is like a circle" not that "a circle is like an cllipse". In Tvcrsky's 

model similarity matching is made according to the function: 

s(A,B) = F(AnB, A - B, B - A) 

meaning that the similarity of A to B is expressed as a function, Ft of three 

arguments; AnB, the features that are common to both A and B; A - B, the features 

that belong to A but not to B; and B - A, the features that belong to B but not to A. 

Tversky's theory is extended to address non-similar domains, or metaphors, by 

Ortony (1979), but Ortony's model is unable to make judgements as to the quality of 

a metaphorical mapping. 

Mac Cormac (1985) proposes a model of metaphor in which concepts arc members 

of fuzzy sets. This model is employed in the study of linguistics in an attempt to 

understand metaphors in natural language scntences. Scntences are thus regarded as 

metaphorical; non-metaphorical (literally truthful); or epiphors, which "01. involvc 

outreach and extension of meaning through comparison"!; and diaphors, where" ... 

1 P. E. Wheelwright (1962) Aletaphor and Reality, Indiana University Press, Rloomin~ .. on, Indiana: 

72. Quote reproduced from Indwthya (1992: 77). 
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similarity need not be obvious and comparison explicit"2. Mac Cormac's model 

allows a once metaphorical utterance to become a 'dead' metaphor, and a part of 

ordinary language over time by its membership of non-metaphorical fuzzy sets 

increasing and its membership of the fuzzy sets which denote forms of metaphor 

decreasing. Mac Cormac also provides a useful means by which analogy and 

metaphor may be discriminated between and also reconciled with his model. 

Metaphors, being statements which are not literally true, but which are stated as true, 

create an emotional tension in the reader which forces him or her to search for 

attributes of the metaphorical source which may be applied to the target domain. 

Much of the study of analogy and metaphor has been concentrated in linguistics and 

natural language communication. The study of analogy in reasoning, problem 

solving and planning is a growing field and has given rise to a number of models and 

representations of source and target domains, a number of these being developed 

from work in artificial intelligence. The most often employed model of analogy in 

human-computer interaction and the learning of computer-based domains is 

Gentner's structure-mapping model (Gentner, 1983). In the structure-mapping 

model, the source and target domains are both represented as a number of objects, 

every object has a number of attributes associated with it, each denoted as a single 

argument predicate taking the object's name as the argument. Relations are also said 

to apply between objects, these are represented as predicates taking more than one 

object as arguments. Second- and higher-order relations may also be defined which 

take first- and higher-order relations as predicates. Domains described in terms of 

objects, attributes and relations may also be represented graphically in a graph 

structure. Figures 4.1 and 4.2 show the domain structures which the analogy "the 

atom is like the solar system" can be made between. 

2 P. E. Wheelwright (1962) Metaplwr and Reality. Indiana University Press. B1oomington. Indiana: 

74. Quote reproduced from Indurkbya (1992: 77). 
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planet 

Figure 4.1 Domain model of the solar system (Gentncr, 1983: 160). 

electron 

Figure 4.2 Domain model of the structure of the atom (Gentner, 1983: 160). 

Provided with suitably represented source and target domains, the structure-mapping 

model provides a method for mapping from the source to the target and evaluating 

the mapping. The mapping is achieved by first discarding the attributes of objects in 

the base and target domains, and by attempting to preserve and match the relations 

bety-'een objects in both domains. Deciding which relations are preserved is achieved 
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by the systematicity principle, according to which a predicate that is part of a " ... 

mappable system of mutually interconnecting relationships is more likely to be 

imported into the target than is an isolated predicate" (Gentner, 1983: 163). 

Interconnected predicates may be identified from higher-order relations in the 

domain description. The types and numbers of predicates mapped from the base 

(source) to the target give an indication of the success of the metaphor being 

employed, and place the relationship between the base and target domains on a 

continuum from literal similarities to analogies. Within the structure-mapping model 

metaphors are treated in a similar way to the approach describeCl by Mac Cormac 

(1985). Suitable attributes, objects (some of which may not be the initial domain 

representation of the problem or utterance), and relations between objects, need to be 

identified and considered in the mapping process. This process may be seen in 

Winston (1980) where facts about a domain may be increased or generalised to aid 

the analogical mapping process. 

Where the structure-mapping model performs the mapping from source domain to 

target domain based on syntactic structures, and exact similarity of higher-order 

relations in the representation, in the ACME model (Holyoak and Thagard, 1989) 

semantic components in the two domains are matched. In addition, mapping between 

the two domains in ACME can be less precise than in the structure-mapping model. 

A judgement as to the best mapping between domains is made by comparing the 

level of an excitation function produced by each of a set of computational elements 

which each evaluate a potential mapping. Several plausible mappings may be 

generated, the best mapping is chosen according to the element that achieves the 

highest excitation level. A similar approach is realised in the Copycat system 

(Mitchell and Hofstadter, 1990). Keane's lAM model (Keane, Ledgeway, and Duff, 

1994) also generates and evaluates potential mappings in parallel, but imposes 

realistic constraints on time and memory limits so as to better emulate actual human 

performance. lAM, like ACME or its predecessor ARCS (Thagard et al., 1990), also 
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relies heavily on background knowledge and semantics in making mappings between 

domains. The MAC/FAC model (Forbus, Gentner, and Law, 1994), while retrie\'ing 

possible analogues in parallel, still employs the Structure Mapping Engine to 

perform mappings. 

4.4 Structural Approaches to Metaphor and I.Jearning of Conlputer

Based Systems 

Douglas and Moran (1983) studied a number of computer-naive people learning the 

text editor EMACS. Learners were provided \vith the openltional metaphor of a 

typewriter by the teacher, and in some cases were seen to employ this analogy 

without prompting. Special attention was paid to the structure and semantics of 

operations from the typewriter source domain, and the semantics of operations in the 

EMACS target domain .. Rather than construct a mapping between the typewriter 

domain and EMACS domain representations, Douglas and Moran instead 

constructed a problem space (Card, Moran and Newell, 1983). This described both 

the EMACS system and the effect of EMACS commands (operators) on the system 

and the current document when attempting to perform tasks and achieve goals. 

Operators applicable in the typewriter domain \vere then mapped into the EMACS 

domain. This interpretation of the analogical reasoning process allowed Douglas and 

Moran to build a taxonomy of errors which occur when the operators' sel1lafltics are 

wrongly applied in the EMACS system. Douglas and Moran suggest that 62 out of 

105 errors (59%) observed in protocols obtained from novice EMACS users are 

explicable in terms of \vrongly applied operators from knowledge of typewriting. 

The cursor keys give rise to particular errors, for example, the visible effect of the 

<Cursor Right> key was mistaken for the visible effect of the space-bar, although the 

result on the document was different. The destructive effect of the <Backspace> key 

also caused learners problems. The insertion of an invisible character in the text at 
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the point where the <Return> key is pressed requires users to understand a more 

complex model of the space into which text is typed than the simple sheet of paper 

that would be used with a typewriter (Kohl er, 1987). The model of the space which 

EMACS and other text editors employ is the saw-tooth sheet. Figure 4.3 shows part 

of a text file that has been highlighted (or selected) by lassooing a number of lines of 

text by pressing the mouse button down and dragging the pointer over the text. 

Unlike a sheet of paper where we might expect the selected region of space to extend 

to the right hand edge of the page, each line ends with the usually hidden end-of-line 

or line break character (depicted as the' symbol in Microsoft Word) giving the saw

tooth shape to the selection. Rather than advance to the edge of a sheet of paper, the 

effect of pressing the <Cursor right> key when the cursor is at the position of the 

invisible Carriage Return character is to cause the cursor to advance to the first 

character of the next line. Mistaking the effect of the space bar and the <Cursor 

right> command, which is passive and has no effect on the actual text, at this point 

would give rise to very different effects when navigating or altering a document 

Figure 4.3 Highlighted text placed on a saw-tooth sheet 

Allwood and Eliasson (1987) report that in a similar study to Douglas and Moran's in 

which a database system was studied, only 6% of the learners' errors could be 

accounted for in terms of misapplied analogical mappings. , Although they suggest 

this figure may depend on the type of system being considered. Allwood and 

Eliasson also re-consider Douglas and Moran's results in terms of a greater number 
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of categories in which learners' errors could be placed. Rather than place all errors 

that could be accounted for in a category of errors caused by the use of a typewriter 

analogy, other types of analogical error were accounted for in additional categories. 

These additional categories included prilning analogy errors where a command was 

initially used correctly, but misused later, and anticipatioll analogy errors, where a 

command used matched a command that would be correctly used in a sub-task, but 

not in the context of the current task. With these additional categories, only 14% of 

learner's errors \\'ere said to be caused by use of a typewriter analogy, but errors 

caused by all types of analogies accounted for 60% of errors noted. Aliwood and 

Eliasson also suggest that 68% of all errors were due to analogies if inefficient uses 

of commands caused by analogical reasoning in system use were classified as errors. 

Examining the structure of the target domain of the desktop metaphor, Benyon et al. 

(1990: 30) notice that: 

" ... it is common practice to include an icon of a dustbin on the 'desk'. 

Not only does this contravene our expectations as to where to find 

dustbins (on the floor), but also the interface dustbin has other 

functions apart from its conventional use as a container for discarded 

objects. For instance, the dustbin is often the place where disk icons 

are put in order to eject the disk from the disk drive. This implies that 

one has to 'throwaway' a disk in order to retrieve it! Such an apparent 

contradiction can cause conceptual problems to first-time users since 

it is easy to think that the contents of the disk will be discarded when 

the disk is placed in the dustbin. " 

In addition to the inconsistent way in which objects such as the wasteba"ket behave , 

Carroll and Mazur (1986) report that rather than being able to employ the 

DESKTOP metaphor to understand the computer system beneath, users often find it 
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difficult to understand the desktop itself. This is discussed further in Section 4.5 

where the pragmatics of metaphors and system learning are considered. 

Structural approaches to the analysis of metaphors used to teach computing 

concepts, or in user interface design, are applied so that the worth of a particular 

metaphor may be determined from the quality of the mapping between the source 

and target domains (Carroll and Thomas, 1982). Carroll and Mack (1985: 39) 

suggest that exploring the use of metaphor according to operational and structural 

approaches ignores the "goal-directed learner-initiated learning process though 

which metaphors become relevant and effective in learning." Carroll and Mack 

propose an active learning process by which people learn unfamiliar systems in an 

open-ended way using the metaphorical features of a system to generate initial 

hypotheses and operations that are refined with increased exposure to the system, 

and greater experience using it. Evidence is mixed as to whether structural 

evaluation of analogies may be used to decide on the better analogy for use in a 

particular domain, or whether an active learning approach should be assumed, and 

that the choice of analogy for a domain matters little in eventually understanding the 

domain. 

Chee (1993) employed Genter's structure-mapping model of analogy to produce 

instruction materials to teach BASIC programming with a good analogy, a weak 

analogy, and in a control case, no analogy. According to the structure-mapping 

model, best results should be obtained with a good analogy, less good results 

obtained with no analogy, and worst results with the weak analogy. Chee found that 

the most successful learning was achieved with the best analogy, as determined by 

the evaluation mechanism in structure mapping. Contrary to expectations, the results 

for the weak analogy and no analogy cases were not substantiated, although the 

results were not significant, they were suggestive of the expected result. Chee 

suggests that the weak analogy might not have been as weak as it could have been 
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made, the criteria by which an analogy is evaluated within structure mapping arc 

linked and altering one criterion may affect another, which may improve the o\'crclll 

usefulness of the analogy. Galloway (1993), however, supports the active learning 

approach. Gallo\\'ay attempted to teach a number of computing concepts to groups 

who were taught using either weak or strong analogies (as determined by a structure

mapping evaluation). Whether weak or strong analogics were employed had no 

effect on the eventual learning outcomes demonstrated by subjects in the two groups. 

Gallo\vay therefore suggests that both weak and strong analogies facilitate learning 

the previously unfamiliar domains. 

4.5 The Pragmatics of Metaphor 

The final current approach to the consideration of metaphors in user interface design 

is to consider the pragmatics of metaphors in use in real systems. Carroll, Mack, and 

Kellogg (1988) observe that using metaphors inevitably involves dealing with 

incompleteness, mismatches, and composite comparisons, yet they suggest that 

metaphor mismatches can prove useful. The Alternate Reality Kit (discussed in 

Section 2.4) is a useful tool, for example, because it allows the student to gain 

greater understanding from confronting their naive physics with accurate physical 

models encoded as ARK simulations. ARK is also of benefit by providing a safe 

environment in which to experiment with the objects under study and their attributes. 

In this section, some of the issues surrounding the pragmatics of learning and using 

user interface designs are discussed. Pragmatic approaches to metaphor examine the 

use of metaphor-based systems in plausible real-world situations in which the systenl 

might be used. In this way, more information may be gathered about the success of 

the metaphor than may be obtained from a structural analysis alone. 
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4.5.1 WIMP Systems 

The Apple Lisa, a forerunner to the Macintosh, was one of the first commercially 

available systems to employ the DESKTOP metaphor in its user interface. Carroll 

and Mazur (1986) conducted a study of learners using the Lisa for the first time This 

section briefly discusses the problems users encountered when attempting to learn 

this system, and the problems caused by the adoption of the desktop metaphor. 

Studies such as Carroll and Mazur's and the study described in Chapter 3 

demonstrate that these systems are often more difficult to use and learn than 

proponents of metaphor-based systems suggest. 

4.5.2 Instruction 

The Apple Lisa was supplied with an on-line tutorial entitled LisaGuide. LisaGuide 

will not be discussed in detail as it is specific only to the Lisa computer, but the 

methods it employs to provide instruction to novice users are worth describing. The 

LisaGuide tutorial is made up of a number of on-line lessons, each consisting of a 

number of exercises designed to make the user familiar with some aspect of the 

system. These exercises are to be performed one after another, and are to be 

performed by rote. Users are unable to structure the sequence of exercises, even 

though, as one of Carroll and Mazur's subjects found, the exercises seem pointless 

and simple to master in their given order. The LisaGuide teaches simple skills at 

first, such as use of the mouse and mouse buttons, and goes on to teach more 

complex skills that comprise, in part, the simpler skills taught earlier. The LisaGuide 

system itself caused users problems, in addition to those caused by the training 

strategy adopted by the system, these problems are detailed in Carroll and Mazur 

(1986) and Carroll (1990), and will not be described further here. 
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4.5.3 Basic user interaction 

Direct manipulation systems, of which the Lisa is an cxamplc, arc assunled to be 

easier to learn than command-bascd uscr intcrfaccs, thc learning costs of 

remembering commands and of understanding thc cffcCl~ of commands are 

presumably reduced. Direct manipulation systems, howcvcr, do not rcmovc the nced 

to learn the simple operations and commands that must be understood by the user. 

Basic user operations involving the mouse must be learned before more complex 

tasks may be attempted. Examples of the simplc opcrations that make up human

computer dialogues with direct manipulation systems arc termed clicking, pressing, 

selecting, and dragging. Even this terminology provcd confusing to users, 

explanations of these terms were not provided in the Lisa's documentation, yct morc 

complex tasks were described in terms of these operations. Although these skills 

were taught and practised using the LisaGuidc, they wcre not named, users were 

forced to make the (hopefully correct) association between their action and the effect 

on the system, and then to relate their action to a concept namcd in the 

documentation. Carroll (1990) reports that this problem can trouble users cvcn after 

over an hour of using the system. 

Double clicking of a mouse button to perform operations was also a cause of users' 

problems. Acceptable delays between the first and second click proved difficult to 

judge, and some users were never able to open and run applications by methods 

involving a double mouse click. One user was reported as hypothesising the effect of 

a double mouse button click, but he attemptcd to confirm this hypothesis using a file 

which did not respond to a double click and was confused by the resulting 

unexpected system response. Where clicking was applied to on-screen objects, again 

the lack of an explicit association between a skill and its name, or between the effect 

of an action and its name, caused users problems. One user wa~ unable to perfonn 

tasks that required a particular icon to be selected and become highlighted until he 
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deduced that when an icon darkened in response to a mouse click it was in fact 

highlighted. 

4.5.4 The Desktop 

According to Carroll (1990: 62), with the Apple Lisa: 

"The user is encouraged to think of the display as a desktop 
-

containing objects that can be manipulated on analogy with physical 

manipulation. This approach attempts to make learning a computer 

easier by designing interface actions, procedures, and concepts to 

exploit specific prior knowledge that users have of other domains. 

Instead of making the interface simpler, this approach seeks to 

increase the initial familiarity of actions, procedures and concepts that 

are already known. " 

Above, problems caused by the use of a typewriter analogy to explain text-editing 

systems were described. These problems also arose in the Lisa system, space 

characters were inserted into documents when the user expected these characters to 

replace and overwrite unwanted characters in the document. 

As with basic user interaction, the vocabulary used to describe objects on the 

electronic desktop also caused users problems. Users seemed unable to associate the 

terms "clipboard", ·stationery pad", "typing", "tear-off stationery" and "folders" with 

the analogous on-screen objects presented, data structures or tasks. Where objects 

were understood, when users attempted to apply skills from the real world in the 

electronic domain, they discovered that these skills were not supported. "Tearing 

off" a sheet of stationery from the on-screen pad of paper used to create short notes 

and documents proved difficult to perform. One user was seen making sweeping 
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motions with the mouse. clicking the mouse button while the pointer was oyer a 

corner of the pad mimicking the action performed in the real world. Objects in the 

electronic domain were also found to not support the steps nlaking up more complex 

tasks in the order in which the steps would be pcrfornled in the real world. 

Some of the basic concepts underlying the desktop metaphor were criticised by 

Carroll and Mazur. On-screen objects are divided into data files (which resemble 

documents. pictures and folders). functions (for example file copying is denoted by a 

photocopier), and application tools (such as word processors and spreadsheet 

software). Carroll and Mazur (1986: 41-42) describe the notion of an application tool 

as: 

" ... a good example of an ancillary metaphor too general to imply 

anything useful." 

Data files are the product of application programs, but users preferred to perform 

tasks directly using the data file, rather than open the application that produced it and 

to view the data file as the data manipulated by the application. It also seems 

difficult to reconcile application tools with the desktop metaphor, it may be asked 

what meaning dragging an application onto the desktop means, applications having 

no immediately obvious real-\\'orld analogue. 

4.6 Discussion: Metaphor and System Learning and Use 

Metaphors are often proposed as a design solution to the problem of creating usable 

computer systems. This chapter discussed models of metaphorical and analogical 

reasoning and understanding in the learning of previously unfamiliar computer 

systems. Users can obtain the information needed to use an unfamiliar computer 

system from a number of sources. One source is the documentation supplied \\'ith a 
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system, In the form of manuals, on-line tutorials, and instruction on audio- or 

videocassette (for example Apple, 1983). It is well known that users resist using 

manuals whenever possible (Carroll and Rosson, 1987), and even when manuals are 

used they may not best support users. The Lisa study described above again shows 

users' reluctance to use manuals, as does the Macintosh study described below. The 

manual supplied with the Lisa system is an example of a manual that fails to support 

users in their efforts to learn the system. The learning of a computer system has been 

likened to being immersed in a foreign culture - a major requirement of learning 

the new system is to learn the language used to describe it. CarroIi and Mazur (1986) 

found that many simple skills required to use the system were described using terms 

that were not described in the documentation. Users also often change the wording 

of tasks into their own familiar vocabulary, as will be demonstrated in the study of 

novice Macintosh users described in the next chapter. Mayer (1981) found that 

allowing users to put instruction material in their own words increased the time 

taken to learn a domain, but increased the quality of their learning. Manual authors 

seem not to recognise this, and tasks become more difficult to learn and perform as a 

result. This vocabulary problem (Furnas et al., 1987) is well-recognised by others. 

Even when many aliases and synonyms for commands or objects in many task 

domains, are provided, studies show that the probability of the system designer and 

users using the same word when attempting to name the same action or concept 

tends to be very low. 

The learning mechanism assumed by the Lisa and Macintosh manuals seems to be 

that described by Anderson (1982). In Anderson's model skills are acquired by the 

compilation over time of a declarative representation of a problem, or task to be 

performed, into productions which are used in the performance of routine cognitive 

skills. the initial declarative representation eventually being lost. This model 

accounts for how people are often able to perform tasks (knowing how) without 

being able to articulate the process by which a task is performed (knowing what). 
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More complex skills and tasks are described in terms of being built up from simpler 

existing skills. In this way, the Macintosh documentation teaches menu use by first 

teaching the simpler skills of manipulating the on-screen pointer using the mouse 

and clicking the mouse button at appropriate times. This model of skill acquisition is 

realised in the ACT* and ACT-R models of cognition (Anderson, 1983, 1993). 

Criticisms, however, of the ACT* model as applied in human-computer interaction 

are presented in Lansdale and Ormerod (1994). 

Waem (1990) suggests that two aspects of learning need to be considered "in human

computer interaction, \\-'hat the user already knows and what the user has to learn. 

Accounts of learning assume that in order to acquire ne\v facts and skills, the learner 

must already possess considerable knowledge. Another source of information that 

can aid a user to learn a new computer system is transfer of existing skills and 

knowledge to the new domain. If systems support or encourage the use and transfer 

of existing knowledge, Waern (1985) proposes that this may not aid learning the ne\\' 

system if negative transfer occurs and existing knowledge interferes with the actual 

knowledge required to use the system. Singley and Anderson (1989) conclude from 

their studies of learners using a different text-editing system from a familiar one that 

transfer of existing skills can only take place at the level of individual productions, 

the smallest unit of cognitive skill. Transfer from one direct manipulation interface 

to another can be achieved if the interfaces are sufficiently similar. This can be seen 

in (Young, 1981) and in the study of Macintosh users described above where users 

could be seen trying to load data files into an application by typing MS-DOS 

commands into a text entry field in dialogue boxes rather than selecting files fronl a 

list shown. 

As direct transfer of existing knowledge cannot account for all the knowledge 

required to use an unfamiliar computing system, analogical processes become more 

important in learning and using a computer system. Many of the problems of specific 
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user interfaces, systems, and computing domains have been described above. In 

general, the process of analogical reasoning in humans presents difficulties for user 

interface software designers and users. In the cases considered above, users are 

provided with an analogical source domain, either in the form of the model world 

represented on-screen, or in some form of instruction. Studies of humans provided 

with a useful analogy before attempting a problem solving exercise shows that the 

analogy may often not be applied to solve the problem (Gick and Holyoak, 1980, 

1983). Some evidence of this is seen in the Macintosh study presented above where 

some subjects seem incapable of applying knowledge about waste baskets (which are 

depicted on-screen) in order to plan and execute methods of retrieving files from the 

waste basket or trashcan. 

Where direct transfer of knowledge cannot be achieved, Singley and Anderson 

(1989) suggest that a more declarative representation of a domain or problem must 

be retained in order to facilitate analogical processes in reasoning. Singley and 

Anderson state, however, that if the target domain differs from what is expected 

from the result of analogical mapping, the problem solver is unable to resolve and 

explain mismatches. In the Copycat model of analogical reasoning, where no 

mapping can be made due to there being no concept in the target domain that 

satisfies an analogical mapping from the source concept, the problem server is faced 

with the problem of conceptual slippage (Mitchell, 1993). If no mapping can be 

made from a source concept, the set of possible sources must be relaxed, or must 

slip, until a concept that can be mapped is found. Conceptual slippage is realised in 

the Copycat model in a slipnet knowledge representation structure. 
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CLabclNod0 
This link is called a 

labelled link (or 

Figure 4.4 Building blocks of sIipnets (French, 1995: 57). 

• • • • • • • 

Figure 4.5 Part of a slipnet representing the alphabet (French, 1995: 58). 

In a slipnet (Figures 4.4 and 4.5), concepts are represented as nodes. Activation of 

nodes can spread to concept nodes that map less well to suitable concepts in the 

target domain. This multivalued model of concepts that may possibly be mapped 
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analogically explains why in Copycat there is no one single mapping made every 

time the mapping is made. Instead" a number of different problem solvers will 

choose different source concepts. The possible patterns of activation may result in a 

plausible (according to the slipnet, and indeed the problem context) analogical 

mapping being made, but which is unwanted, unhelpful, or unintended. If, as Smith 

(1987) suggests, all user interfaces will present behaviour and features that cannot be 

explained in terms of the metaphor represented, the means by which mismatches are 

explained, and the mechanisms used to generate accounts of mismatches require 

investigation. Mismatches between an analogical source and a target computing 

system are considered by the active learning approach to systems. 

An important issue raised by analogies being made by stochastic processes such as 

in Copycat, and TableTop (French, 1995), is that there is no one "correct" analogical 

mapping, there are only mappings that are more likely to be made. Some inferences 

may have such a high probability of being chosen that their selection can be almost 

assured, but the mechanisms underlying such models cannot rule out an unlikely 

inference being chosen by surviving with a sufficiently high excitation level. Indeed, 

some analogical inferences made can be described as "almost sick" (Hofstadter, 

1985: 575). The nature of the conceptual models captured in slipnets means that the 

knowledge possessed by the system making the analogy confuses and complicates 

the process, and the making of analogies between domains will always be subjective 

and imprecise. 

Analogies are employed to ease the learning and use of a computing system by 

encouraging the use of existing skills and knowledge in the new domain of the 

computing system. It is possible, however, for a graphical user interface to adopt an 

analogy, but one which gives users no suggestion as to the skills that may be applied. 

The user interface shown in Figure 4.6 attempts to realise a graphical user interface 

which adopts the analogy of, and which is intended to be as flexible in the uses to 
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which it can be put as, a sheet of paper. However, as Buxton (1993) has stated, no 

suggestion as to how to use the intcrfacc is given to the novice user. Dialogue \\'ith 

this system is initially very ullder-determined (Thimbleby, 19HO). 

Figure 4.6 GEdit, a paper-like interface3• 

4.7 Types and Theories of Metaphor 

Mentioning the ideas of Douglas Hosftadter and his colleagues in the Auid 

Analogies Research Group introduces the major division in the types of theories of 

metaphors that have been previously presented. While metaphor has been a topic of 

thought and debate since the time of Aristotle, theories of metaphor have yet to 

achieve sufficient influence in the understanding of metaphor itself, let alone in the 

understanding of cognition in general, for it to be possible either to undertake an 

historical survey of theories from either Karl Popper's or Thomas Kuhn's \'iewpoinL~ 

of scientific progress. Instead, theories of metaphor can merely be said to fall into 

one of two categories, comparison theories, or interactiolllheories. 

3 Developed by Gonion Kurtenbach (Kurtenbach and Buxton. 1991). all interaction wilh the system is 

by means of gestures communicated to the system via the mouse. 
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Comparison theories, which account for what Indurkhya (1992) terms similarity

based metaphors, rely on there being some underlying similarities between the 

(familiar) source and the (unfamiliar) target domains to permit meaning to be 

transferred. We can see that comparison theories are assumed by those, such as 

Halasz and Moran (1982), who denounce the use of metaphor as a way of explaining 

interactive devices and who state that metaphor plays little part in explanation and 

that it can only serve as a rhetorical flourish. According to Ortony (1993) Aristotle 

held similar views. The majority of theories of metaphor that have been applied to 

date in HCI and user interface design are comparison theories- despite interaction 

theories of metaphor predating the first user interface metaphors. 

4.7.1 Interaction Theories 

A number of interaction theories of metaphor have been proposed - Indurkhya 

(1992) surveys those that were the most well-formulated at the time he was writing. 

Below we shall describe and make use of the interaction theory due to George 

Lakoff and his colleagues. We shall follow Indurkhya's (1992) claims that Lakoffs 

theory is an interaction theory even though Lakoff himself, according to Indurkhya, 

sides his theory more with comparison theories. The principles of an interaction 

theory of metaphor were stated best by Max Black (1993: 27-28)4: 

"1. A metaphorical statement has two distinct subjects, to be 

identified as the 'primary' subject' and the 'secondary' one ... 

2. The secondary subject is to be regarded as a system rather than an 

individual thing. 

" Black's paper was originally written for the fIrst edition of the volume in which it appears which 

was published in 1979. 
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3. The metaphorical utterance works by 'projecting upon' the primary 

subject a set of 'associated implication' comprised in the implicative 

complex, that are predictable of the secondary subject. .. 

4. The maker of a metaphorical statement selects, enlphasil.es, 

supresses, and organises features of the primary subject by applying 

to it statements isomorphic with the mem hers of the secondary 

subject's implicative complex ... 

5. In the context of a particular metaphorical statenlent, the two 

subjects 'interact' in the following ways: (a) the presence of "the 

primary subject incites the hearer to select some of the secondary 

subject's properties; and (b) invites him to construct a parallel 

implication-complex that can fit the primary subject; and (c) 

reciprocally induces parallel changes in the secondary subject." 

A possible explanation for why Lakoff chooses, according to Indurkhya (1992), to 

speak of his theory of metaphor as a comparison theory is because he and his 

colleagues (for example Lakoff and Johnson, 1980) often analyse metaphors that are 

called "dead" by some authors (for example, Mac Cormac, 1985). These are 

utterances that are metaphors but which no longer possess any power to shock or 

surprise because they are such everyday aspects of speech. Where Lakofrs theory 

can be terms an interaction theory is in regarding the things being metaphorically 

compared as rich systems of relationships (the "implicational complex"), r~ther than 

single objects. While structure-based approaches to domain representation are 

systems of relationships, they have until recently lacked the complexity and richness 

that Lakofrs theory has addressed from the beginning. Forbus (2001) signals a shift 

by one group of structure-based analogy researchers to consider more complex 

knowledge structures. 
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Interaction theories are important in HeI for two other reasons. The first, which will 

considered as further work, is the way in which interaction between domains gives 

rise not just to understanding of the unfamiliar domain, but it also causes changes to 

the understanding of the familiar domain. Interaction theories do not just address 

common-place, or dead, metaphors, but seek to explain novel metaphors, or what 

Indurkhya (1992) terms similarity-creating metaphors. How our user interface 

metaphors change our existing conceptual structures and perhaps subsequently 

constrain the ways in which we can imagine interaction with computing devices is a 

topic that remains for further work. The second reason why interaction theories are 

important, which HCI has not considered in great depth to date, but which is central 

to the Lakoff theory, are the issues arising in system use, cognition and 

understanding from the fact that users are embodied. Indurkhya (1992: 402) makes 

the following observations of the interaction theory he presents, which like the 

systems developed by Hofstadter, French, Mitchell and other members of the FARO, 

particularly considers physical actions performed by the 'user': "The model would 

work by producing a conceptualization of the target sensorimotor data set in terms of 

the source concepts. The resulting representation would be metaphorical, if it would 

be something that the system would not have produced by itself when the source 

were not explicitly given." Interaction theories stress that action and models of how 

actions are performed must be considered as part of source domains if target 

domains are to be metaphorically understood. The Lakoff theory of metaphor 

described below is valuable for directly addressing this concern. 

4.7.2 Metaphor and Analogy 

In user interface design. as mentioned, the words "metaphor" and "analogy" appear 

to others to be synonymous. It may be asked if this is simply another example of the 

limited understanding of metaphor that HCI as a whole possesses, if the mental 

processes that underlie these tropes are the same, or if these "tropes", as exhibited by 
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user interfaces, are the same. However, the use of terminology in the metaphor and 

cognitive science literature makes these questions difficult to answer currently. 

Donald Schon's (1983) analysis of professional's behaviour in terms of them being 

reflective practitioners views discovery and hypothesis gener~tion as part of this 

form of practice as new problems being framed in terms of descriptions that arc 

perceived to be similar to previous experience. This framing is tenned seeing-as by 

Schon. For Schon, analogy is synonymous to a form of metaphor termed generative 

metaphor which is when seeing-as occurs when the domains of experience arc 

different. Schon's key example of this, which is often cited elsewhere, is of a group 

of designers \\'ho \\'ere trying to replicate the properties of paintbrushes with bristles 

made of natural materials with bristles made of artificial materials. Copying 

superficial properties of bristles did not give useful results, but when one of the 

designers that Schon \\'as studying observed that" ... a paintbrush is a kind of pump!" 

(Schon, 1983: 184) the designers were able to replicate the key aspects of brushes 

and to consider new designs. For Schon, only generative metaphors create insight in 

this way and allow people to not only understand the unfamiliar domain, but also to 

develop a ne\v understanding of the familiar, presumed fully understood, donlain. 

The nature of the similarity between domains may influence whether the process of 

understanding one domain in terms of another is metaphorical or analogical. A 

particular problem that affects some user interface designs, as will be discussed 

further in the follo\ving chapter, is that the model world does not behave in a causal 

way. Even if the software does not betray the user's notions of causality, as Spiro et 

al. (1989: 507) note "Some analogies are vcry effectivc at characterising surface 

features and relationships but gloss over underlying causal mechanisms. The result is 

that learners tend either to fill in a convenient but incorrect causal account of their 

own, or just leave the causal mechanism unexplained as a kind of 'black box.'" They 

go on to suggest that "It might be said that a comparison based primarily on surface 
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descriptive aspects is more metaphorical than analogical. However, our point here is 

that an underlying relational structure is indeed transferred - that is, people have a 

tendency to interpret metaphors analogically." (op. cit.: 507). 

Fraser (1993: 332) holds that this connection is even stronger than Spiro et al. 

believe. He defines a metaphor as "an instance of the non-literal use of language in 

which the intended propositional content must be determined by the construction of 

an analogy." Fraser is clear to point out that he does not regard metaphor and 

analogy as synonymous, but that analogy is a process that muse be involved in the 

understanding of a metaphor. Gentner and leziorski (1993) view metaphor as a broad 

category encompassing analogy, matches that map structure independently of object 

descriptions, and other kinds of matches between domains. Gentner's work has been 

primarily concerned with analogy understanding, in which the structure-mapping 

process is the primary mechanism. Many of the figurative expressions studied by 

Lakoff and 10hnson (1980) are claimed by Gentner and leziorski to be analogies 

rather than metaphors. Gentner et al. (2001) attempt to unify metaphor with analogy, 

more precisely to claim an equality between the set of metaphors and the set of 

analogies, and hence to be able to account for metaphors by their structure-mapping 

model of understanding analogies, but do not completely succeed. Some forms of 

metaphor cannot be described in terms of their unified account, although, like Schon, 

they state that novel metaphors can be accounted for by processes of analogical 

understanding. In the more problematic case of what they term conventional 

metaphors, where the base term refers both to a literal concept and a metaphoric 

category, metaphors are said to have a career. The career of a metaphor can be 

likened to the change in fuzzy category membership in Mac Cormac's model, 

metaphors that are at first novel can, in Gentner's et al. view be handled in structural 

terms. As the metaphor becomes more familiar, understanding it is more the task of 

determining its category membership, no further change in understanding of either 

source or target domain is possible, and it becomes what Mac Cormac would call 
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dead. It at this point requires no structure-mapping processes to understand when 

encountered again. 

In the Lakoff/lohnson theory, the relationship is reversed. Rather than (some, most. 

or all) metaphors being comprehensible in tenns of processes and nlcchanisms of 

analogical reasoning, analogies are forms of metaphor. Lakoff. from analyses 

undertaken by Mark Turner, suggests that the general mcchanism of analogical 

reasoning is the GENERIC IS SPECIAC metaphor. This metaphor maps schemata 

onto their generic-level schemata. The following sections dcfine the tcrnl schemata 

and present the details of the Lakoff/lohnson theory of nlctaphor. Among the 

advantages provided by this theory as a tool for undcrstanding user interface 

metaphors, is the provision, through the existence of generic-level schcnlata, of \\'ays 

of addressing the fundamental questions of how novice users make a mapping 

bet\veen a known domain (the metaphorical source) and a completely unkno\\'n 

domain, and ho\\' they can fonnulate motor scquences to interact with this domain. 

4.8 Is Metaphorical Understanding of User Interfaces 

Possible? 

Above, the problems of existing metaphor-based user interfaces have been 

discussed, as \vell as the difficulties of attempting to develop new metaphors for 

model world interfaces to computing systems from an understanding of previous 

work in understanding metaphorical and analogical reasoning. In this section \\'e 

consider a serious objection to the world view underlying much of the \\'ork 

discussed above. This objection is one that, while it suggests that mctaphors and 

analogies should have no place in the design of graphical user interfaces, we \\'ill 

take as the starting point to employ a particular recent interaction theory of metaphor 

understanding as another tool to use to criticise existing metaphor-balied User 
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interfaces and to employ in the analysis and design of two new interface designs that 

will be presented later in the thesis. 

The work that has had the greatest influcnce on current work on metaphor and 

analogy in user interface design adopts the Objectivist world view. This model of 

reality, meaning and reference, long-standing in Western science and philosphy, 

adopts the following assumptions: 

"- Thought is the mechanical manipulation of abstract symbols. 

- The mind is an abstract machine, manipulating symbols essentially 

in the way a computer does, that it, by algebraic computation. 

- Symbols (e.g. words and mental representations) get their meaning 

via correspondences with things in the external world. All meaning 

is of this character. 

- Symbols that correspond to the external world are internal 

representations of external reality. 

- Abstract symbols may stand in correspondence to things in the 

world independent of the peculiar properties of any organisms. 

- Since the human mind makes use of internal representations of 

. external reality, the mind is a mirror of nature, and correct reason 

mirrors the logic of the external world. 

- It is thus incidental to the nature of meaningful concepts and reason 

that human beings have the bodies they have and function in their 

environment in the way they do. Human bodies may play a role in 

choosing which concepts and which modes of transcendental 

reason human beings actually employ, but they play no essential 

role in characteriSing what constitutes a concept and what 

consi tutes reason. 
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- Thought is abstract and disembodied, since it is independent of any 

limitations of the human body, the human perceptual system, and 

the human nervous system. 

- Machines that do no more than mechanically manipulate symbols 

that correspond to things in the world are capable of meaningful 

thought and reason. 

- Thought is atomistic, In that it can broken down into simple 

'building blocks' - the symbols used in thought - which are 

combined into complexes and manipulated by rule. 

- Thought is logical in the narro\v technical sense used by 

philosophical logicians; that is, it can be modelled accurately by 

systems of the sort used in mathematical logic. These are abstract 

symbol systems defined by general principles of _ symbol 

manipulation and mechanisms for interpreting such symbols in 

terms of 'models of the world'." (Lakoff, 1987: xii-xiii) 

This model of the \vorld is one that has become subject to recent severe cri ticisms, 

these criticisms will need to be taken into account as further \\-'ork in role of 

metaphor and analogy in human-computer interaction is undertaken. The severest 

criticism of the Objectivist \vorld view has been provided by Hilary Putnam (1981) 

who haS provided a well-known theorem that refutes many of the assumptions of 

Objectivism listed above. Putnam's Theorem is stated as follows (Putnam, 1981: 

Appendix): 

"Let L be a language \vith predicates FI, F2, ... , Fk (not necessarily 

monadic). Let I be an interpretation in the sense of assigning an 

intension to every predicate of L. Then if I is non-trivial in the sense 

that at least one predicate has an extension which is neither empty nor 

universal in that at least one possible world, there exists a second 

90 



interpretation J which disagrees with I but which makes the same 

sentences true in every possible world as I does." 

Putnam uses this theorem to show that a sentence such as "a cat is on a mat" can be 

transformed so that "cat" refers to "cherry" and "mat" refers to "tree" without 

changing the truth value of the sentence in any possible world. Predicates of this 

form make up the models of the target and source domains between which an 

analogical mapping is made in the structure mapping and ACME models. Putnam 

continues by stating that "a more complicated reinterpretation ... can be carried out for 

all sentences of a whole language. It follows that there are always infinitely many 

different interpretations of the predicates of a language which assign the 'correct' 

truth-values to the sentences in all possible worlds, no matter how these 'correct' 

truth-values are singled out." (Putnam, 1981: 35, original italics). 

The effect of Putnam's Theorem is to render meaningless the notion of reference, the 

connection between symbols in the mind and distinct objects in the external world 

that can be categorized. While the impact of Putnam's Theorem has been felt most 

fully in the fields of cognitive science, philosophy and linguistics, its results also 

apply in the prospects for theories of metaphorical understanding. Lakoff (1987: 

172) states that: 

"The Objectivist paradigm also induces what is known as the literal

figurative distinction. A literal meaning is one that is capable of 

fitting reality, that is, of being objectively true or false. Figurative 

expressions are defined as those that do not have meanings that can 

directly fit the world in this way. If metaphors and metonyms have 

any meaning at all. they must have some other, related literal 

meaning. Thus, metaphor and metonymy are not subjects for 

objectivist semantics at all. The only viable alternative is to view 
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them as part of pragmatics - the study of a speaker's meaning. 

Moreover, it follows from the objectivist definitions of definitio1l 

itself that metaphor and metonymy cannot be part of definitions. They 

cannot evcn be a part of conccpts, since concepts must involvc a 

direct correspondence to entities and categories in thc rcal \\'orld (or a 

possible world)." 

Putnam (1981: 72-74), in addition, says that: 

"Even if the notion of a 'similarity' between our conccpts and what 

they refer to doesn't work, couldn't there be some kind of abstract 

isomorphism, or, if not literally an isomorphism, some kind of 

abstract lnapping of concepts onto things in the (mind-indcpendcnt) 

world? Couldn't truth be defined in terms of such an isomorphism or 

mapping? 

The trouble \\'ith this suggestion is not that correspondences betwcen 

words or concepts and other entities don't exist, but that too Inany 

correspondences exist. To pick out just one correspondence bct\\'ecn 

words or mental signs and mind-independent things we would have 

already to have referential access to the mind-independent 

things ... This simply states ... the intuitive fact that to single out a 

correspondence between two domains one needs some independent 

access to both domains. " 

This independent access to domains between which a mapping is to be drawn, this 

God's eye view of the world as Putnam terms it, is what Putnam's Theorem states 

can never be available. Therefore much of the work on metaphorical comprehension 

and analogical reasoning, assumed to a considerable extent in human-computer 
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interaction, becomes subject to Mitchell and Hofstadter's (1995: 290) criticisms of 

these systems. They claim that there is nothing in the existing models of analogy 

making that makes "symbols stand for anything in a recognisable way. Only the 

person who used them to encode 'pieces of knowledge' sees them as standing for 

anything." The conclusion drawn, therefore, is that metaphor will never allow users 

to understand the systems they use, if concepts and models of the system are to be 

formed to a large part by metaphorical mappings between domains modelled in a set

theoretic, Objectivist, way. It might be concluded, as a result, that users should be 

provided only with literal accounts of the system they are to learn and use. In doing 

so, however, devising training material would prove difficult and we would reject 

the advantages that some forms of mental models give to users. We would also be 

rejecting the pervasive nature of metaphor and analogy in understanding the world 

(Lakoff & Johnson, 1980). Before presenting the design of the Medusa system, 

therefore, we are required to explore to some extent the role that metaphor will play 

in its design and the theory of metaphor that is assumed in its model world, in doing 

so, we continue a programme begun by Rohrer (1995)5. 

4.9 Cognitive Semantics of User Interface Metaphors 

Below, the motivations behind a new interface design named Medusa are discussed. 

The design of this user interface, while trying to avoid the problems posed by 

existing systems based on metaphors and analogies discussed above, appreciates that 

analogy and metaphor are an inescapable part of learning and understanding. In 

recent years, the Objectivist world view underlying the understanding of 

metaphorical and analogical reasoning assumed in the theories of metaphor 

5 Very recently. use of the LakofflJohnson theory of metaphor understanding in HeI has also been 

adopted by others. fa- example BenyOll and Imaz (1999). but these authors have yet to consider the 

number of interface designs and task domains considered in this thesis. 
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described earlier in this chapter has come under criticism. These criticisms have led 

to the development of a contemporary theory of metaphor by George Lakoff and his 

colleagues (Lakoff, 1993). Below, an attempt to formulate this theory of metaphor in 

terms of user interface design is presented. This fOImulation of the theory is 

employed to underlie one version of the Medusa user interface design that will be 

presented in Chapter 6. 

4.9.1 Image Schemata and Metaphorical Projection for 

Understanding 

Putnam's Theorem gives rise to the conclusion that metaphor can play no part in our 

understanding of concepts \vithin an Objectivist world vie\v. Mappings bct\\'een 

domains, as assumed in existing work on metaphorical understanding of user 

interface model worlds, teach us little about the quality of a user interface metaphor 

according to Putnam's Theorem as the concepts and representations of the external 

world modelled have no connection to mind-independent things. We must therefore 

confront how meaning is obtained and what role metaphor can play in the world. The 

conclusion drawn by Lakoff (1987) and Johnson (1987) is that meaning is grounded 

in terms of image schemata, and that the world can be understood in terms of these 

schemata and metaphorical mappings from these schemata to describe a situation or 

statement. Johnson (1987: 28-29) provides the following definition of the tcnn 

" image schemata": 

"On the one hand, they are not Objectivist propositions that specify 

abstract relations between symbols and objective reality. There might 

be conditions of satisfaction for schemata of a special sort (for which 

we would need a new account), but not in the sense required for 

traditional treatments of propositions. On the other hand, they do not 

have the specificity of rich images or mental pictures. They operate at 
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one level of generality and abstraction above concrete rich images. A 

schema consists of a small number of parts, images, and events. In 

sum, image schemata operate at a level of mental organisation that 

falls between abstract propositional structures, on the one side, and 

particular concrete images, on the other. 

The view I am proposing is this: in order for us to have meaningful, 

connected experiences that we can comprehend and reason about, 

there must be pattern and order to our actions, perceptions, and 

conceptions. A schema is a recurrent pattern, shape, and regularity 

in, or of, these ongoing ordering activities. These patterns emerge as 

meaningful structures for us chiefly at the level of our bodily 

movements through space, our manipulation of objects, and our 

perceptual interactions." (Original italics) 

We shall give one example of understanding based on image schemata before 

considering a number of case studies applying the Lakoffllohnson model of 

metaphor comprehension to aspects of existing user interface designs. 10hnson 

(1987: 32) presents examples of how a small number of image schemata based on 

experience of IN-Our relationships can account for many uses of the word "out" in 

English. Figures 4.7, 4.8, and 4.9 show these uses with depictions of the schema6 

being relied upon for understanding. 

, These schemata were devised for Qaudia Brugman's 1981 University of California at Berkeley MA 

thesis The Slory of Over. 
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John went out of the room. 

Pump out the air. 

Let out your anger. 

Pick out the best theory. 

Drown out the music. 

Harry weasled out of the contract. 

Pour out the beans. 

Roll out the red. carpet. 

Send out the troops. 

Hand out the information. 

Write out your ideas. 

Figure 4.7 The OUT I schema 

Figure 4.8 The OUT 2 schema 

I..M TR 
The train started out for Chicago. ... 

Figure 4.9 The OUT 3 schema 

It should be noted that these depictions of image schemata are only depictiolls, but 

they seIVe to illustrate the bodily experiences captured in, and described by, the 

schemata. In the schemata shown LM is the "landmark" in relation to which TR the 

"trajector" moves. Considering the schema OUT 1 and the sentence "John went out of 

the room", the circle (LM) represents the room as a container, and John moves along 

the arrow (as TR) out of the room. The diagram does not represent information, such 

as the shape of the room (which may not be circular), or the vector along which John 

moves, but it instead "gives only one idealised image of the actual schema .. .lt is, 

rather, a continuous, active, dynamic recurring structure of experiences of similar 

spatial movements of a certain kind." (Johnson, 1987: 36). 
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The intention behind the Lakoff/Johnson theory of metaphor is to be able to account 

for human understanding of concepts and language. In order to do so it must be able 

to describe the non-physical as well as the physical. To this end. all understanding is 

achieved by metaphorical extensions from image schemata. An example given by 

Johnson (1987: 35) is the sentence "I don't want to leave any relevant data out of my 

argument." This relies upon the our schema in order to be understood. but also 

relies upon the ARGUMENT IS A CONTAINER metaphor. claimed to be a very 

common metaphor in Western culture (Lakoff and Johnson. 1980). 

There are, obviously, more schemata in addition to IN-Our used to ground our 

comprehension of the world. Johnson (1987: 126) presents a partial list of schemata 

(shown in Figure 4.10), which he claims are" ... pervasive, well-defined, and full of 

sufficient internal structure to constrain our understanding and reasoning." (original 

italics). Some of these schemata will be used below in case studies. and in the 

following chapter where the details of a revised design of the Medusa system are 

presented, to be useful in attempts to provide meanings of and to discuss interaction 

with aspects of graphical user interfaces. 
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CONTAINER BALANCE COMPULSION 

BLOCKAGE COUNTERFORCE RESTRAINT REMOVAL 

ENABLEMENT ATTRACTION MASS-COUNT 

PATH LINK CENTER-PERIPHERY 

CYCLE NEAR-FAR SCALE 

PART-WHOLE MERGING SPLITTING 

FULL-EMPTY MATCHING SUPERIMPOSITION 

ITERATION CONTACT PROCESS 

SURFACE OBJECT COLLECTION 

Figure 4.10 Some pervasive image schemata 

4.9.2 The Lakoff/Johnson Theory in HCI 

A criticism that can be made of the use of metaphor in HCI is that few authors who 

apply a particular theory of metaphor comprehension, or who apply particular 

theories of metaphor comprehension in their interface designs, state which theory 

they are adopting. The Lakoff/Johnson theory is different in that most authors that 

employ it explicitly state that they are adopting, or testing, this theory. However the 

entire body of literature on use of the Lakoff/Johnson theory in HCI prior to 

(Treglown 1999; 2(00) comprised (Rohrer, 1995). The use of the Lakoff/Johnson 

theory in later parts of this thesis was begun independently of Rohrcr's work, and \vc 

have considered a larger number of case studies (reported in Chapter 6) than he did. 

This should not be taken as a criticism of Rohrer's efforts, he mcrely rcturncd to his 

work in cognitive science and linguistics after providing his contribution to HC!. 

Rohrer's (1995) contribution is to show that some aspects of the Apple Macintosh 

user interface can be analysed and reasoned about in terms of the Lakoff/Johnson 

theory of metaphor. Much of (Rohrer, 1995) addresses the trash can which \\'as 
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found in the emprical study reported on in Chapter 3, and in work reviewed in this 

chapter, to be particularly problematic. We shall return to this user interface feature, 

and Rohrer's examination of it, in one of the case studies undertaken in Section 5.x. 

Rohrer's interest in metaphor comes from his claiming to " ... see not only a tension 

between literal and magical qualities of metaphor, but a tension between the users' 

feeling that the computer is an extension of their bodies and believing that it is an 

'other' - a sentient being wi tha consciousness of its own." We shall return in Section 

5.4.3 to the teaching strategies employed by Rohrer to explain the trash can, and 

other features of the Macintosh user interface, including explaining it in terms of 

another agent with which to communicate. It is in terms of Rohrer's interest in ideas 

of embodiment and their impact on theories of cognition and interaction, and his idea 

that "The magical features of the DESKTOP metaphor are inextricably bound up 

with the users [sic] aesthetic feel of the system" that the Lakoffllohnson theory 

deserves to be considered as a candidate theory of metaphor in HCI and provides 

explanatory power that other theories of metaphor do not yet offer to HCI in the 

level of detail at which they are currently described. 

An example that Rohrer gives where embodiment plays a key role in understanding, 

or appreciating, an interface design feature is the use of "zooming" of windows as 

they open. A closed window can take many forms, in early WIMP systems, as was 

mentioned above, they were denoted as an icon on the root window. In the Microsoft 

Windows 95 user interface, a closed window is denoted by a rectangular region, or 

button, on the task bar along the bottom of the screen. Clicking on a button on the 

task bar will open or close the associated window depending on its current state. In 

most systems (including the Macintosh, when an icon is double-clicked on) the 

window opens by expanding, or zooming, from a small region of the screen to 

occupy a far larger region. Rohrer describes this enlargement as "zooming", 

mimicking the enlargement of a document as ones head moves toward it, or as it is 

brought closer to the viewer. To Rohrer "Zooming is more than just a nice touch ... it 
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is one of the best examples of how user interface design can draw on common 

patterns of feelings. Zooming is a pattern of feelings that takes place ill and through 

tbne; the realisation that all feeling takes place in and through time is the most 

important step in thinking about users' bodies. Part of being en1bodied is being a 

creature in time, and being in time is part of what the Cartesian theory of mind and 

ideas as objective entities hides from our attention." The closest to an account of 

zooming provided in the cognitivist tradition in HCI is Barnard and May's (1995) 

configuration of Bamard's ICS (Interacting Cognitive Subsystems) cognitive 

architecture to comprehend transitions between displays and depictions of system 

and program states that are borrowed from the grammar of film-making, and 

accounted for by theories of film. Instead of borrowing methods from the visual arts, 

and trying to explain how the mind can comprehend them in order to answer the 

questions "Why make windows zoom? Why make an event that could happen 

instantaneously on the computer screen take longer than necessary simply for the 

sake of metaphorical consistency?" For Rohrer "Making users fcel at home in their 

user interface is important to the development of users [sic] abilities to imagine and 

intuit ho,v the user interface will ,vork." Zooming, to Rohrer, is an example of an 

image schema that captures a familiar pattern of experience with the physical world, 

one that Kosslyn (1994) claims can be rehearsed and visualised by the human 

capacity for mental imagery. Beyond mere explanation of how ccrtain computer 

animations can be accounted for, Rohrer argues that " ... the aesthetics of User 

interface design requires thinking about subjective, preverbal bodily patterns of 

feeling... The development of good user interfaces depends on careful 

phenomonological and psychological research on subjective bodily experiences." 

These are what HCI has typically, so far, ignored. These aspects of interface \\'ill be 

returned to at the end of the next chapter, and at other later points in the thesis. 

100 



4.10 Conclusions 

This chapter has considered the use of analogies and metaphors in user interface 

design. Although analogies are suggested as a solution to the problem of designing 

usable software. as the review above discusses: 

• Analogies are often the source of difficulties for learners; 

• Human ability to make use of analogies provided to aid problem solving is 

limited; 

• Where mismatches occur between the source and the target computer system the 

mechanisms by which mismatches are explained are poorly understood; 

• Analogy-based user interfaces may not suggest ways in which they may be used. 

and existing analogy-based systems can prove difficult to learn and use when 

performing realistic tasks in realistic setting. 

Within HeI metaphor has typically been seen as only one mechanism for. or 

description of. understanding of computing systems. The following chapter surveys 

some of these other mechanisms and places metaphor in a wider context of these 

models and mechanisms. 
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Chapter 5 

Users' Models of Interactive Systems 

"The situation gets quite confused. with people turning different knobs, the effects of 

which they have no way of knowing. " 

- John Cage. 

5.1 Introduction 

In Chapter 4 the drawbacks of adopting the use of analogies and metaphors in the 

design of interactive user interfaces were examined. In particular, the recognition 

phase (finding a suitable source domain) and the elaboration (mapping between 

domains) phase of the analogical reasoning process identified by Hall (1989) were 

considered. Where the mapping gives rise to mismatches, and elements of the source 

domain cannot be applied in the target domain, the model of the target domain 

employed must be evaluated and debugged. The final phase of analogical reasoning 

identified by Hall is to consolidate repairs of the target domain model in order to 

improve future perfonnance. 

The debugging of target domains has been addressed in models presented by 

Burstein (1986) and Adelson (1989). Both of these models rely on understanding 

causal mechanisms in the source and target domains in order to remove inferences 

from the target model that cannot be applied and used, and to add mechanisms 

within the target model in order to account for the behaviour of the target model. 



This process depends on the target domain being capable of being described in 

causal terms, some interface designs, however, have been implemented which do not 

display causal behaviour. In an attempt to examine direct manipulation user 

interfaces based on analogies and metaphors, efforts were made to formalise 

knowledge of the physical world and to examine user interfaces based on physical 

world analogies. Considering an earlier version of the Macintosh Finder, it was 

noted that the behaviour captured in the action-effect rule (Monk and Dix, 1987) 

shown in Table 5.1 is exhibited. In Treglown (1994) it was shown possible to model 

moving files around the Macintosh file system and deleting files from the file system 

using the notation of Qualitative Process Theory (Forbus, 1984). It, however, proves 

impossible to describe the behaviour in Table 5.1 in terms of the objects visible on

screen and physically realistic changes to attributes of the objects (such as spatial 

position) alone. Norman (1983) notes that some users' behaviour when using 

interactive systems involves superstitious beliefs. In this case, without generating an 

account of the system behaviour in terms of mechanisms in the underlying software, 

the system cannot be described in terms of any understanding of physics, either 

existing or conjectured (Sheldrake, 1994). 

RI: <Drag file icon over the disk icon and release mouse button>:: File icon appears 

in window associated with disk if window is open and file is copied across. The 

trashcan empties if 'full' and the trashcan icon shows 'empty'. 

Table S.l An action-effect rule describing partial behaviour 

of the Macintosh Finder interface. 

The conclusion derived and assumed in the remainder of this thesis is that the use of 

analogies and metaphors in user interface design as currently assumed does not 

provide an ideal solution to the problem of designing user interfaces. This conclusion 

is not original, it is one arrived at by Halasz and Moran (1982), among others. They 
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argue that metaphor should be used as they claim it is used in literature, in passing, 

and to convey meaning at a particular point in the development of understanding, not 

in an attempt to describe the entire system. Even where a number of analogies are 

used to describe different aspects of the system, users may apply the incorrect 

analogy to describe the part of the system currently of interest (Rumelhart and 

Norman, 1981). In order to relate a number of less all-enconlpassing, more specific 

metaphors, Halasz and Moran (1982: 384) conclude and suggest that systems be 

explained in terms of a conceptual model: 

" ... to present the underlying conceptual structures directly to the user, 

providing him \vith an appropriate basis for reasoning about the 

system." 

Norman (1998: 180-181) also discourages the use of metaphors, saying: 

"Basically, those who espouse the use of metaphors arc giving 

human-centered development a bad name, almost as bad as those who 

believe in 'user-friendly' systems ... Designers of the world: Forget the 

term 'metaphor.' Go right to the heart of the problem. Make a clean, 

clear, understandable conceptual model." 

A similar conclusion is reached by Laurel (1993). She suggests that what have been 

termed user interface metaphors, an assumption employed in the previous three 

chapters, are in fact user interface silniles, which assert that one concept is like 

another. Metaphor-based systems are intended to resemble the metaphorical source, 

but may differ. Smith (1987) suggests they will always differ. Differences between 

the source and target domains and the problems they pose for users were the subject 

of the previous chapter. User interface similes act as a mediator between three 

concepts, the real-\\'orld object, the representation of the object, and the functionality 
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and data structures implemented by the computing system denoted by the 

representation. The user is forced to fonn "mental models of what is going on inside 

the computer that incorporate an understanding of all three parts" (Laurel, 1993: 

130). 

In the remainder of this chapter, the models of computing systems formed and 

employed by users in order to understand metaphor-based systems and perform tasks 

using such systems, are discussed. This discussion will form the basis for presenting 

user interface designs for supporting tasks supported by the sorts -of metaphor-based 

systems discussed in Chapter 2. These new designs attempt to overcome some of the 

drawbacks found with metaphor-based systems and to present a useful conceptual 

model to users. 

5.2 Types of Users' Models of Systems 

Users are said to have knowledge of two aspects of the systems they use, task 

knowledge ('how to do it' knowledge), and device knowledge ('how it works' 

knowledge). Carroll and Olson (1988) list three types of model to account for these 

two aspects: 

• knowledge of simple sequences of commands and key-presses, learned by rote and 

memorised with little or no understanding, 

• methods (more complex task knowledge), and 

• mental models. 

Task knowledge is often described in terms of Card, Moran, and Newell's (1983) 

GOMS (Goals, Operators, Methods, and Selection Rules) model, extensions of 

GOMS and alternative models and notations that express similar knowledge. 

Problems arising from use of GOMS in human-computer interaction are well known. 
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GOMS addresses only routine cognitive behaviour of the sort eventually realised by 

the ACf* model of learning and supported by traditional documentation design, and 

it addresses errors in human performance only if knowledge used to overcome errors 

can also be described in terms of GOMS. For novice users of a new system any 

routine skills that might be applied in the new system are those that can be 

transferred from their knowledge of existing systems. 

Users' device knowledge is thought to be represented in the form of their mental 

models. The term mental model has given rise to much confusion, being applied to a 

number of different entities, so much so that the term mental lnuddles has been used 

in some discussions. Norman (1983) offers some additional terminology in order to 

resolve misunderstandings, he suggests that four notions need to be identified in this 

discussion, the target systeln, the conceptual model of the target system, the user's 

mental model of the target system, and the scientist's conceptllalisatioll of the mental 

model. The conceptual model is the creation of a system designer or teacher, it is 

intended to provide "an appropriate representation of the target system, appropriate 

in the sense of being accurate, consistent, and complete" (Norman, 1983: 7). 

Through interaction with the system, people are said to construct mental models 

(although the psychological support and evidence for mental models is still the 

subject of debate). Mental models are structures that evolve with time and with use 

of the system and are formed to represent the conceptual model as represented by the 

system image, the view of the conceptual model represented on-screen and in system 

documentation. These notions do not identify all the models that may be held by the 

agents identified by Norman. The designer's model of the system is the conceptual 

model, the user's model of the system is their mental model, the researcher will 

possess the scientist's conceptualisation of the mental model (a model of a model). It 

is also possible, as seen in adaptive systems and intelligent tutoring systems, for the 

system to possess a model of the user. The conceptual model and the scientist's 

conceptualisation of the mental model will be focused on below. 
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Norman (1983: 8) makes the following observations on the nature of mental models 

which need to be considered if system design taking into account mental models is to 

be undertaken: 

" 1. Mental models are incomplete. 

2. People's abilities to 'run' their models are severely limited. 

3. Mental models are unstable: People forget the details of the system 

they are using, especially when those details (for lhe whole 

system) have not been used for some period. 

4. Mental models do not have firm boundaries: similar devices and 

operations get confused with one another. 

5. Mental models are 'unscientific': People maintain 'superstitious' 

behaviour patterns even when they know they are unneeded 

because they cost little in physical effort and save mental effort. 

6. Mental models are parsimonious: Often people do extra physical 

operations rather than the mental planning that would allow them 

to avoid those actions; they are willing to trade-off extra physical 

action for reduced mental complexity. This is especially true 

where the extra actions allow one simplified rule to apply to a 

variety of devices, thus minimizing the chances for confusions. " 

Carroll and Olson (1988) discuss four types of mental models: metaphors, networks, 

glass box models and surrogates. The notion of surrogate models is due to Young 

(1983) who also introduces a number of device models: strong analogies, mappings 

(or task/action mappings), coherence, vocabulary, problem spaces, psychological 

grammars and commonality. Metaphors, and hence strong analogies, have been 

discussed in detail above, the remaining models mentioned by Young (1983) which 

are not discussed in detail here, have received little further attention. The exception 
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is the use of problem space models (Card, Moran, and Ncwcll, 1983) which Young 

(1983) initially ignored since problem spaces arc mostly used to model of routine 

cognitive skill of the sort described by GOMS, whcre problcm solving when using 

devices is ignored. Young's views have since altcrcd (Young and Simon, 1987; 

Simon and Young, 1988) to where problem spaccs are thought to fornl the basis of 

an approach to interaction in which planning and routine cognitive skill are opposite 

ends of the same continuum. Where skills to perform tasks and subtasks do not exist~ 

plans that make use of what appropriate skills the agent does havc can be constructed 

using well-known backwards-chaining methods into which existing skills can be 

interleaved. This work also gives rise to an important claim that only a limited 

amount of planning \\'ill be undertaken in HC! tasks. Where planning is necded, it is 

closely tied to execution of planned actions, and can only be partial as much 

planning is often a matter of the user revising their intentions in response to system 

feedback follo\\'ing previously performed actions. 

5.2.1 Networks 

Generalised transition networks (GTN's) have been proposed as a nlodel of 

interactive systems (Keiras and PoIson, 1983). GTN's comprise nodes representing 

states, and arcs that represent transitions from one state to anothcr and thc actions 

performed on registers in response to user input. The complexity of graphiCal 

notations for finite state machine models of systems is partially ovcrcome in the 

GTN by pennitting sub-networks to be described separately and called recursively 

from nodes in other networks. GTN's are employed as device models in Keiras and 

Poison's Cognitive Complexity Theory (Keiras and PoIson, 1985), in which task 

knowledge is represented in a form of a GOMS model. GTN's are also proposed as a 

means of determining how easy the system is to learn and rcmcmber. This is 

achieved by comparing a user's GTN model of the system with the actual, ideal~ 

GTN. Missing nodes and arcs in the user's model denote missing or faulty 
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knowledge. The types of systems that may be described easily by GTN's are limited, 

however. GTN's are a difficult model in which to model interleaving (Cockton, 

1992), which must be supported in order to realise systems such as Rooms and task 

switching in other systems such as the desktop. GTN's, as described by Keiras and 

PoIson (1983), adopt a stimulus-response view of systems, the systems described 

produce feedback and change state in response to obvious commands, such as 

control characters and typed commands. In the direct manipulation systems 

described in Chapter 2, commands may consist of hundreds of discrete events that 

are interpreted as a high-level user intention. Although a GTN may be used to 

realise such systems in user interface management systems, it seems unlikely that the 

user's model of the device includes awareness of, or makes use of, the events 

generated by devices such as a mouse. The sense of engagement with the mouse that 

users are intended to develop with accurate tracking of the on-screen pointer as the 

mouse is moved precludes such detail being made available to the user. GTN's, as 

described by Keiras and Poison (1983), describe systems that consist of a single state 

altered in response to user input. In the design and implementation of object-based 

systems, such as the desktop and the Alternate Reality Kit, the system's state is 

distributed over a number of on-screen or software objects. This is another 

manifestation of the problem of interleaving which is not, as discussed above, 

addressed well by the GTN either in terms of system implementation or users' 

models of the system. 

5.2.2 Glass Box Models 

Glass box models (Du Boulay, Q'Shea, and Monk, 1981) are said to combine 

elements of both metaphors and surrogate models (which are described below). 

Glass box models are intended to provide a perfect mimic of the target system, but 

provide some semantic interpretation, in the form of metaphors, of relevant 

components. Glass boxes are based on an analogy of cut-away windows in physical 
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devices to reveal some of the workings inside. This notion fomls part of the idea 

underlying a glass box model, that interaction with components should be achieved 

with simple input and simple forms of output, and that hidden actions and states 

should be illulninated. Glass box models are more prescriptive than descriptive, 

concepts are introduced in order to describe the notional machine in order to perform 

some task. CarroIl and Olson (1988) relate glass box nHxJcIs to operational 

metaphors; rather than attempt to provide novices with an account of existing 

programming languages, however, the gla~s box. concept has been employed in the 

design of novel programming languages and simplified interfaces to ex.isting 

programming languages. Being prescriptive models, however, the glass box. offers 

little in the \\'ay of description of the sorts of models of systenlS that users may 

generate and use. 

5.2.3 Surrogates 

A surrogate model is based on the notion of a "working model", an account of a 

system intended to explain ho\v a system works. A surrogate should perfectly mimic 

the target system's input and output, but the process by which the system's output is 

produced need not be the same as realised by the target systenl, and the internal 

workings of the surrogate need not be isomorphic to thc target systcnl. Young (1981, 

1983) attempts to construct surrogate models of some simple computing dcvices, 

namely three types of pocket calculator: 

• a simple four arithmetic operation calculator, 

• a calculator supporting more complex algebraic expressions, and 

• a calculator based on the reverse polish notation which relics on a stack as a store 

of numbers input and postfix use of ari thmetic operators. 
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While Young was able to provide surrogate models of the four function calculator 

and the reverse polish notation calculator, the other calculator, which accepts more 

complex algebraic expressions, was shown to be more difficult to construct a 

surrogate model of. This is because no account could be provided of how the system 

responds to 'ungrammatical' sequences of key presses. 

In addi tion to the difficulty of providing an account of some aspects of the 

calculators in tenns of registers, stacks, and how data is placed in - and moved 

between - registers and the display, Young (1983) doubts "the psychological 

validity of surrogates. He claims that they are of little use for describing routine 

behaviour (although they have a greater role in problem solving and predicting the 

outcome of novel calculations), and that the cognitive workload of employing a 

surrogate model may be too large for users. The calculators studied, even if they 

could produce results to ill-structured sequences of key presses, rely on well-fonned 

sequences of key presses in order to produce meaningful results. The structure of 

commands, key presses and other user input actions accepted by devices and 

required in order to perfonn tasks is the concern of another fonn of knowledge about 

systems, lask/action mappings. These are multi-levelled models developed from 

Moran's (1981) Command Language Grammar which describe the interface between 

the user and an interactive system, and the transformation of a user's task to the 

sequence of actions needed to perform the task on the system. The models of the 

calculators that Young describes are referred to as 'implied register models' (Young, 

1981), they introduce registers, internal state and other data structures sufficient to 

describe the outputs produced by the calculators. In general, however, Carroll and 

Olson (1988: 51) observe that: 

" ... while the surrogate always provides the right answer (the one the 

target system would have generated) it offers no means of 

illuminating the real underlying causal basis for the answer. It is a 
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good, complete analogy that may allo\\! the user to construct 

appropriate behaviour in a novel situation, but does not help the user 

why the system behaves the way it does." 

System Learnin& usin& Surrogate l\;lodels 

Young (1981, 1983) presented surrogate models of a number of pocket calculators, 

but did not explore how providing learners \vith these surrogates might affect 

learning and use of the calculators. Halasz and Moran (1983) considered learners' 

use of a reverse polish notation calculator when groups of learners were provided 

either \\'ith no surrogate, or a surrogate model of the calculator. The surrogate nlodel 

taught was intended to provide a problem space in which learners could invent 

operator sequences and carry out problem solving. This problem space consisted of 

the calculator's stack and rules describing the changes in the stack's contents as the 

user pressed keys. Halasz and Moran (1983) found that the learners who were not 

provided with the model performed routine tasks up to 40% faster than the learners 

who were provided \vith the model. Young (1983) suggests that surrogates play no 

role in routine behaviour, the results of Halasz and Moran suggest that surrogates 

impose an extra load on the user when performing routine tasks. When performing 

invention tasks where operator sequences must be planned in order to perform novel 

calculations, learners provided with the model were able to perform tasks 15% fa~ter 

than the group of learners who were not provided with a model. 

Keiras and Bovair (1984) employed a novel device in their examination of the role 

of surrogates in learning. They also adopted the method of comparing users Who 

were taught only rote procedures for using the device with those users who were 

taught an explanatory model of the system in addition to the rote instructions. This 

explanatory model was in the form of a "cover story" and a diagram describing the 

topology of the internal components of the device. Providing a model to the learners 
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meant that the model group learned the procedures needed to use the device faster, 

and learned more efficient procedures. The model group also retained knowledge of 

procedures needed to use the device better than the group taught only the rote 

procedures, and remembered more efficient procedures. In a second experiment, 

Keiras and Bovair (1984) examined the effect of the device model provided on 

learners' inference of procedures performed when using the device. They found that 

learners provided with the model took fewer actions to infer procedures than the 

other group, and, once they had learned a first procedure, took fewer actions to infer 

a second procedure to perform the same task. A third experiment examined which of 

the "cover story" and the description of the topology of the device's components is 

the important factor in learning. 

The third experiment performed by Keiras and Bovair (1984) suggested that the 

topology of the device's components is the important factor in a device model 

presented to learners. Keiras (1992) presents further experiments that confirm this 

suggestion. The topology of the device components is an aid to learning even in 

systems where the internal state of device components is made apparent to the user. 

Kieras (1992) is able to derive a set of guidelines for the design of device models, 

especially for diagrammatic displays presented on-screen. These guidelines are listed 

as follows (Keiras, 1992: 893-894): 

Topological structure 

Show the topological and causal structure of the system, such as the 

pathways between components, controls and indicators using 

conventions that are visually clear. Structural relationships involved 

in understanding system states must appear on the diagram. 
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Control and indicator states 

Echo the topological effects of external controls, and show indicator 

states at the corresponding topological points on the system diagram. 

Internal states 

If information on the states of internal components is reliable and 

available, show the states that are significant to the user, so that there 

are no hidden states and no inferences are required to deduce 

significant component states. Provide the state information at (he 

corresponding topological point in the display. 

Causal relationships 

Show the pathway of causality through the topological structure, such 

as the colour-coding of energized connections. Distinguish 

component states from other state information that may be on the 

displays (for example, by using different colour-codes). 

Malfunctions 

Show failures of causal flow, such as malfunctions, in a perceptually 

salient way (for example, bright yellow for a component that fails to 

produce output \vhen it should). 

If one considers Carroll and Olson's (1988) comment about the surrogate model's 

lack of ability to describe causality and possible reasons for some system behaviour 

and if one also considers Keiras and PoIson's design suggestions, it is clear that 

further attention should be paid to the roles that device component topology and 

causal relationships bet\veen components play in mental models .. 
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5.2.4 Task-action Mappings 

Above an action-effect rule for the Apple Macintosh user interface was given. Such 

rules capture the ways that the display and relevant aspects of the system state 

change in response to actions performed by the user. Task-action mappings are also 

rules, but instead capture the user's tasks and the actions that they must perform in 

order to achieve these tasks. The following generic rules (taken from Schiele and 

Green, 1990: 60) show the deletion of a character of text in a number of Macintosh

based application packages in the notation of the Task-Action Grammar: 

R2 "Delete a single character" 

T [Unit=char, extent=l, Effect = remove, Clipboard=no]:= 

MOUSE-point(%location) + MOUSE-click + 

edit [Unit=char, Effect=rernove, Clipboard=no] 

R9 edit [Unit=char/word/cell-entry/object, 

Effect=remove, Clipboard=no] := "BKSP" 

Task-action mapping models, while proving useful in judging the consistency and 

learnability of commands (Lee et al., 1994~ Howes and Young, 1991), and while 

having strong claims to being psychologically meaningful (Schiele and Green, 

1990), suffer from considerable drawbacks as a means of modelling interactive 

systems in their basic forms. Basic task-action mapping models ignore the role of the 

display in system use, it is assumed that a sequence of actions will perform the task 

irrespective of display contents. The D-TAG and E-T AG versions of the Task

Action Grammar were developed to overcome this limitation. Another drawback of 

task-action mappings lies in their application to metaphor in interface use. The 

model presented by Rieman et al. (1994) implements in the ACT-R and SOAR 

cognitive architectures task-action mapping rules for a direct manipulation user 

interface and also implements a process model of metaphorical system use similar to 
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Hall's (1989). The resulting systems transform the knowledge of running an 

application by double clicking on its icon by an analogical process to derive the task 

to run another application. While valuable in concentrating on a task and ho\\' task 

knowledge may be metaphorically extended, the model that Rieman et al. (1994) 

present is very limited and, for example, provides no account of how nlctaphorical 

understanding might have led to the initial method for running an application being 

acquired. 

5.2.5 Qualitative Models as Mental Models 

Keiras's (1992) design suggestions present an account of dcvice models that matches 

Olson's (1992) definition of a mental model: 

"Mental models are knowledge that the user has about how something 

\vorks, its component parts, the processes, their interrelations, and 

ho\v one componentinfluences another." 

A similar definition is provided in Halasz and Moran (1983). Given this definition of 

mental models, a potentially productive method of modelling and exploring mental 

models, supported by existing notations and software tools, might be to employ 

qualitative reasoning (Bobrow, 1985). The use of artificial intelligence methods in 

the study of mental models has been previously suggested (Decortis et al., 1991), 

and the use of qualitative reasoning in an HeI domain is observed by Payne (1991a). 

Qualitative models have to date been employed in the modelling of physical systems 

(Gentner and Stevens, 1983; Hayes, 1985) and of simple devices or simple 

components within complex systems (Bobrow, 1985). Owen (1986) suggests that the 

study of human-computer interaction would benefit from invcstigating qualitativc (or 

"naive") models of computing systems, but he does not provide any such accounts 

himself. Payne (1991a), however, does explore users' understanding and models of a 
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computer-based system derived from their existing knowledge and inferred from the 

system's behaviour. 

The qualitative notations and algebras that have been devised and employed to date 

to model systems and devices other than computer-based systems are of interest as 

they may be used to confront the fact that computing hardware is not infinitely fast 

(Dix, 1987). On-screen objects may be subject to uncertain delays in rendering and 

screen updates, and functionality provided by the underlying software may engage in 

lengthy computations, or may make remote procedure calls where network delays 

become noticeable. Qualitative notations which are able to model change over time 

and rates of change may prove of increasing interest in the description of mental 

models. In (Treglown, 1994), an attempt was made to use Forbus's (1984) 

Qualitative Process Theory (QPT) notation to model device knowledge to account 

for mismatches between a metaphor-based graphical user interface and the actual 

behaviour of on-screen objects. This work is summarised below by discussing 

models of the behaviour of on-screen objects in the Alternate Reality Kit system, the 

mismatch between describing the task/action mapping and user feedback of moving 

files around a desk top metaphor system's file space, and the underlying 

functionality. 

In the QPT notation, systems are described in terms of objects, which have a number 

of attributes, and processes that act on objects to alter their attributes. It was shown 

possible in (Treglown, 1994) to describe the attributes of on-screen objects in user 

interfaces based on a physical world metaphor using QPT. A number of attributes, 

denoted by the Quantity-type predicate, that may be associated with data files, and 

the attributes associated with a text file are shown in Figure 5.1. Processes can act on 

objects to change attributes of objects when a number of pre-conditions hold. These 

pre-conditions depend upon factors that lie outside the QPT model, the amount of 

water in a bath cannot increase until someone turns on a tap, for example. Conditions 
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that can be described by the QPf model, termed Quantity-conditions. also detennine 

whether a process is active or not, and whether it is able to affect those attributes of 

the object that the process acts upon. While processes are active. influellces (other 

values relevant to the model) may alter values of attributes directly, or may have an 

effect of qualitative proportionality where the relationship and innuence are less well 

defined. 

Quantity-Type (size) 

Quantity-Type (creator-application) 

Quantity-Type(size-if-run) 

Quantity-Type (printable-object) 

doc a document 

Has-Quantity(doc, size) 

Has-Quantity (doc, creator-application) 

Has-Quantity(doc, printable-object) 

video a video-fragment 

Has-Quantity (video, size) 

Has-Quantity (video, creator-application) 

Figure 5.1 QPT notation attributes and on-screen objects 

This approach to modelling systems, in terms of objects, attributes, and processes is 

termed object-centred. This approach was adopted in (Treglown. 1994) over device

centred approaches to qualitative modelling (de Kleer & Brown, 1984; Kuipers. 

1985) as the process-centered models make minimal reference to hidden values and 

mechanism within the system which detennine the system's beha\'iour. Methods to 

determine and elicit mental models are still early in their history as topics of research 
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(Payne, 1991; Rutherford and Wilson, 1992; Carroll and Olson, 1988; Rogers, 

1992). Attempts such as Payne's (1991) exploration of the mental models formed of 

simpler computing devices have not yet been undertaken with more complex 

systems such as those described in Chapter 2. Therefore, it is uncertain how much of 

the system's mechanism is apparent to users, and can be modelled in a device-

centered notation. The User Virtual Machine notation (Tauber, 1988) has been 

employed to describe the mental model of a software application. It can model the 

state of hidden components of which users are aware and which they employ when 

performing certain tasks, but it does not model components which may be perceived 

or inferred by users. The notation also makes no reference to the temporal behaviour 

of changes of state of the components modelled. 

Smith (1987) observes that his Alternate Reality Kit displays behaviour that cannot 

be termed either literal to the metaphor or magical, this behaviour cannot be 

described in terms of the physical world metaphor on which the system is based. An 

example he gives is the increasing delays in updating the disglay as the number of 

on-screen objects in an ARK simulation, and hence the system load required to 

compute and render the display increases. This causes moving on-screen objects to 

move in an increasingly ~erky' and unrealistic way. Figure 5.2 shows a proposed 

model for a freely moving object in an ARK simulation where objects are not subject 

to friction or any gravitational or frictional forces. This model is able to describe the 

behaviour of such an object, but must include the influence on the speed of the 

object of the computational load on the system. 
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Process Motion(B, dir) 

Individuals: 
B an object, Mobile(B) 
dir a direction 

Preconditions: 
Free-Direction(B,dir) 
Direction-Of (dir, velocity(B» 

QuantityConditions: 
Am[velocity(B)] > ZERO 

Relations: 
A[velocity(B)] ~Q_ system-load 

Influences: 
I+(position(B), A[velocity(B)]) 

Figure 5.2 A QPT model of a moving object in an ARK simulation 

In desktop interfaces, the task of moving a file is often performed by the user 

pressing the mouse button while the pointer is over the icon denoting the file, by 

dragging the icon until it is over a particular folder, and by finally releasing the 

mouse button. If one assumes that a metaphor·based system suppons direct 

engagement, and that users perceive the on·screen object to actually be the data file 

of interest to them (Hutchins, Hollan, and Norman, 1986), it should be possible to 

model the movement of an on-screen object, and hence of the file it denotes within 

the file space, in a process such as that shown in Figure 5.3. This process is more 

complex than one needed to model on-screen objects in many metaphor-based 

systems, objects tend not to have a perceivable mass, although computer·based 

simulations that employ input devices with force-feedback can communicate a sense 

of an object's mass to the user. The Aristotelian idea of motion described in this 

model, where objects require that a constant force be applied to them in order for 

them to move at a constant rate reflects dragging an on·scrcen object. 
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Process motion 

Individuals: 
B an object, Mobile(B) 
dir a direction 

Preconditions: 
Free-Direction(B, dir) 
Direction-Of (dir, net-force(B» 

QuantityConditions: 
Am[net-force(B)] > ZERO 

Relations: 
let velocity be a quantity 
velocity ocQ+ net-force(B) 
velocity ocQ_ mass(B) 

Influences: 
I+(position(B), A[velocity]) 

Figure 5.3 A QPT model of motion (Forbus, 1984: 134). 

The feedback in the display should be immediate and appropriate as the on-screen 

pointer and file icon being dragged track the user's movement of the mouse. The 

computation performed when moving the data making up a file from one directory in 

the file space to another directory, however, has a temporal duration. It is possible to 

model this computation in QPT as shown in Figure 5.4. 
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Process move-file 

Individuals: 
source-file an object, 

Has-Quantity(source-file, 
destination-file an object 
src a folder 
dest a folder, 

size) 

Has-Quantity(dest, free-space) 
path a data-path, 

Connection(data-path,src,dest) 

preconditions: 
(T task-is-move-file) 
Aligned(path) 

QuantityConditions: 
A[free-space(dest)] > A[size(source-file)] 
A[size(source-file)] > ZERO 

Relations: 
Let move-rate be a quantity 
A[move-rate] > ZERO 
move-rate cxQ+ device-speed (dest) 
move-rate cxQ_ system-load 

Influences: 
1- (size(source-file), A[move-rate) 
1+ (size(destination-file), A[move-rate]) 

-

Figure 5.4 A QPT model of moving a file \vithin the underlying system functionality 

Despite the action perfonned in the on-screen model world being intended to be 

analogical to the computation performed by the underlying application, these 1\"0 

proposed mental models represent different physical processes. These modelsare 

difficult to map between using the structure-mapping model of analogy and the 

framework of learning physical domains provided by Forbus and Gentner (1986). 

The temporal duration of the process performed by the functionality of the 

application implies that direct engagement with the file in the file space breaks do\\'n 

for this task and metaphor. 
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5.3 The Role of the Display as Source of Information in 

System Learning and Use 

Another aspect of design that needs to be considered is the role that the display plays 

as a source and store of information about the system state, both when learning a 

system and in routine use of a system. Lansdale and Ormerod (1994) class the 

knowledge and skills needed to learn and use human-computer interface software 

into three types: 

1. skills as procedures, 

2. skills as understanding, and 

3. skills as exploration. 

Skills in procedural form are explored and described in models such as GOMS and 

ACf* which tend to rely on what is termed the traditional "systems" approach to 

manual design and instruction. The problems with the systems approach to 

instruction have long been documented, as have the resulting problems in developing 

the routine cognitive skills modelled using GOMS and its variants. 

Viewing skills as understanding explores the forms of mental models of systems and 

their role in learning and system use. As have been examined above, some forms of 

mental models make skills in the form of understanding difficult to attain. While 

some forms of mental models have a useful role in system use, others, like 

metaphors, which attempt to aid initial steps in system learning and use have been 

shown to often create more problems for users than they may solve. Some models, 

like transition networks and metaphors, also prove incapable of representing every 

aspect of the model world and underlying functionality of the system they are 

intended to provide a useful representation of. 
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Understanding user skills as exploration requires examining the \vay in which users 

extract information from the interface and the way user interfaces may be designed 

to minimise the amount of features of the interface that users are required to learn. 

Such skills are examined by the study of display-based reasoning. Mayes et al. 

(1988) observed that experts' recall of command names on the pull-down menus of a 

screen-based \\'ord processor did not differ from that of novice users of the system. 

This result contrasts with many results in cognitive psychology where experts are 

found to have greater recall of meaningful patterns in the task domain than novices 

and people with intermediate levels of expertise. Mayes' et al. observation suggests 

that the interface itself is being employed as a form of externalised memoty. 

Operators may be observed in, and inferred from, the display, and the effect of 

operators on the system state tend to be observed rather than learned (Payne, 1991b). 

Hence, rather than learn the system, users simply use it. This view of user interface 

design and use requires some consideration be paid to the use of metaphor, analogy 

and prior knowledge and issues in problem solving, affordances and planning in 

learning to use a previously unfamiliar computing system. 

There are difficulties with reliance on users to use the interface itself as a store of 

information and a form of externalised memory. Users may not explore the system 

fully and potentially useful functionality may not be discovered. Users may not even 

explore the system sufficiently to discover the functionality that supports their tasks 

(Lansdale and Ormerod, 1994). Another problem caused by reliance on display

based reasoning is that users may be forced to perform repetitive low-level actions to 

achieve some tasks. Frolich (1993) notes an increase in the importance of the 

converstation notion in human-computer interaction over the model-world notion in 

the mixed mode systems of which most metaphor-based systems are examples. 

Repetitive tasks and tasks which would require a reasonable length of time to 

perform may be delegated to a virtual partner or agent (Cypher, 1990). Such agents 
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can be hard to reconcile with the metaphors chosen for many user interface designs, 

such as those explored in Chapter 2. 

5.4 Using the Lakoff/Johnson Model for Analysis and 

Design of User Interfaces 

We have introduced the Lakoff/lohnson model of metaphor, in which experience 

and sentences in a natural language either appeal directly to image schemata, or can 

be understood by a metaphorical mapping to image schemata. It is our claim that the 

Lakoffllohnson theory of metaphor allows us to analyse and critique existing user 

interface designs, and provides a method for judging the success of new user 

interface designs. Below, the Lakoff/lohnson theory is applied to novel or 

problematic aspects of existing user interface designs in order to demonstrate its 

explanatory ability. In using the Lakoffllohnson theory in this way a claim stronger 

than the suggestion that metaphor is part of a way of understanding on interactive 

system (or mental model) is being made. While we do not claim (as Lakoff and 

10hnson do not) that all understanding is metaphorical, Indurkhya (1992) surveys the 

theories of a number of authors that do make this claim, the Lakoffllohnson theory is 

a theory of semantics. It should therefore be complete and sufficient to account for 

users' understanding of a device, or to give reasons why a problematic device has 

poor usability. In order to test that the Lakoffllohnson theory can explain user 

interfaces that are problematic, or which are hard for other HCI models to explain, a 

number of case studies are presented below. As mentioned in the previous chapter, 

Rohrer's (1995) work is described in more detail in Section 5.4.3 while the notorious 

trash can is examined. This follows two more case studies that consider systems that 

Rohrer (1995) did not address. 
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5.4.1 Case Study 1: An mmersive nvironment 

The artist Char Davies' virtual reality in tallation work "0 m 

Wertheim , 1999), shown in Figure 5.5, pre ents the challenge of und r tanding h w 

u ers obtain enough meaning from it in order to ucce fully interact with it. The 

Osmose model world consists of a number of level, depi tcd in igurc 5 .• 

containing a forest of semi-transparent styli ed trees, free floating w rd taken fr m 

texts by post-modernist author and the 0 mo e ource c de. U r h 

representation of the hand, or other cursor, they can only m v within th m c 

world and between levels, but they are passive in being able to e bjcct , but n t 

handle them. 

Figure 5.5 A view inside 0 mose (Wertheim, 19 9: 39) 
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Figure 5.6 The Structure of the Osmose model world 

Input to the computing machinery that runs Osmose comes from 3D position 

trackers on a headset and vest worn by the user, and from a strap placed around the 

user's chest which measures respiration, in the same way that polygraph or lie

detector machines do. In fact the strap is taken from just such a device. In order to 

move in the horizontal plane, users must lean in the direction that they wish to travel, 

they then drift in that direction within Osmose until they return to an upright 

standing position. In order to move between layers, the user must adjust their 

breathing and fill their lungs to float up, or empty their lungs to sink. Such a novel 

environment. with its use of novel input devices, is difficult to model, but it cannot 

be impossible for users to devise and attempt suitable actions and movements of the 

body in order to move within the world, otherwise the Osmose world would go 

unused. 

Considering the user's motion between layers of the Osmose world, interaction 

would appear to rely on the COUNTERFORCE image schema. depicted in Figure 

5.7. 
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Figure 5.7 The COUNTERFORCE schema 

Motion up or down depends on the amount of air in the user's lungs, as is motion 

when diving, the experience that inspired the Osmose system's development. The 

'upward' force on the user derives from Archimedes' principle and is proportional to 

the 'buoyancy' of the user. The 'downward' force on the user derives from the user's 

'weight'. By controlling their breathing, the user is able to adjust the balance of 

forces and can float up or sink down through the medium in which the· user is 

suspended. This aspect of interaction requires very little metaphorical extension to 

the COUNTERFORCE schema, all that is required is a mapping from the air that 

surrounds the user to the medium that gives the user buoyancy in the Osmose world, 

a mapping such as the metaphor AIR IS A A....UID. By its use of an additional novel 

input device, Osmose is able to provide functionality to support "flying" in an 

immersive environment that is as natural to the user's physical experience as 

possible. Other virtual realities (Weimer and Ganapathy, 1989; Fisher et al., 1986) 

provide far less satisfactory approaches. In these systems in order to request a menu 

that appears before them as a free-floating panel (from which they must select an 

option) the user must make a special grasping gesture. Subsequently the hand-shaped 

cursor acts not as a grasping facility, but as a positioning facility for the user's point 

of view. By adopting this approach, direct manipulation is replaced in this mode by 

the conversation paradigm of user interaction, an unseen agent (the computing 

hardware) must be informed as to the way in which subsequent user input from a 

dataglove is to be interpreted. 

While interaction with the Osmose system based on the "floating" experience can be 

accounted for by the Lakoff/Johnson theory, movement in the horizontal plane must 

also be explained. The BALANCE schema; "consisting of force vectors (which can 

represent weight as a special case) and some point or axis or plane in relation to 
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which those forces are distributed. In every case, balance involves a symmetrical (or 

proportional) arrangement around a point or axis" (Johnson, 1987: 85); suggests a 

common experience which may form users' understanding of this aspect of 

interaction with the system. In leaning in the intended direction of travel, equilibrium 

is disturbed and a net force is created in that direction1
• The user will then move, 

Osmose having Newtonian physical laws in its model world, until an arresting force 

is created as the user regains an upright position. It seems, therefore, that the 

BALANCE schema can be appealed to almost directly in order to understand this 

aspect of interaction with Osmose. 

5.4.2 Case Study 2: Snap-Dragging 

Drawing and computer-aided design application software is often required to support 

the precise placement of line segments and other shapes. Various facilities can be 

provided for this, including the displaying of grid points within the drawing area of 

the application's window onto which objects may be accurately placed, and the use 

of constraint systems. These mechanisms are limited, however, as some drawing 

tasks can be difficult to perform, and that some relationships between drawn objects 

and line segments may be difficult to maintain if one object is moved. Bier and 

Stone (1986) present snap-dragging as a better alternative to grids and constraints. 

Presentation of Bier and Stone's system can be found in their article, our task is only 

to consider how it can be understood and used by the system's user, and to explore 

the possible role of the Lakoffllohnson theory of metaphor in the process of 

understanding snap-dragging. 

I We see this interaction style implemented in the Segway personal urban transportation device 

which has two wheels, one either side of the rider, unlike other "scooters" where wheels are aligned 

one in front of the rider, one behind Computers in Segway cause it to steer and accelerate depending 

on the way in which the rider leans their body. 
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The snap-dragging system differs from other drawing packages in that the cursor 

does not hold and move the drawing implement or tool directly, but is used to pick 

up a "caret" which is subject to attractive forces generated by the cursor and othcr 

objects such as line segments. As the cursor moves, the caret movcs with it unless it 

becomes attracted to an artifact, such as a circle of particular radius or line extending 

from an existing line segment, that \vas defined by the user beforehand using simple 

commands on a pop-up menu. The artefact appears for a short time as the caret 

approaches it. Unless the user moves the caret away from the artefact, it will snap

drag 10 the point or line. Other shapes may then be drawn precisely from a point of 

intersection or tangent. The principle schema which can appealed to for 

understanding in Bier and Stone's system is ATTRACTION, depicted in Figure 5.8. 

Once again, this schema represents a pervasive physical experience, and the snap

dragging system, in its use of animation when tracking the cursor position requires 

little metaphorical extension in order to be understood. Johnson (1987: 38), though, 

allows attracting vectors to be either actual or potential and allows for the existence 

of additional objects in order to describe a situation. In a computer-aided design 

drawing in which there are a number of snap-drag artefacts, users might observe 

chaotic behaviour in the movement of the caret. 

Figure 5.8 The ATTRACTION schema 

In Bier and Stone's snap-drag system, the ATTRACTION schema may be appealed 

to directly for understanding as the source of the attractive force is visible. Other 

systems, however, exhibit snap-dragging, or snap-to-a-grid behaviour, but are more 

complex to understand. Some implementations of the DESKTOP metaphor, for 

example, do not allow icons on the desktop or workbench, or within open folders, to 
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be placed at just any position. While icons may be placed on top of another, 

obscuring or hiding the one below, the number of locations in which it may be 

placed is limited. If an icon is "dropped" in a position other than the set managed, it 

will snap to a different position upon landing. This behaviour cannot be simply 

explained in terms of the ATTRACTION schema. Within the desktop environment, 

the grid of points to which icons snap is invisible, the attracting object within the 

schema is therefore missing and must be inferred by the user for the system 

behaviour to be understood in terms of the ATTRACTION schema. Even if such an 

inference is made, the behaviour of an environment intended to De understood in 

terms of the behaviour of physical world objects wiII always be unpredictable. 

There are some ontological issues raised by snap-dragging, however, that the image 

schema theory exposes. While the caret is attracted to the cursor and to other 

attracting objects, its course is deflected by being attracted the stationary artefacts. 

Attraction is only one-way, however, the caret cannot deflect the path of the cursor, 

nor can the attractive forces of the CAD objects deflect the path of the cursor. This 

behaviour would be difficult to find a physical world analogy for - say in terms of 

magnets of various strengths and objects made of lead or soft iron - recourse to the 

uni-directional ATTRACTION schema allows a more realistic account of the snap

dragging system to be developed by users. 

5.4.3 Case Study 3: The Apple Macintosh Trashcan 

The file deletion mechanism employed within the implementation of the DESKTOP 

metaphor on the Apple Macintosh, the trashcan, is notorious for the problems it 

causes users. as was discussed in Chapter 3. The difficulty it creates for users that is 

discussed here is its second use as the means of ejecting floppy diskettes from the 

disk drive by the user dragging the icon of the disk into the trashcan. This action 

sequence has been found to cause users distress when they first perform it. many 
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anecdotes tell of users' feelings that the contents of the disk will be deleted when the 

icon is placed inside that trashcan. The study of first-time users of the Apple 

Macintosh reported in Chapter 3 also found that the action sequence does not occur 

to users, it is not suggested by the metaphor as a means of achieving the task. 

Rohrer (1995) describes his attempts to teach the use of the Macintosh to novice 

users, and reports difficulties arising from a number of different teaching strategies. 

Rohrer argues that the DESKTOP metaphor is part of a larger PHYSICAL WORLD 

metaphor from which the notion of removing an object from view can be inherited to 

explain the use of the trashcan. By indicating differences between the actual system 

behaviour and the behaviour suggested by the metaphor, Rohrer's students 

mistrusted the DESKTOP metaphor entirely, and Rohrer claims that they would not 

generalise from specific cases of system behaviour to the general. This in contrast to 

claims by CarroU, Mack, and Kellogg (1988) that mismatches can be productive in 

forcing a greater understanding of the system. Rohrer's second teaching strategy \\'as 

to provide technical explanations of why the particular action sequence to be 

performed to achieve the task might have been programmed in the way it was. 

Instead of users adopting a "design stance" towards the system (Dcnnctt, 1978), 

however, users were seen to adopt an "intentional stance", and to try to guess the 

motives of the Macintosh's designer, and adopting a conversational interaction style 

with a perceived agent \\'ithin the machine. 

Rohrer, in an effort to understand the failure of the trashcan, adopts Smith's (1987) 

distinction between literal and magical features in user interface metaphors. He 

suggests that "The magic of a trash can has to do with its being a portal to the 

beyond in the PHYSICAL WORLD metaphor - the beyond of the landfill, the 

beyond of the electronic bit bucket, and the beyond of the world outside of the 

computer." This statement hints at an explanation as to why the trashcan fails, there 

is a confusion as to which domains the mapping is made between, and the image 
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schemas underlying understanding of the system. Dragging a disk icon into the 

trashcan appeals directly to the IN schema. an object is placed within a container and 

according to the schema should remain within the container. Within the domain of 

the computing functionality and hardware. however. which following Laurel (1993) 

and Treglown (1994) should be the target domain considered, the floppy disk is 

ejected from the disk drive. which can be understood directly by the OUT 1 schema. 

The Macintosh trashcan requires the user to construct a mapping between two 

opposite actions. the schema that explains the disk being ejected has no metaphorical 

mapping in the desktop model world. and is unlikely to occur to· users. as found 

during empirical studies. By requiring an OUT schema to be realised by performing 

actions that make up an IN schema. the meaning of the operation is the opposite of 

the way in which it is articulated. it is possible to claim that the task and the trashcan 

are being ironic. Irony being: 

" ... traditionally seen as referring to situations that postulate a double 

audience. one of which is 'in the know' and aware of the actor's 

intension. whereas the other is naive enough to take the situation or 

utterance at its face value." (Gibbs. 1993: 262) 

The trashcan is an example of an aspect of a user interface metaphor that can also be 

said to break the "Invariance Principle" (Lakoff, 1993: 215) which states that: 

"Metaphorical mappings preserve the cognitive topology (that is, the 

image-schema structure) of the source domain, in a way consistent 

with the inherent structure of the target domain. " 
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5.5 Conclusions 

In the previous chapter, the use of analogies and metaphors in user interface design 

was examined. Work in this field has demonstrated that analogies often cannot 

account for all of the functionality and behaviour of a target computer-based system. 

Where the analogy cannot account for the system image users must either employ 

inappropriate, possibly superstitious, knowledge or must develop a more realistic 

model of the system. A supposed alternative to employing analogies is to provide a 

more realistic model of the system as part of the system image, rather than rely on 

users to form a more useful and realistic mental model after breakdowns in the 

analogy and analogical mapping. In this chapter a number of approaches to 

describing and thinking of mental models were reviewed. Some of these, it was 

suggested, are inappropriate for describing the knowledge needed to model aspects 

of the systems described in Chapter 2. Other approaches are found to be those which 

still also rely on metaphors for understanding of the device. The concept of mental 

models cannot be ignored, however, the important account of cognition provided by 

Holland et al. (1986), for example, defines analogies and metaphors as mappings 

between mental models, or as higher-order mental models in their Q-morphism 

descriptions of kno\vledge. 

Studies have demonstrated that providing users with a model of the system in terms 

of the internal components, their topology, and causal relationships between devices 

has usability advantages. If an attempt is made to model the knowledge that such 

information is intended to encourage the development of, it is found that breakdowns 

in the analogy employed in an existing system can be accounted for. These 

breakdowns, however, can only be accounted for if aspects of the state of the 

underlying computer system are referred to. This approach also suggests that 

because computation has a temporal duration, different models are needed to account 
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for the behaviour shown by the system in the model world in response to user 

actions, and for the computation that the user actions and system behaviour are 

intended to be analogues of. That different models are needed to account for the 

same phenomenon suggests that direct engagement cannot be assumed with on

screen objects when certain performing tasks in a metaphor-based system. 

In the following chapter, we present a new user interface design. This system is 

intended to support tasks that are supported by the metaphor-based systems 

described in Chapter 2, and it attempts to provide the user with a realistic and useful 

model of itself. This system is also used to.:.explore the limits and requirements of 

systems where direct manipulation and engagement are to be supported. 
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Chapter 6 

The Medusa User Experience 

"The solid cannot be swept away as trivial and nor can trash be established as solid. 

[tjust does not happen." 

- Cornelius Cardew, words from paragraph 7 of "The Great Learning" (1968-

1971). 

6.1 Introduction 

The previous chapters have shown that while employing metaphor in user interface 

design is a powerful technique in attempting to produce usable interactive systems, 

interface metaphors can also be a source of users' difficulties. The previous chapter 

showed, though, that metaphor cannot be ignored as a source of understanding. This 

is the case whether one adopts the idea that understanding of interactive systems 

comes from mental models, or the idea in the Lakoff/lohnson theory of metaphor 

that understanding comes either directly in terms of patterns of interaction with the 

physical ,world or by metaphorical extension from these patterns. The remainder of 

this thesis will address the design of a number of new user interfaces collectively 

termed Medusa. The first Medusa system is described in this and the following 



chapters. The first Medusa system adopts the conclusions of traditional, comparison, 

theories of metaphor and the qualitative process theory (QPT) analyses of tasks in 

direct manipulation tasks. The second Medusa system assumes the LakofflJohnson 

theory of metaphor understanding in its design. This chapter sketches the intended 

user experience of the first Medusa system, Chapter 7 discusses the design rationale 

of the first Medusa system, and Chapter 8 presents the results of usability evaluation 

of the first Medusa system design. A revised Medusa system design, that assumes 

the LakofflJohnson theory of metaphor understanding, is discussed in Chapter 9. 

6.2 Basic Criteria that the Medusa System Should Satisfy 

The Medusa system is a user interface design that takes into account the criteria 

listed below: 

• Simple basic tasks, involving the functionality of a computer's operating system 

and file management system, which will be performed at some time by every user 

of the system, should be supported. 

• A conceptual model of the system should be glven to the user which can 

consistently support data file types which are not naturally supported by existing 

metaphors (for example, sound and video fragments). 

• A conceptual model of the system should be provided to the user which presents a 

low overhead when learning the system, yet provides the advantages of possessing 

mental models when performing novel tasks and understanding unfamiliar system 

behaviour,. 
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• It should be ensured that mental models of the system formed by users are 

consistent and that attention is paid to the consistency of the behaviour of on

screen objects and the actions that may be performed on them. 

• It should be ensured that state feedback is timely and appropriate following an 

awareness of design solutions suggested by work on formal models of interactive 

systems. 

• It should be noted that metaphor and analogy play a major part in learning, 

understanding and interaction with the world and cannot be ignored. A design 

should take into account the role of metaphor and analogy in learning and using 

user interface software. A design should, however, be aware of the problems that 

metaphors and analogies in the model world cause the user as well as those that 

they solve. 

The details of the design rationale underlying the first Medusa system are provided 

in the following chapter. In this chapter a sketch of the intended user experience 

when using Medusa is provided. 

6.3 General Layout of the Medusa Display 

When starting the first Medusa system, its user interface is unlikely to present any 

initial surprises to a user familiar with common implementations of the DESKTOP 

metaphor, or WIMP interface style. The user will see a 2D windo\v that occupies the 

entire area of the display(s) connected to the central processing unit's graphics 

hardware. This window, the root window as it is termed in the X window system, or 

the desktop in the DESKTOP metaphor, is always the rear-most window, the user 

cannot place any windows behind it in the stack of windows that occlude others. As 

can be seen in Figure 6.1, though, the root window itself is much the same as other 
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WIMP systems, it serves as an area on which file icons may be placed by the user as 

reminders, or to be used in their immediate tasks. 

The major difference between Medusa and other WIMP interfaces that users will 

notice is the on-screen graphic which can be seen in the top-right hand corner of 

Figure 6.1. This graphic provides information about the status of the underlying 

computing system, of data structures relevant to the performance of the current and 

subsequent user tasks, and of additional devices to which the processing unit is 

connected. This graphic is also the source of " meta-obj ects " , meta-Ievel 

representations of on-screen objects that the user employs directly when performing 

tasks but which themselves lack any means of having their attributes and behaviour 

modified by the user. These meta-objects acknowledge what Dourish (2001) calls 

the inflexible obtrusiveness of most graphical user interfaces that makes invisibility 

an unobtainable goal of many interface designs. Instead Medusa adopts a design 

approach discussed by Thimbleby (1990: 229) which Karl Popper termed Berke/ey's 

Razorl
• Berkeley's razor is the notion that" All entities are ruled out except those that 

are perceived." Any information, or mechanism, that is required to perform tasks in 

Medusa, or that becomes apparent at a point of breakdown of its usual behaviour is 

made apparent to the user. The meta-objects shown in Figure 6.1 and their behaviour 

are an attempt in the first version of Medusa to realise this notion. 

6.4 Performing Basic Tasks in Medusa 

The major source of input to Medusa generated by the user is via a pointing device 

capable of generating selection information. With existing common computing 

technologies, and with the technology assumed when considering prototypes of the 

Medusa system, this pointing device is likely to be a mouse. However what is 

1 Popper means this to be a "sharper" version of Occam's razor ("plurality is never to be posited 

without need "). Berkeley's razor is named after the philosopher Bishop George Berkeley (1685-1753). 
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important to Medusa is the design space of the device (the range of data that it is 

capable of generating and how this maps into the underlying software's data 

structures) not the family of devices from which a particular device is chosen. Most 

tasks, as will be explained in further detail in the following chapter, are selection 

tasks. The data required from the user via an input device therefore need not include 

paths of points on the display, such as would be generated by polling, sampling, or 

logging events generated as a mouse, say, moves. This allows us to consider in the 

final chapter possible implementations of Medusa on small screen devices and 

personal digital assistants (PDAs). 

J~ 
7'~----------------.J 

Figure 6.1 General layout of the Medusa display 

6.4.1 Using the Toolbar 

The first version of the Medusa system uses an object-message syntax for 

interaction. All but a very few on-screen objects respond to messages that affect the 
""-

attributes of objects. On-screen objects, however, will be members of very different 

categories (or classes) and will respond to different sets of operations that bring 

about changes in their states. A well-known problem that HeI addressed early in the 

design of graphical user interfaces was the problem of interaction modes, where 

systems respond in different ways to the same user input depending on the current 

state of the device. Alan Kay, as was mentioned in Chapter 2, is said to have devised 
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overlapping on-screen windows in part to resolve the problem of modes (Bardini, 

2(00). The difficulty of having to account for modes using (possibly overlapping or 

mixed) metaphors was discussed in Chapter 4. Thimbleby (1990) states that it is 

inaccurate to speak of mode less systems, for user input to be interpreted at all by the 

system it must possess at least one mode. Instead designers, Thimbleby argues, can 

strive for low-mode systems. This striving reflects what Bardini (2000) characterises 

as the Xerox PARC tradition in user interface design. By contrast, Engelbart's NLS 

system, according to Bardini (2000: 118), " ... multiplied ... discrete states or modes 

into so many exclusive conditions of the user's activity. To tap into the functionality 

of a given command, the user needed to establish a certain configuration of 

preliminary commands to put the system into a specific mode in which the needed 

command was available. In such a system, the user had to memorize where he or she 

was in the hierarchy of commands and modes. The interface was a kind of maze, 

often requiring backtracking to access new functions and commands." Douglas 

Engelbart intended that his NLS would be used by experts and knowledge workers. 

The chord keyboard required to navigate between modes proved, however, less 

usable by more casual and infrequent users (termed "human beings" in David 

Canfield Smith's somewhat mocking description1 of the comparative usability of the 

chord keypad and the use of the mouse in the Xerox Star). 

If different categories of on-screen object respond differently to similar user input, as 

they do in Medusa, then Medusa is modal. What Medusa does, however, is to make 

interaction with all on-screen objects simple and consistent so that the modes are not 

apparent, or are regarded as no more complex than menu-based interaction. A 

toolbar presents the options available in the current state that can be applied to an on

screen object indicated by the user. The appearance of a toolbar in response to the 

2 Commentary to a video recording of the final demonstration of the Xerox Star held at Xerox PARCo 

July 1998. 
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user invoking it is shown in Figure 6.2. This illustration uses the storyboarding 

conventions of Katz (1991). When the toolbar is visible, the option that the user 

subsequently clicks on \vill be the option or command that is applied to the object. 

When the tool bar appears, it partially occludes the icon for which it was invoked. 

This is meant to reinforce association of the toolbar with the icon, and to indicate (as 

\vith the Magic Lens user interaction technique described in the next chapter) that the 

message passes through the tool bar to the icon behind it. 

Figure 6.2 Invoking the toolbar for an on-screen object 

6.4.2 Collections of Objects 

Computing systems of the sort surveyed in Chapter 2, and of which Medusa is 

intended to be one, usually provide facilities for organising data files produced by 
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application software into spaces from where they can be retrieved by users. Users 

often need to create collections of data files that share properties or which are 

required by users to perform their immediate tasks. In Chapter 9 some of the 

arguments over the need to archive and organise information are surveyed, and 

alternative user interface designs for file organisation are compared using the 

Lakoff/Johnson theory. In the first version of the Medusa system, however, a 

comparatively simple interface design is adopted which follows from the QPT 

analyses presented in the previous chapter. 

In the first version of Medusa, collections are of two possible types, long-lived, or 

short-lived. A long-lived collection, which would be formed from files and 

directories in command-based system file spaces, or from files and folders in the 

DESKTOP metaphor, is denoted in Medusa by a container. A container (shown in 

Figure 6.3) has a simple icon that shows relevant properties of the underlying 

implementation in the operating system's file system. Containers can be empty, or 

they can currently contain files and other containers. Users' notions of containment 

are particularly important for understanding user interfaces. The simple icon design 

makes the reliance on ideas of containment (which can be seen in the QPT models in 

the previous chapter) apparent. The file and folder method of organising data in the 

DESKTOP metaphor also relies upon ideas of containment, as will be discussed 

further below, but the metaphor is a weaker one than the "container is a container" 

idea employed in the first version of Medusa. 

Figure 6.3 Collections of objects - containers 
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Most collections of objects are long-lived, and are stored within the hierarchy that 

file systems usually allo\v the user to construct. Occasionally users, though, wish to 

construct short-lived collections. These collections usually comprise files that reside 

within the same windo\v, or that are all on the desktop. In most DESKTOP metaphor 

systems, two methods are supported by the interface to allow these collections to be 

constructed. One method is to allo\v the user to lasso a number of icons by pressing 

the mouse button while the pointer is in an empty region of window in which the 

icons lie and by dragging the pointer to another empty point in the window. While 

the pointer is moving, a rectangular bounding box (the lasso) is drawn and redrawn 

so that one corner of the box lies on the point at which the mouse button was 

pressed, and the corner opposite lies on the current location of the hotspot of the 

pointer. The second method is to select the first file by clicking on it, and then 

selecting subsequent choices by modifying the mouse button click, by using a 

different mouse button or by holding down the shift key on the keyboard while 

clicking on the additional files. 

These methods both follo\v from the idea the notion of the currently selected object. 

Medusa, for reasons explained in the following chapter, does not adopt this notion in 

its interaction style. Medusa instead allows short-lived collections to be constructed 

via the tool bar options Rdd to Group and Remoue from Group. This is 

shown in Figure 6.4. If the tool bar is invoked for a file when that file is currently 

member of a group then the tool bar's contents will be different. Rather than contain 

the operations that can be applied to the object itself, as would be the case for an 

individual object, the tool bar will instead contain the operations that are meaningful 

when the file is considered as a member of a group. The difficulty lies, as the 

following chapter explores, in ambiguity of reference and of deitic reference, 

determining which object the user meant when indicating an icon as the recipient of 

a message. Because the same region of on-screen space (the icon) can be interpreted 
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as either an individual or as a metonym for the group of which it is a part. the tool bar 

must display options that take into account both of these cases. The tool bar must 

allow the user to resolve the ambiguity. An example of the sort of tool bar that might 

appear when an icon is part of a group is shown in Figure 6.4. Chapter 8 considers 

more fully the alternative low-level sequences of user-generated events that might be 

adopted to support the basic Medusa interaction tasks. While the low-level tasks for 

interacting with groups described above are consistent with the Medusa interaction 

style. the lasso method can also be supported. as a synonym for repeatedly adding 

files to a group. This can only occur in implementations where the input device used 

can differentiate between PRESS and RELEASE events in deciding if an event is the 

beginning of a lasso task, or should be interpreted as invocation of the tool bar. 

I,.S ..... 

Figure 6.4 A Toolbar for a Group 
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6.4.3 Moving Files between Containers 

The QPT models developed in the prevIous chapter revealed a considerable 

mismatch between the behaviour of objects in the model world and the behaviour of 

the corresponding objects in the underlying software. This mismatch cannot be 

explained easily by mapping metaphorically between the domains, and it also reveals 

a breakdown in direct manipulation in the model world (Chapter 9 discusses 

Lakofrs definition of this term which is adopted instead of Shneiderman's definition 

in later thinking about the design of Medusa). Far from acting on the actual objects 

of interest, the implementation of the drag-and-drop interaction method for this task 

ends up with the interface, not in a state in which the underlying system is actually 

in, but a state in which the system is expected to catch up to - what you see is ,vhat 

you may eventually get. This interaction task can also give rise to semantic errors, 

the user can drag a file to a container into which it cannot actually be placed, perhaps 

because the disk volume it denotes is full or locked and read only. The Medusa 

action sequence for moving files between containers borrows more from the 

pragmatic implementation of the Xerox Star than the DESKTOP metaphor, and is 

storyboarded in Figure 6.5. 
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Figure 6.5 Placing a data file into a container 

6.4.4 Deleting Files 

The study of first-time users of the Macintosh described in Chapter 3 showed, 

confirming other reports, that the TRASHCAN metaphor is problematic. This was 

found to be the case even for the trashcan's first use as a mechanism for deleting 

files. The comments made by the subjects in the study reported in Chapter 3 are 

echoed in users' comments quoted other reports, for example: "See the recycle bin? 

Does someone come round and empty it?"3 The trashcan is not a file deletion 

mechanism in itself, it is instead a directory in which files can be stored while the 

user decides whether to delete its contents, or retrieve them. The file deletion task is 

made simpler by having an Empty Trash, or Empty Recycle Bin, command 
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available on the task bar at the top or bottom of the screen. The location from which 

the files are deleted is intended to be obvious, the trashcan. A failing of the 

TRASHCAN metaphor is that even when a real trashcan is emptied, its contents 

exist until incinerated or irretrievably lost to a land fill site or refuse tip. The 

TRASHCAN metaphor as implemented in existing computing systems offers no way 

of attempting to retrieve a deleted file. Rather than attempt to provide a retrieval 

mechanism within Medusa, instead, as with existing systems, a specialist application 

will be required to recover deleted files. As was shown in Chapter 5, though, some 

implementations of the trashcan might have far more complex behaviour than being 

a store of files, the store being simply the recipient of the Empty Trash message. 

As was seen in Chapter 3, the TRASHCAN metaphor does not seem to suggest, 

though, how files can be retrieved from the trashcan. Other metaphors for file 

deletion, such as the "black hole" in ARK are more complex than the trashcan \vhile 

being weaker metaphors for the actual deletion mechanism. The solution to allow 

files to be deleted from the Medusa file space is simply to have a Delete option 

appear on the tool bar associated with a file. Undeleting a deleted file is a task that 

can only be performed for a short period of time until the data blocks on the disk that 

it occupies are recycled by the operating system to store new files. There is nothing 

within the Medusa design to prevent a suitable recovery application to be used to 

retrieve data from the disk, but the design of such an application will not be 

considered further. While the data blocks making up the file have not been 

corrupted, it may be possible to undo the deletion operation. The issue of undo 

within Medusa is discussed further in Chapters 7, 9 and 10. 

3 Telephone call to a technical support help line, reported in The Editor, supplement to The Guardian 

newspaper (l3th April 2(02). 
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6.4.5 Interacting with the Root Window 

Many user interfaces employ a menu bar to allow commands to be performed. A 

menu bar is usually laid out across the top of the screen and contains a hierarchy of 

commands on pull- or drop-down menus. A menu bar is a permanent fixture on

screen while the windowing system is running. Menu bars, though, enforce the idea 

of the currently selected object, and require the user to move the· mouse perhaps a 

considerable way to reach the command needed on its menu in the menu bar. 

Task bars are simpler menus that are located at the bottom of the screen (in the case 

of the Macintosh command strip, the Microsoft Windows 95 task bar, and the strip 

of large icons denoting commonly used applications placed along the bottom of the 

Macintosh OS X display). Task bars usually contain functions or links to 

applications that can be applied in any context without first selecting a file to apply 

them to. The user may still need to move the mouse some distance to reach the task 

bar. In Medusa the root window is not a desktop, it is just another active object and 

so a toolbar can be invoked which can send messages to the root window itself. The 

root window's toolbar can, for example, contain commands to end the user's 

interaction session, or shut down the workstation (exploiting the sorts of SPACE for 

TIME metaphors discussed in Chapter 9) and can also be used to invoke commonly 

used applications. A similar device can be seen on some WIMP systems which do 

not implement a strong version of the DESKTOP metaphor, but this is an additional 

interaction style that users must learn, and often do not predict or imagine, to the 
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traditional use of pull-down menus. In Medusa, having a toolbar apply to the root 

window is entirely consistent with the key interaction style. 

6.5 Breakdowns 

Where user interfaces, particularly those that are based upon interface metaphors, 

cause users considerable difficulties is at points of breakdown - where their 

behaviour suddenly differs from their normal, usual, or expected behaviour. 

6.5.1 Hardware Breakdowns 

Most hardware failures make a computing system inoperable. There are other 

failures, though, particularly of networked devices, that make tasks impossible to 

complete, or which give rise to unexpected system behaviour that the user must 

attempt to interpret and remedy. This can be difficult because networked devices 

may not be directly visible to the user. Even if a device is in the same room as the 

user, it may not be able to understand the source of the breakdown from a change in 

its outward appearance. The on-screen graphic shown in Figure 6.1 allows a number 

of breakdo\vns to be easily observed via colour coding and other feedback of the sort 

proposed by PoIson which were described in the previous chapter. Network failures 

between the central processing unit and devices such as printers or file servers can be 

indicated easily. Depicting the devices as icons on the root window makes it possible 

for the user to examine their state. For example, the user can easily determine if a 

printer is out of paper, or to judge how many other printing tasks must be completed 

before the user's document will be ready to be collected. There is nothing to prevent 
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background or ambient audio, such as the sort employed in ARKola, to also 

communicate this information, and the on-screen graphic shown in Figure 6.1 

provides a handle to indicate to the user the source of the sonic information. 

6.5.2 Buffers 

Breakdown from the expected, usual, system behaviour to unusual system behaviour 

can arise from the use of buffers. Buffers are data structures that store data for a 

short time until it can be processed by the application for which it is destined. 

Usually buffers are unnoticed by the user. The data that the user generates, such as 

characters typed at the keyboard, are processed seemingly instantaneously by the 

application in focus. If the system load increases, though, there may be a perceivable 

lag between the typing of characters and it appearing inside a text editor window, 

say. The user thus becomes aware of the existence of the buffer. The first version of 

the Medusa system deliberately sets out to make the user aware of the existence of 

buffers. Following a design proposed by Dix (1991) when characters remain in the 

buffer for a perceivably lengthy delay without being consumed by the application, a 

visualisation of the buffer, shown in Figure 6.6 appears. As the user types further 

characters, these appear appended to the end of the buffer's contents. Figure 6.6 

makes this appending of characters apparent even when the user presses the 

backspace key to delete a key pressed in error. The application will interpret the 

delete key in the way that the user expects, the buffer cannot. When the application 

processes characters, they are removed from the buffer. The common use of the 

work "consume" to describe an application processing a character removed from the 

buffer leads Dix to refer to this design as the munchman (aka Pac Man) buffer. The 
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Pac Man metaphor, however, possesses considerable conceptual baggage and is not 

fully adopted by the Medusa system. 

Figure 6.6 Visualising the Medusa keyboard buffer 

6.5.3 Predicting Breakdown 

The munchman buffer and the use of colour coding on the computer-computer 

schematic indicate points of breakdown, moments when the look and feel of the 

model world deviate from their usual behaviour. At such a moment the user is 

thrown into a state where they must consciously diagnose the system in order to 

predict the outcomes of further actions. In a literal user interface metaphor, the 

breakdown cannot be explained in terms of the metaphor, and the possibility that a 

breakdown is forthcoming cannot be made apparent to the user. In the previous 

chapter, the idea of the load on the processor as a source of breakdowns in the 

normal behaviour of on-screen objects was discussed. Early graphical user interfaces 

to Unix such as Sun Microsystems' OpenWindows provided a small utility program 

that could represent the current processor load as a dial display, or could plot the 
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recent history of this measure as a graph. A number of windows systems developed 

since have included this infonnation on-screen or have had similar utilities 

developed for them. Medusa too can display this infonnation, perhaps overlaid on 

the processor box image in the computer-computer schematic, or in a separate 

display elsewhere on-screen. A simple measure of the processor load, however, does 

not allow the user to predict all breakdowns, or to excuse them when they occur. 

The user's sense of spatiomimesis is that the on-screen pointer is an extension of 

themselves in the model world that exactly tracks the user's movement of the mouse. 

Breakdowns in spatiomimesis can be highly disruptive, the feedback process that 

underlies Fitts' law and allows users to move the on-screen pointer accurately to hit 

the (sometimes small) on-screen buttons is disrupted and users may inadvertently 

click on a target they did not mean to. Mouse-ahead facilities can also cease to 

behave as expected, it being unclear where on-screen the windows system records 

the pointer as being when a mouse button click event is generated. Most windows 

systems operate on a repeated "read next event from event queue - process event" 

cycle. If the processing of a mouse movement event, say, takes too long, then the 

next mouse movement event in the queue will not be processed until after the 

deadline of 50 milliseconds by which the display should have been updated in order 

to maintain the illusion of animation. The design of a revised version of Medusa 

called Medusa-"t, discussed in Chapter 10, is intended to overcome this problem by 

application of real-time programming methods following detailed specification of 

the temporal behaviour of the user interface. This approach is intended to remove, 

where possible, the problem. In Medusa, the intention. where possible is to explain 

the problem in order to account for breakdowns and to allow the user to plan 
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subsequent action in light of the system's deviation from its normal behaviour. 

Rather than use the approach of changing the pointer icon to a symbol that is a poor 

metaphor for its underlying simulated state of understanding (Pcrez-Quinones and 

Sibert, 1996) - the rationale for rejecting this common approach is presented in 

Section 7.2.9 - colour coding is used to indicate, via the pointer itself, the time 

taken to process the last event on the queue. For a single lengthy event, the problem 

of distracting the user should not be a considerable problem. Where the pointer icon 

changes to indicate a breakdo\vn in normal event processing, often designers choose 

to not change the pointer's shape when it would switch back and forth- bet\\'een 

different shapes too rapidly. A change in pointer shape at all other times indicates a 

change in mode, changing from a traditional pointer (~) to a double-headed arro\v 

(~), for example, indicates a point on the vertical edge of a window which can be 

used as a drag point to adjust the width of the window. Changing the pointer's shape 

in response to delays in event processing suggests that the mouse has changed mode. 

In fact the mechanism of the mouse event processing system is the same, but with 

different temporal behavior. Medusa should make relevant aspects of the mechanism 

and the conditions under which it is operating visible, not suggest that a different 

mechanism is at work. 

6.6 Conclusions 

This chapter has sketched the intended user experience that Medusa should offer. 

The details of the design rationale underlying the user experience are given in the 

following chapter. No \vorking prototype of Medusa exists but this does not prevent 

usability analysis from being undertaken. Usability evaluation of the first Medusa 

system using a low-cost usability inspection method is reported in Chapter 8. 
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Chapter 7 

The Medusa System Design Rationale 

"It's like the mozzarella cheese on a good slice of pizza. No matter how far you pull 

the slice away from your mouth it just gets thinner and longer but never snaps. Of 

course you could always just eat your pizza with a knife and fork, but I think this is 

clearly what's known as 'pushing the cheese analogy"'. 

- Jerry Seinfeld (1995) SeinLanguage, Bantam Books. 

7.1 Introduction 

In this chapter, the motivations behind the Medusa user interface design are 

discussed. It is judged that systems are needed that provide access for novices to the 

functionality provided by operating systems to support a range of tasks that 

overcome the difficulties with existing metaphorical model worlds, while allowing 

the user to develop a useful mental model of the system. It is hoped that the Medusa 

system will not be subject to breakdowns, erratic behaviour of on-screen objects, and 

users' misunderstandings, to the extent that existing metaphor-based user interface 

designs are. Details of the Medusa system design and the intended user experience 

were presented in the previous chapter. 



7.2 The Medusa System - Version One 

Having stated the criteria that the Medusa system is intended to satisfy, having 

introduced the means of modelling the system, having detailed some of the models 

that the system image should evoke, and having sketched the intended user 

experience, \ve no\v describe the Medusa system design rationale in some detail. 

7.2.1 The Workbench 

In the desktop metaphor, there exists a root window (as it is termed in the X \vindo\v 

system), a window that occupies the full area of the display(s) connected to the 

workstation, which cannot be resized or moved, and which always lies behind all 

other windows. This window is what is termed the DESKTOP in the desktop 

metaphor. The desktop is meant to be the analogue of its real-world counter point, an 

area upon which tools and documents may be placed while the office-worker carries 

out their tasks. The electronic desktop, as has been previously mentioned, differs in 

some important respects from its real-world counterpart. The trashcan, for example, 

sits on top of the desk rather than beside it, as do file storage containers such as filing 

cabinets. 

Donald A. Norman, for one, prefers to think of the root window as a workbench 

rather than an electronic desktop. The workbench is an area provided for planning 

and the storage of icons while sub-goals are suspended in favour of more immediate 

tasks that alter the state of the file system. In the DESKTOP metaphor, the root 

window creates difficulties that cannot be accounted for in terms of the metaphor. It 

156 



has been asked l • for example. what it means for an application program to be moved 

onto the desktop. In the first version of Medusa, as shall be discussed below, on

screen objects are links to files, the workbench is treated in the same way as a 

directory or folder, links may be placed on the root window and moved within the 

window to suit the needs of the user. Medusa treats the root window as another 

rendering of a directory listing file, but one of fixed size that cannot be scrolled. It is 

hoped that this interaction style is clear from the discussion in the previous and 

following chapters. 

7.2.2 Objects in the Model World 

The first version of the Medusa system adopts the critique of existing metaphor

based systems and models of systems arising from QPT modelling of the physical 

world as applied to user interfaces, as discussed in Chapter 5. Thus it is envisioned 

that the behaviour of the model world should be explicable in terms of simple 

processes acting on the on-screen objects and that these processes should also be 

applicable to the underlying software objects by a simple analogy. Medusa should 

therefore be unlike the situation in existing systems where often no mapping can be 

found between processes acting on on-screen objects and those acting on underlying 

software objects. This model of system design, the product-oriented view in the 

terminology of Andersen (1997), requires that analogies that follow from the 

underlying software be sought in the real world to describe the model world. The 

structure of a metaphor is therefore that of Laurel's (1993)description above, where 

the metaphor mediates between the model world and the underlying software. In 

such an approach - where the model world employs an existing work language, or 

1 lbis question was brought to my attention in a discussion with Professor AIan J. Dix in the winter 

of 1991. 
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resembles some aspect of the real world - , \ve acknowledge that the work language 

risks being imposed upon the user (Brock, 1996). 

Objects in the Medusa model world are members of classical categories. That is, 

membership of categories is detennined by the necessary and sufficient attributes 

possessed by objects to be a member of a particular category. Category membership 

determines the operations that may be performed upon on-screen objects. As the 

Medusa user interface is object-based, the categories of Medusa on-screen objects 

can be said to fonn a class hierarchy as some objects have more attributes than 

others yet are similar to members of other categories. This class hierarchy is depicted 

in Figure 7.1. 

Word-processed 
object 

Text file 

~ 

Still graphical 
image I )~:re~e 

"Static" object 

I 
Object 

I 

. /1'Dynamic.\.ec~ument with 

Sound file '\ embedded video 

Application program Video fragment 

Figure 7.1 The categories of Medusa system version one on-screen objects 

The principle distinction between categories defined in Medusa is between static 

objects and dynamic objects. Static objects are those that can change as the result of 

software tools being applied to them but which produce a file whose presentation 

does not change, such objects would include documents, text files, and still pictures. 

Dynamic objects are those whose presentation changes with time, such objects 
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would include video fragments. sound and music files. and multimedia documents 

with embedded sound and graphics. This distinction between dynamic and static 

objects is made so that the processes that alter or act on the different categories of 

objects are made apparent. I t makes no sense to try to print a dynamic object such as 

a video fragment for example. but by using a suitable software tool a static object. a 

still image consisting of one video frame. for example. can be produced which can 

be printed. This distinction was also made subsequently by Fitzmaurice. Ishii, and 

Buxton (1995). 

In many systems, icons are assigned to objects in a computer's file space according 

to the suffix placed at the end of the files' names. All files with a ".c" suffix, for 

example, can be depicted with the icon denoting a C programming language source 

code file or be assigned an icon denoting the application used to create the file. This 

approach has a number of drawbacks. Firstly. it may be misleading. For example 

some files saved in the GIF graphics interchange format may not be still images. but 

may be simple animations comprising a sequence of frames that are displayed in a 

loop. Some word processors. in addition, permit the creation of documents with 

video and sound fragments as elements of the page. Hence one might assume that a 

file might be printed by extension of one's previous experience of using files of that 

type, whereas it cannot actually be printed. The common depiction of files of a 

certain type presents additional problems including the perception of a limit to the 

uses of a file or to the number of software tools that may be applied to read and alter 

files. Opening a file will cause an application to run and load the file opened. the 

application run will typically be denoted by the file's icon although many other 

programs may also be capable of using and modifying the data contained in the file. 

The same can be said for icons within a typed file system. such as the Macintosh 

Finder, where an ontology of objects exists with associated (but possibly modifiable) 

icons, rather than where rules employing a filename's suffix are used to determine 

what icon design should denote a file. 
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The approach adopted in the design of icons that denote objects in the Medusa model 

world is one tenned self-representing (Treglown and O'Shea, 1993), a notion that 

mirrors, but which was developed without knowledge of, the notion of self

identifying objects2 employed by Putnam (1981). A self-identifying object is one 

that evokes only a single concept or thought token when perceived. Self-representing 

objects are those that use, so far as practicable, the final form of the file in the 

generation of a suitable icon to denote the file. While not simply adopting icons 

denoting files of a particular category, it is hoped that category membership can be 

detennined from the icon's design. The notion of self-representing icons also adopts 

the product-oriented approach to metaphor (Andersen, 1997), in keeping with the 

Medusa system design where objects in the model world are designed according to 

some metaphor to account for features within the underlying computer system. 

Text Files 

The Medusa system is intended to make apparent to the user relevant aspects of the 

computing system The device topology and the nature and state of data structures 

will be visualised where such infonnation is required to provide a full account of the 

behaviour of the computing system. All files in a computer's file space consist of a 

sequence of bytes represented in the physical medium of the disk drives connected to 

the processor. The ways in which the bytes of infonnation are interpreted by the 

application tools used by the user are seemingly contrary to the idea of visibility. 

What is stressed in the on-screen depiction of files is the final form of the data and 

the ways in which the data may be manipulated rather than the structure of the data 

that make up the files. 

2 Putnam cites David Wiggins (1980) Sameness and Substance. Blackwell, Oxford, as the origin of 

the idea of the self-identifying object. 
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A simple text file is deemed to be a text file as the result of the file being interpreted 

by a suitable application program. The application program interprets each byte or 

word in the file, using an encoding standard such as ASCII, as an alphanumeric or a 

special control character. A depiction of a text file should ideally depict the final 

form of the data in a way that means most to the user. It, should also aid in the tasks 

of locating the file among the icons visible on-screen and of identifying a particular 

instance of a type or class of file among a number of files of a similar type. Where 

files created by an application are depicted by the same icon, or -where the icon is 

assigned by the window system according to the suffix on the file's name, one finds 

icons such as those shown in Figure 7.2. 

~ ..... 

~ 
Note Pad file 

g 
o 

Sea n ne r Setti ngs 

Figure 7.2 Typical text file icons 

Such icons only depict category membership and additional information such as the 

file's name, yet perhaps its version history and additional comments (supplied 

possibly by another user) stored with the file, may be required by the user in order to 

uniquely identify the file. The design of icons may be improved in order to ease 

performance of location and identification tasks. Experimental studies (Ark, Dryer, 

Selker, and Zhai, 1998) show that ecological icons, those that closely resemble 

objects in the real world, can assist with location tasks. Ecological icons, however, 

by resembling real world objects, are more appropriate to systems based exactly on 

the metaphors adopted and on the use of metaphor questioned earlier that we shall 

eventually reject below. Instead icons less realistic than those termed ecological, but 

richer than the typical icons shown in Figure 7.2 are adopted. Instead of a still image, 

which denotes only a single page, or the presence of a number of pages in the text 
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file, motion icons, or InicOIlS, may be employed to provide a richer icon. In a micon 

(Br0ndmo and Davenport, 1989; Baecker, Small, and Mander, 1991) a sequence of 

small pictographic symbols is cycled through frame by frame, when the last frame is 

reached, the first frame is displayed again. Each frame of the micon is an icon. 

Br0ndmo and Davenport (1989) use micons to denote video fragments, a subset of 

frames from a piece of digital video where each frame is shrunk in to icon size, these 

fragments being links in a hypermedia network to other nodes containing relevant 

full-size video sequences with accompanying soundtrack. Baecker, Small, and 

Mander (1991) use micons to represent simple actions within application programs 

that denote how to bring about a simple change in state in another artefact produced 

using, or maintained by, the application. 

A micon depiction of a text file may therefore consist of a sequence of icon frames, 

where each frame is a page of the document shrunk to icon size. While unique 

identification of the text file is unlikely to be possible from the micon itself, clues 

may be obtained from the superficial structure of the document as to the document's 

identity and may distinguish it from other text files or previous versions of the file. 

Such a strategy for icon design is not without problems, however, and does pose 

questions that require investigation and answering from appropriate theory and 

experimental work. The size of a page, for example, meaning the number of lines of 

text that appear on the page in a simple text editor application can be a fixed integer., 

More often it is a function of the physical size of the paper currently selected in the 

printer and of the fonts and number of lines making up the text file. If the preferred 

configuration of the printer is changed, then the final appearance of the text file will 

change. , If changes to text file micons are propagated throughout the file space, then 

recognition of a file being sought will be confused as its appearance will have 

changed since the user last altered the file's contents. A solution to this problem, one 

often adopted, is for the preferred printer configuration to be an attribute of the 

document and not the printer. This contrasts with the photocopy metaphor employed 

162 



in the Xerox Star system, where one expects the size of the paper that the copy will 

appear on to be part of the photocopier's state. 

Documents 

Documents are seemingly similar to text files, but typically make greater use of more 

complex formatting facilities. The same principle of creating icons to represent text 

files can be applied to represent documents. Documents, however, may not solely be 

"static" objects in the Medusa on-screen object ontology depicted in Figure 7.1. 

Word processing applications often allow pages to contain, in addition to still 

graphical images, sound clips, video fragments, inclusive links to data created by 

other classes of application such as databases and spreadsheets. They can also 

include links to data in other documents where changes to the linked data will 

propagate to every document that includes it Where part of a page is a "dynamic" 

object, then what it means to print the document must be considered. 

The approach to generating icons denoting a document can be borrowed from that of 

the approach for depicting text files, where each page of the document is used to 

generate a frame of a micon. Where a page contains a video fragment, a micon will 

appear within the frames depicting these pages. Such micons within micons will 

only decrease the possibility of uniquely identifying a file from its icon, such will be 

the loss of information in further reducing the information contained in the video 

fragment Such micons will, though, aid the user in telling a micon from others of 

the same class of file. Again, other information is required in addition to an iconic 

depiction to uniquely identify a file, the form of this information will be considered 

further below. 
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Programming Language Source Files 

Computer program source files are often are depicted by icons similar to those that 

denote text files. While source files are text files, a sequence of alphanumeric 

characters, a question exists as to the most useful final form of the file's contents 

when it comes to choosing a suitable icon. When printed, similar results will be 

produced to that of performing the task of printing a typical text file. To the 

programmer however, splitting the file into pages, each page forming a frame of a 

micon, is less meaningful a level of granularity for abstracting the file's contents than 

others that could be suggested. When programming, moving between pages is a less 

frequent task than scrolling the text of the source file until the class, method, rule, 

variable declaration or procedure sought is found. Rather than cycle through pages of 

the file, a scrolling micon would be a better representation. The loss of information 

that occurs when a legible full-sized page is reduced to the size of a typical icon 

remains a problem. Considering Brooks' (1983) "beacons", indicators for the 

meaning of a computer program, it can be seen that prologue comments, variable 

structure and label names, interline comments, indentation or pretty-printing, and 

subroutine structure contribute greatly to interpreting an unknown program source 

file and deciding upon its functionality. Many of these beacons are likely to survive 

when fonning an icon, even though the size of the program text is reduced until the 

text itself becomes illegible. 

Picture Files 

It is already common for graphics application programs to allow a preview file to be 

created, which is an icon of the image created using the application. Seemingly a 

picture file, or still graphics image, this presents few problems. In the Medusa 

ontology it is a "static" object which can be easily printed and which is subject to 

tasks that alter its location within a file space in the same way as all on-screen 
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objects. The approach of assummg that all graphics files, irrespective of the 

encoding method used to interpret the bytes in the file space as an image, can be 

simply printed if a suitable printer is available to the system is however, false. A 

particular form of GIF file, employed by sites on the world-wide web, allows a GIF 

file to consist of a number of frames which tend to be interpreted by world-wide web 

browsers as micons, frames are cycled through in sequence while the image is 

visible through the browser's window. Such files would therefore be termed 

"dynamic" and single frames would have to be isolated from them before printing 

would be a task allowed by the system. 

Video Fragments 

Following Bn~ndmo and Davenport (1989), it is suggested that video fragments be 

depicted by micons within the Medusa system's model world. In Bnzmdmo and 

Davenport's Elastic Charles hypermedia system, the history and geography of the 

Charles river that separates Boston, Massachusetts from Cambridge, where the the 

MIT campus is located, can be explored. Micons are used to depict links to relevant 

video fragments within the overall hypermedia structure that provide additional 

information relevant to the concepts presented on the current page of information, 

image or video. Within Medusa micons are used in the same way to denote a digital 

video fragment, and to acts as handles to the data files that contain the encoded video 

data. A frame of the micon is a shrunken version of a frame of the video. The micon 

as a whole is made up of is made up of a number of frames of the video fragment 

reduced to icon size. The frames of the micon are then shown in a loop on the root 

window, after the last micon frame is shown, the animation returns to the first. 
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Sound files 

The notion of the final form of a data structure forming its on-screen iconic 

representation causes greater problems of distraction when considering sound files, 

than may arise from the movement of a micon at the edge of the user's visual field. If 

a sound file is looped and made audible whenever the attached visual icon is visible 

on-screen, as the number of audible sound files increases it will become harder for 

the user to distinguish the file sought from the background noise. The confusion of 

sound generated \vill also tend to annoy other users nearby. While users are able to 

distinguish the sound sought from a small number of simultaneous background 

sounds, an ability relied upon in the auditory browser system of Fernstrom and 

Bannon (1997), and while simultaneous sounds can be used to dra\v the user's 

attention to malfunctioning devices that are not visible, but which are audible 

(Gaver, Smith, and O'Shea, 1991), determining which icon acts as the handle for the 

sound recognised or wanted poses a considerable problem. A number of solutions to 

this problem can be found. An example is Kobayashi and Schmandt's (1997) 

Dynamic Soundscape which maps sound into a loop in an auditory field around the 

user's head, a speaker is heard moving around the loop wi th the speaker's topics 

being positioned in certain arc segments of the loop. The user may then, via a touch 

pad, indicate a particular topic to be replayed, or may jump around the loop, by 

indicating the position of the audio segment they wish replayed. This system, 

however, only allows a single audio file, albeit many segments of \vhich, to be 

replayed and accessed. Other systems which have multiple, different, sound sources 

playing from fixed positions in the audio space (for example, Schmandt and Mullins, 

1995) are limited in the number of sounds that can be located and differentiated. 

Alternatively they only play structured sounds which allow attention to be shifted to, 

or attention to be drawn to, a different sound source. Rather than have multiple 

sound sources playing at the same time (which would be the approach for sound files 
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following the notion of self-representation), with its obvious difficulties, a better 

solution is to easily pennit self-representation to be brought about, rather than make 

it the default behaviour of the model world. The viewing cone, introduced by 

Mander et al. (1992), pennits selected emphasis display of files. When activated over 

a file icon, a cone expands to reveal more of a file's contents and to provide 

sufficient additional views to further aid unique identification of the file, not just 

detennination of the file's category. By selecting the particular emphasis to show 

sound within the cone, as the cursor passes over sound files, the cone appears and 

the sound, the data making up which is stored in the file, is heard: To be consistent 

with the interaction style of Medusa, the tool bar, which is discussed further below, 

associated with categories of sound files includes the methods Play and stop 

playing. 

Hypertexts 

The application program Hypercard uses the icon shown in Figure 7.3 to denote a 

Hypercard stack. This clearly reflects the metaphor adopted in a number of hypertext 

systems, that each node in the graph is a card with a piece of text written on it. There 

are claims, though, that the Hypercard system is a compromise forced on its 

designers following legal action taken by the inventor of a system tenned Zoomracks 

which is based on a "card and rack" metaphor (Heckel, 1996). The Hypercard icon, 

and metaphor, provides no notion of the links that connect buttons, be they icons on 

a card or short strings of text, to other cards in the stack. Hypertext systems will 

often provide an overview of the entire hypertext which renders the entire graph to 

ease navigation and detennination of the user's current location, such an overview 

could fonn the icon generated to depict a particular hypertext. Again, such icons are 

unlikely to be sufficient to uniquely identify the hypertext, and if the graph is too 

large and the connections are too numerous to render without intolerable aliasing, a 
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standard icon denoting the category of on-screen object to which the file belongs 

might need to be employed. 

Figure 7.3 A Hypercard stack 

HTML source files 

HTML files, are an interesting exception to the class of hypertext files. Unlike many 

hypertexts, all the information and media fragments in the graph are unlikely to 

reside in the same filespace. A rendering of the entire graph is therefore impossible 

to construct in a \vay that would form a meaningful icon, again a compromise \vould 

be to adopt an icon denoting category membership. HTML files present a problem 

when interpreting the Open ••• command selected typically from a menu bar, or 

double clicking on the icon. Usually, as mentioned above, the application denoted by 

the icon, or an application associated with the icon using a soft\vare tool is run and 

the file loaded for the application to process or display. HTML files present the 

difficulty that while they are usually employed as documents to be displayed by a 

world-wide web browser, they are also computer programs which are interpreted by 

the browser to produce a rendering of a particular node in a hypermedia graph. 

Depending on the user's current tasks, they may wish to edit the HTML program 

using a text editor tool, or display it using a browser. Different action sequences, or 

methods, must therefore be familiar to the user, whereas a single interface 

mechanism which makes the membership of different categories of the file apparent 

to the user could be employed to overcome this difficulty. We shall discuss such a 

mechanism further below. 
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Discussion: Self-Representing Icons Versus Other Icon Designs 

Traditionally icons have been static representations of data structures, whether or not 

the underlying data structure is static or dynamic, in our distinction. Where 

appropriate, some self-representing icons use animation. According to Baecker, 

Small and Mander (1991: 1) animation in the user interface helps the user to answer 

the questions "what is this?", "where have I come from and gone to?", "where am 

I?", "what can 1 do now?", "what can I do with this?", "how do I do this?", "what is 

happening?", "what have 1 done?", "why did that happen?", and ,iwhat should I do 

now?" Icons that denote files typically help answer the question "What is this?" Self

representing icons are intended to be richer (Houde and Salomon, 1993) than the 

simple class membership denotations criticised above, but are also intended not to 

invoke the unwanted concepts that ecological icons will, despite their ability to ease 

location tasks (Ark et al., 1998). Also, while self-representing icons may not prove 

to be the simplest icon form, the lengthened search time for more complex icon 

designs demonstrated in Byme's (1993) study only becomes pronounced in sets 

where the icon wanted is one of 12 or more displayed. Byme himself admits that 

visual search is not the only task performed on icon sets, and it is these other tasks 

that must also be supported by an interface. 

Animation in the user interface may also help answer the question "what can I do 

with this?" An interesting method of addressing this question is Henry and Hudson's 

(1990) multidimensional icon. In a multidimensional icon, shown in Figure 7.4, 

icons depicting different views of a file are texture-mapped to the faces of a cube. 

Combinations of mouse movements and mouse button clicks allow the cube to be 

rotated so that a different icon lies parallel to the plane of the screen. This icon then 

may be selected. The drawback of a multidimensional icon is that rather than just 

referring to the affordances of the file, it also refers to other distinct objects. The 

execution view of a C language file, shown in Figure 7.4(0, is a reference to a call to 
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execute a compiled object. This compiled object is a file distinct from the source file, 

and should compilation of the source file fail the execution will fail, hence semantic 

errors are still permitted by this approach. The means by which file affordanccs are 

treated in the Medusa system are described below. 

(a) 

~. . . 
• • 

(d) 

(a) The multidimensional icon. 

xkernl.c 

(b) 

(e) 

(b) - (f) Faces of the multidimensional icon cube shown in (a). 

(c) 
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801901 
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Figure 7.4 A multidimensional icon denoting a C language file 

(Henry and Hudson, 1990: 134). 

7.2.3 What Are Files? 

We have sketched above how the contents of files may be depicted employing a 

method termed "self-representation" to give an on-screen depiction intended to aid 

location and identification of files. An issue that must be addressed by a product

oriented view of metaphor is the problem of finding real-world counterparts to all 

types of notions employed in filing systems. Within the DESKTOP metaphor, some 

icons denote files and folders denote directories, but this is an example of a metaphor 

that breaks down. In the Unix filing system, to which a number of graphical user 

interfaces based on the DESKTOP metaphor have previously been developed, 
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directories are merely files that contain a list of data structures associating a text 

string, the file's name, to an inode. Inodes are special data types that index a number 

of blocks of data in the physical file space. Within a particular directory, what is 

listed as a file is just an instance of a text name being associated with an inode, files 

are not listed, instead these links are listed. This has consequences for the semantics 

of tasks performed in the model world. For example, while a user may think they are 

deleting a file, if another user entitled to use the system has a link (alias) to the file in 

one of their directories, the file itself will not be deleted, it will just be invisible to 

the user that deleted it In the Apple Macintosh system and in Microsoft Windows 

95, by contrast, aliases may be created inside folders which are links to files in other 

folders, opening an alias will have the same effect as opening the original file. The 

alias may be deleted without causing the original file to be deleted, but if the original 

file is deleted, opening an alias will cause an error message to be displayed, as the 

file that the alias links to no longer being present A physical metaphor simplifies the 

notion of deleting a file, but as files may be aliases and not files, other tasks, such as 

opening files, cannot be accounted for as easily in a physical metaphor. 

Vahalia (1996: 220) suggests that "the file abstraction acts as a container for data, 

and the file system allows user to organise, manipulate, and access different files." 

The notion of files as a container is subject, however, to problems in addition to the 

notion of a file as a single physical object. When copying a file into a folder, for 

example, on a volume on which there is insufficient physical space, one method to 

perform this task might be to employ an application package which can split the file 

into a number of pieces which are each small enough to be stored on small volumes 

such as floppy disks .. Another method might be to employ an application that can 

encode and compress the data in the file. Such tasks are more readily suggested by 

notions other than files being thought of as containers. The traditional Unix notion of 

files being a sequence of bytes suggests these tasks more readily, for example. 

Copying a file, if files are containers, will require duplicating the container, or 
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having a container for the duplicated data to be placed into. The container metaphor 

for files is again an example of a metaphor that breaks down quickly. 

7.2.4 An Ontology of Invisible Objects? 

Another issue that creates problems for the use of metaphors in supporting tasks that 

alter the state of file systems is the use in some operating systems of hidden files. 

These are links, files, or directory entries that exist within a file space bOut \vhich 

remain hidden from the user unless a special task is performed to make their iconic 

representations visible, or to reveal their name in a directory listing. Until an object 

becomes visible, or can be named, it cannot be acted upon. Therefore in Smith's 

(1987) terms, a magical feature is required of the user interface in order to make the 

hidden visible. In a system that attempts to implement a physical world metaphor to 

account for a file system that supports hidden objects, the metaphor must fail, and 

systems prototypically described as implementing the desktop metaphor are notable 

for not supporting hidden files in the file system. In systems \\'here hidden files are 

allowed, such systems are usually those where a graphical user interface is imposed 

upon a file system and existing disk operating system, interaction with which has 

previously been conducted using a command language. The need to support the 

magical feature needed to make hidden objects visible has consequences, as will be 

discussed below, for how groups of files are depicted, and on how directories are 

represented. 

7.2.5 Numbers of Objects - Directories and Containers 

As discussed above, file systems are made up of files and directories, which are 

stored on physical volumes (fixed or removable disks). In the DESKTOP metaphor, 

directories are depicted by folders, which may contain a number of files or 
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documents. Unlike physical folders, however, they may also contain folders, and so 

forth until the limit on regression determined by the maximum size of file names 

(normally a hard system-imposed limit) is reached. Again, the folder metaphor is an 

example of a metaphor that breaks down quickly. The view adopted in the QPf 

models presented in Chapter 5 is to claim that directories and disks, but not files, are 

containers. The container has advantages as a metaphor for directories in filing 

systems (though, as seen above they are less successful as an account of files), 

containers may be placed inside containers without the metaphor breaking. 

Containers have a capacity, so the user can know whether an attempt to move a file 

into a container will be successful. Unfortunately the capacity of a container can be 

hard to determine, or may not be fixed. Volumes, such as floppy and hard disks, 

have a capacity, namely the number of bytes available for the storage of data blocks. 

The capacity of a directory is not fixed, however, instead it is the result of the 

constraint equation shown in Figure 7.5. 

t 

potential free capacity of a directory = capacity of volume - ~ size_DJ _file(i) 

i .. l 

where t = the total number of files in the file system on the volume 

Figure 7.5 The potential capacity of a directory 

In many graphical user interfaces, if the user attempts to copy a file into a container 

which has insufficient capacity the system might allow the user to perform the 

actions that activate the copying process (clicking on the icon, moving the mouse 

until the pointer is over the destination folder's icon, then releasing the mouse 

button) but it will display an error message. Again, the physical world metaphor 

breaks down and the layers of description separating the model world from its 

underlying implementation, and the different processes at work in the model world 

and in the underlying implementation, as described in Chapter 5, become apparent to 
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the user. It is such system behaviour that underlies the claim that in direct 

manipulation interfaces, the user cannot make syntax errors in their dialogue 

structures, but they can make semantic errors. 

We are required to provide a means of interacting with the file system of a 

computing system to \vhich Medusa is intended to be a graphical user interface. T\vo 

options exist that fit the aims of the Medusa system and the notion of making visible 

those aspects of the underlying system necessary for understanding the system. One 

is the existing, popular, desktop, user interface, where opening a folder icon "reveals a 

window containing icons depicting the files contained in the directory that the folder 

denotes. Such a system supports the magical features needed to list potentially useful 

inf oImation about the files, their size, creation date, to list file names in al phabetical 

order so as to aid location of a file sought, and to make hidden files visible. The 

difficulties remain of accounting for such a solution within a basic physical \vorld 

metaphor, accounting for the mismatch between the representation and the 

underlying data structures, and deciding how the issue of positioning icons within 

the window should be managed, however. Such functionality reminds us of the 

original meaning of an icon as depicting a closed windo\v, and suggests that far from 

being physical objects in the electronic world, the folder is a window onto an 

application for managing files. 

As icons in some filing systems depict links, (entries in a data structure aSSOCiating 

text names with the actual file's location on the disk), opening a folder to reveal its 

contents is simply to read the file and list the entries in this data structure. Reading a 

file, the contents of which are links to files stored elsewhere in the file space, some 

of these files also contain a sequence of entries in a directory, is a task performed by 

a browser application such as Netscape Navigator. Thus attempts by some operating 

systems manufacturers to integrate browser applications more closely with the file 

management system are thus justified by the need to support file management tasks, 
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legal arguments not withstanding. One can see that as the directory file (that contains 

links to files in the file space) becomes more sophisticated in the way that links are 

rendered (using graphics and video fragments), and as the layout of the directory 

file's contents when rendered within a browser window becomes more flexible 

(perhaps user layout of links in the browser is allowed), a browser becomes 

indistinguishable from the folder graphical interface. Except that, in the case of the 

browser metaphor, fewer breakdowns between the user interface and the underlying 

data structures occur. 

Our first attempt at providing a user interface to a file management system then is a 

browser application run by opening a directory file. The design of suitable icons for 

these files remains to be determined, but these too can be accounted for using the 

notion of self-representation. The problem of file movement around the file space 

must also be addressed, the problems caused by the use of a physical world 

metaphor have been documented above, we postpone presentation of a solution to 

this problem until Section 7.2.7. 

7.2.6 The Computer-Computer Metaphor 

The use of a metaphor in the design of the first Medusa system that is wide in scope 

is made according to the idea of the computer being a metaphor for computing 

systems (Treglown and O'Shea, 1993). The notion of making the user aware of 

relevant aspects of the system necessary for understanding applies not only to file 

representations. Where information about the status of processor and memory usage, 

data structures common to applications such as input buffers, and devices connected 

to the workstation, is also required, it is provided on-screen. In (Treglown and 

O'Shea, 1993) it is proposed that a graphic such as that shown in Figure 7.6 appear 

on the root window. This may be examined using common interaction tasks to reveal 

the state of the device to explain its behaviour (for example, processor load and a list 

175 



of runnable processes), and the state of some parts of the system may be altered 

(current active process, destination printer, and so on). As this graphic does not 

allow the user to examine all the relevant parts of the system, as in Myer's (1988) 

Peridot visual programming system where it is necessary to be able to interrogate 

and alter the state of devices such as the mouse and pointer (attempting to taste one 

own's tongue is an analogy3 of the task to be performed in the model world), the 

decision to place the graphic in Figure 7.7 on the root \vindo\v is now adopted . 

... ,""'" . . , .. ,""'" ., ." .. ,""'" .,' 
" .. ,""'" .v , .. ~~~~~~~~ ," 

Room 123 
Room 456 

Figure 7.6 The first design of device description in Medusa 

3 Attributed to the playwright and actor Ken Campbell in the Channel 4 television series 

"Brainspotting" . 
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Figure 7.7 The second design of device description in Medusa 

The graphic shown in Figure 7.7 allows the user to modify the presentation and 

behaviour of the Medusa system. Normally knowledge of preferences or control 

panel applications is required to modify the sorts of values that the Medusa system 

allows access to via the same interaction style as the rest of the system. 

7.2.7 Performing Tasks in Medusa 

While metaphor-based graphical user interfaces are termed direct manipulation, the 

conversation metaphor, whereby users are said to have a conversation with some 

unseen agent about a (normally unseen) task domain, also plays a part in interaction. 

While some variables can be directly manipulated, the issuing of commands to on

screen objects by selecting commands from a menu bar common to many systems is 

based on an subject-object-verb syntax. The object of interest is made current, and 

the action to be performed on it is selected from a tool icon or menu bar. The idea of 

a current object introduces additional concepts that the user must be aware of if they 
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are to be able to conduct even basic interaction with a systenl. Phillips and Apperley 

(1991: 14) say that: 

"The Macintosh interface is based upon the desktop metaphor. The 

Finder manages objects hierarchically in the form of applications, 

documents, folders and disks on the desktop. 'Closed' objects, which 

are represented by icons can be selected (made current), and once 

current can be opened, moved, discarded, etc. The contents of 'open' 

objects are displayed in windows, which can be selected (made 

active), and moved, sized, scrolled, etc ... The interface is based on a 

single object-action model - that is, at any time there is a single 

current object or group of objects on which a specified action is 

carried out. " 

The study reported by Carroll and Mazur (1986), discussed in Chapter 4, found that 

even a task as basic as highlighting (making objects current) proved difficult for 

users. Analysis of the failings of many user interfaces that derive from the desktop 

metaphor has apparently found that the notion of the current application causes user 

problems. Where a number of overlapping open windows appear on-screen, each 

being employed by a separate application program, windows being obscured when a 

single window is made current reportedly causes users some confusion (Halfhilt 

1997). The problem of user input (from the mouse and keyboard) being directed by 

the window manager to application windows other than the one expected, the issue 

of focus, is already a well-known problem. 

Basic interaction tasks are sometimes described in terms of the input devices that can 

be used to support them, or in terms of virtual input devices, those that generate the 

types of input required. Phillips and Apperley (1991: 11) summarise basic 

interaction tasks, as shown in Table 7.1. 
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Equivalent 

Task User Action Virtual Device 

Position Indicate a position on the display Locator 

Orient Orient an entity in 2D or 3D space Locator 

Quantify Specify a value to quantify a measure Valuator 

Select Select from a set of alternatives Button, Pick 

Text Input text Keyboard 

Path Generate a path (series of positions) over time 

Table 7.1 Basic interaction tasks and virtual devices 

In their analysis of the Macintosh system, in particular the Finder, Phillips and 

Apperley find that all interaction tasks, including the complex dragging tasks that the 

user must understand and perform in order to create groups of icons, can be reduced 

to selection tasks. The generic get value task is an example that reduces to selection 

tasks, as shown in Figure 7.8. 

Direct * Repeated (Kleene star) 

Select value 

Get value 

Specify string" 

Indirect "Select value* 

Figure 7.8 Get-value sub-task (Phillips and Apperley, 1991; Page 15). 

Following Phillips and Apperley's analysis of interaction tasks. and following users' 

difficulties with the basic notion of current objects and windows, the approach to 
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interaction adopted in the first version of Medusa is an object-nlessage style of 

interaction. Instead of making the object on which an action should be performed 

current, termed existential reference by Lakoff (1987), deitic reference is preferred, 

\vhere reference is made to an object and commands are selected from a toolbar that 

appears alongside the object once it is clicked on. This tool bar is described in more 

detail below. 

A number of solutions to the problem of selecting commands to be applied to an on

screen object exist. As described in Chapter 2, in ARK named buttons, tliat denote 

operations, are dropped onto the object to which the operation should be applied. 

This solution however still permits semantic errors to be made, where operations are 

applied, or messages sent, to objects that cannot respond in any meaningful way (the 

method is not part of the object's interface). In such a case the button faIls through 

the object, an action that is very magical and hard to account for. An interesting 

alternative is Muller's (1988) multi functional cursor. In the multifunctional cursor 

operations are loaded into slots in the cursor and applied to objects by traditional 

mouse button clicks, an unloaded cursor is shown in Figure 6.9. The muItifunctional 

cursor has drawbacks, however. For example, the number of operations that can be 

loaded into the cursor slots is limited to twice the number of physical mouse buttons 

available, neither are semantic errors prevented. In addition, while some appeal to 

stimUlus-response compatibility can be made in mapping cursor slots to actions, the 

icons in the slots must be interpreted in order to determine which actions will be 

performed. This task is made more difficult for the users of Muller's design by them 

having to employ the typical homonyms, abstract symbols, and puns found in UNIX 

icon sets, such icons being among the poorest scoring in icon recognition tests (for 

example, Rogers, 1986). Also of interest is the tool tray from which operations are 

loaded into slots in the multi functional cursor, this is a rectangular array of icons 

denoting the operations that can be loaded into the cursor. MuIler, however, does not 

address how the tool tray may be retained close to hand in multi-screen or 
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collaborative systems as the cursor migrates around a model world that may be 

larger than a single screen in size. 

Left-most mouse 

single click 

Left-most mouse button, 

single click 

Middle mouse button, 

double click 

Middle mouse button, 

Right-most mouse 

button, single click 

Right-most mouse 

button, double click 

Figure 7.9 An unloaded multifunction cursor for a 3-button mouse 

Most desktop metaphor systems, though not the Xerox Star, place a menu bar either 

at the top, bottom, or the side of the screen. The menu bar is not adopted in Medusa, 

it being required in systems that employ the active or current object notion, which 

Medusa does not All options are thus selected from the tool bar, shown in Figure 

7.10, a design that allows two-handed input (Bier et al., 1994) to be supported, if the 

user so wishes. Clicking on an object of interest causes a toolbar listing the 

operations that may be applied to the object to appear, from which an option may be 

selected. The list that appears in the toolbar depends on the affordances of the object 

and the operations that may be performed on instances of the class or category that 

the object belongs to. The list also depends on the application programs installed in 

the system that might be able to run using the object as data; and on the object's 

current state. In this way, semantic errors cannot arise as operations that are not 

181 



meaningful in the current system state are not offered to the user. The toolbar also 

overcomes the problem of having operations close at hand. The tool bar combined 

with the computer-computer metaphor, achieves much of the clustering of operations 

with their associated underlying computing functionality reported by Tullis (1985), 

but in a model world direct manipulation interface. The use of the object-message 

interaction style, and the use of micons and continual state feedback, combined \vith 

the use of the computer-computer metaphor for making the underlying system 

visible has similarities to, but was developed independently of, Maloney and Smith's 

(1995) Morphic system. 

run 

dele~~ 

" move to 

- duplicate 

about this oblect 

Figure 7.10 A sample toolbar 

7.2.8 Groups of Objects 

In order to reduce the time taken to perform simple tasks, a number of desktop-based 

user interfaces allow files to be grouped so that a single command may be issued to 

all files in the group at the same time. Making a number of icons current requires 

that the user performs a repeated <shift>+click action sequence, or drags a bounding 

box around the icons to be made current (lassos them). Phillips and Apperley (1991) 

show that the mouse-dragging action required to lasso icons also reduces to a 

selection task. To allo\v groups to be built, the Medusa toolbar provides Rdd to 

group and Remoue from group commands among others. Groups will be 

treated differently from individual files, and the toolbar will list only those 
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operations that can be applied to the group as a whole if the object clicked on is 

currently a member of a group. 

7.2.9 System Feedback 

After the user issues a command to any interactive system, according to Norman's 

(1984) model, they must first evaluate the system response in terms of their goals 

and then either issue commands that correct unexpected system responses, or they 

must issue further commands that take the user closer toward completion of their 

goals. Much of the motivation for the Medusa system is concerned with the need to 

address the fact that system feedback is often not immediate, and that the 

computation performed to complete a user-initiated action has an often perceivable 

temporal duration. As interactive systems are not implemented on infinitely fast 

hardware (Dix, 1987), the need to manage the flow of interaction in a system subject 

to delays, lags, and seemingly lengthy computation must be addressed. 

Buffers 

Where computation is lengthy, appropriate progress indication is required (Myers, 

1985). Like providing UNDO facilities, as will be discussed below, providing 

progress indication requires depicting seemingly intangible properties of the system 

such as the amount of computation performed, or the current state of an event queue. 

These attributes of the system have no corresponding concepts in the task domains 

that the systems described in Chapter 2 provide interfaces to. In the case of buffers, 

Dix (1991) provides a design solution in keeping with the ideas underlying Medusa. 

Dix's "munchman" buffer depicts keystrokes placed onto the event queue as a result 

of the user typing while the target application is too busy to process them. When the 

target application processes an event, the corresponding character is removed from 

the depiction of the buffer's contents. This on-screen object is not equal opportunity 
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(Runciman and Thimbleby, 1986) the user may only place items onto the buffer 

(including the delete character), the application is the only party that may remove 

items from the buffer. 

Progress Indication 

While user interfaces are event-driven systems, and the interface programmer must 

be concerned with giving semantics to events in terms of ho\v the display and 

underlying soft\vare changes, user interfaces and interaction with systems, -according 

to Dix and Abowd (1995) are also concerned with status. Unlike events, which for 

conceptual and mathematical convenience are assumed to be instantaneous, status 

describes aspects of an interface that have a constantly available value. Some events 

do not, or need not, change mappings between the status of the user interface and the 

status of the underlying software, some events, however, do and feedback is required 

as a status-status mapping is restored. 

In Medusa, such restorations of status-status mappings, and progress indication, are 

required if the user initiates file moving and copying operations. Copying, for 

example, implements semantics similar to the following (taken from Stevens, 1992: 

56): 

int main(void){ 
int n; 

} 

char buf[BUFSIZE]i 
while ( (n=read(STDIN_FILENO, buf, BUFFSIZE» > 0) 

if (write (STDOUT_FILENO, buf, n) 1= n) 
err sys ("write error"); 

if (n < 0) 
err_sys("read error"); 

exit(O)i 

A metaphor for the copying operation, based on the notion of visibility of relevant 

(otherwise hidden) system components, will therefore depict the buffer filling and 
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emptying. The effects on the file copied and the copy produced depend on depictions 

of the semantics of the read and write operating system calls that have yet to be fully 

resolved. The Medusa system's depiction of this semantics, it should be noted, 

differs from Dourish and Button's (1998) reflective account of the same operation. 

Reflection is described in more detail in Chapter 9. 

Mouse-ahead 

Typed characters may be placed in a buffer until the target application is able to 

process them, this being termed type-ahead. It is also possible for events generated 

by use of the mouse to be queued until they can be processed, this being termed 

mouse-ahead. Some treatments of mouse-ahead, for example by Dix (1991), limit 

the number of mouse events, in particular mouse clicks, to that required to complete 

a semantically meaningful subtask. If a larger event queue is maintained it is 

possible for semantic errors to occur once the queue is processed, events meaningful 

in a busy, frozen, model world are unlikely to be meaningful as objects are altered 

and move when events are eventually processed. Perez-Quinones and Sibert (1996) 

assume that direct manipulation interfaces must include a conversational component 

in dialogue, direct manipulation being a collaborative process between the user and 

the event processing system. If events cannot be processed in the current state then 

the user must be informed, so as to allow them to alter their behaviour if required. 

Perez-Quinones and Sibert's model has five "simulated states of understanding" 

(SSOU): ready, processing, reporting, busy-no-response, and busy-delayed

response. These states are intended to reflect conversational behaviours in dialogues 

between people and in speech recognition systems. These states and transitions 

between them are shown in the Statechart-like system in Figure 7.11. In the internal 

loop, feedback denoting that the system is in the processing state can be omitted if 

processing can be completed in a short enough time that breakdowns in the system 
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behaviour do not occur. Transitions to busy states occur if processing will take, or is 

taking, some time. In the internal loop states are normally depicted by the 

conventional icon shape (pointer or hand), to denote busy states an alternative icon is 

required, Perez-Quinones and Sibert use a stop sign icon to denote busy-no-response 

and an hour glass icon to denote busy-delayed-response. In the Medusa system, 

because of the system architecture adopted, which is discussed below, we do not 

regard the system as a whole as being in a particular state, only that certain classes of 

object in the model world may be in a particular state. Thus a version of Perez

Quinones and Sibert's SSOU model will be built into interaction with each ·on-screen 

object. Further \vork will examine alternative icon designs to denote busy states, 

while the hour glass is a reasonable metaphor for a busy-delayed-response state 

(although we can interrupt the task of boiling an egg, for example), the stop sign is a 

poorer metaphor for the state it denotes. 

7.2.10 Help 

Internal Loop 

Ready 

Processing 

Reporting 

Busy States 

Busy-no
response 

Busy-delayed
response 

Figure 7.11 SSOU feedback states 

(Perez-Quinones and Sibert, 1996: 318). 

The study of first-time users of the Macintosh, reported in Chapter 3, found that 

while on-line help facilities were used, the help they provided was limited and 

context-independent. It was proposed that help should, nevertheless, be provided and 
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should be object-based. When help about an on-screen object is requested, 

infonnation about the object, its current state, and the states it may enter by issuing 

of one of the currently applicable operations is provided. Help is an option available 

on the toolbar, its purpose is to give the user a semantics for commands applied to 

on-screen objects. Object-based help addresses the dialogue detennination problem, 

where options available to the user are detailed; but choice is simplified (Kirsh, 

1996). Help facilities are also used to detail the history of an object in order to 

provide infonnation which allows the user to uniquely identify the object pointed to 

by the icon link. Help assists the user where the icon's design alone does not meet 

this requirement, and it pennits the user to add whatever comments prove useful in 

aiding them and other users to detennine the data contained in the file. Filenames, as 

a result of the process by which they are developed, tend to be meaningful only to 

the user who named the object Medusa will also allow how the help system behaves 

to be modified, it being self-representing, the user should have access to, and the 

ability to modify, the help system. 

7.2.11 The File Manager 

Interaction with the underlying file system using the Medusa user interface has been 

partly detailed above. The depiction of directory listings was discussed, but the issue 
, 

of how files are moved around the file system was not detennined. The QPT-based 

analysis described in Chapter 5 showed that the processes that affect objects in the 

on-screen model world differ from those conjectured to affect objects in the 

underlying software. It was shown that tasks as seemingly simple as moving files by 

dragging them are subject to a considerable mismatch, the physical world metaphor 

cannot account for the behaviour of the system image. To make the process affecting 

the data structures apparent, and following the task analysis conducted by Phillips 

and Apperley (1991), moving a file around the file system requires that the user 

point to a file or group of files and select the Moue command from the tool bar. 
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The user must then specify a destination by pointing to a directory listings file, or 

\vithin its open \vindow. Following the structure of the QPT processes given in 

Chapter 5 and Appendix A, a path must exist between the volume on \vhich the 

source files are stored and the destination volume. The on-screen graphic shown in 

Figure 7.7 pennits the user to establish this path, or to check that a path is still in 

place. 

File deletion, at least in UNIX, is the process of removing a link from a directory 

entry listing file and freeing the list of blocks that the file uses for use by other, new, 

files. The data is not destroyed until the data blocks are reused. The Medusa system 

does not employ complex physical world metaphors such as the trashcan, or the 

black hole employed in some ARK simulations. Instead, deletion is just another 

option available on the tool bar of messages that can ,be sent to an object, in a way 

similar to dropping a physical delete button onto an ARK on-screen object removes 

the object from the model world. As directory entries are only links to files, the 

actual file persists until no more links to it exist. We address the possibility of 

undeleting files in Chapter 10. 

7.3 Implementing Medusa 

The first Medusa system has been described in some detail above, and while a 

usability analysis of the design is undertaken in the following chapter, a full 

appreciation of the pragmatics of interaction with a Medusa system \vould only be 

gained from a full implementation of the system. A secondary aim of the research 

programme begun and reported in this thesis is to understand more fully the nature 

and limitations of direct manipulation. We also seek to apply formal methods and 

models during the development of user interface features so that the intended 

behaviour of these features is known, verifiable and hopefully guaranteed. An 

implementation of version one of the Medusa system was begun, as was ongoing 
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work in the specification and refinement of interactive systems based on an object

oriented formal notation. In this section, we describe below the work undertaken in 

this area as applied to the design and implementation of a Medusa system. 

7.3.1 Use of the Agent Notation and Language 

A trend in current user interface design views the system as being made up of a 

number of small, possibly interacting, modules. Approaches that follow this trend 

include PAC (Program, Abstraction, and Control) agents (Coutaz., 1987), and the 

MVC (Model, View, Control) paradigm of the Smalltalk-80 programming 

environment. The model adopted in the design of the Medusa systems is the agent 

model and notation (Abowd. 1990). The agent model views systems and their user 

interfaces as being composed of a number of inter-connected, communicating 

components. These components, termed agents, in turn, consist of three parts 

(depicted in Figure 7.12). These parts are a persistent internal state which changes as 

the internal operations are invoked as the agent receives event messages from other 

agents; a communication part that lists the one-way communication channels that 

connect agents together and names the event messages that may be sent or received 

along each channel~ and an external behaviour part that defines the sequences of 

event messages that the agent is prepared to engage in. This last part supports the 

interaction design, the interleaving of user input and system output so that tasks are 

supported by the system and the behaviour of the system is reasonable and 

comprehensible to the user. The external behaviour component also distinguishes the 

agent model from pure object-oriented models in which sequences of method calls 

are defined by the arrangement of objects into interconnected layers corresponding 

to the lexical, syntactical and semantic layers of a linguistic approach to user 

interface management (for example, Sibert, Hurley, and Bleser, 1986). 
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events 

Figure 7.12 An agent 

7.3.2 System Architecture 

The first version of the Medusa system, the one that has received most design effort, 

adopts the UMA architecture introduced by Took (1990a, 1990b) which is shown in 

Figure 7.13. Took (1990a), in addition to providing the architecture adopted, 

provides arguments as to why a user interface architecture should be adopted at all in 

preference to existing user interface services such as toolkits and user interface 

management systems. The most compelling arguments for adopting a user interface 

architecture, in terms of implementations of Medusa, are the drawbacks, paraphrased 

from (Took, 1990a) , listed in Table 7.2. In the UMA architecture, an interactive 

system is composed of three parts, the Application cOlnpOnent contains the 

functionality of the system and receives commands from the User cOlnpOnent and 

may send commands to the display Medium. The User component receives events 

generated by the user via input devices such as the mouse and keyboard and either 

forwards them to the Application or interprets them as commands to be issued 

directly to the display Medium. The display Medium, is a passive component, it 

serves only to maintain a display model, or implement a display operating system, 

which is altered by the component acting on commands received from the User and 

Application components, and rendering the display model to produce the screen 

contents. Adoption of a Medium also does not rule out future consideration of a 

collaborative version of the Medusa system, various present functions allow support 

for multiple displays, the implementation details, and appropriate screen sharing 

approaches (for example switchable workspaces, rooms, or Kansas-like 
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environments) have yet to be fully explored, however. The UMA architecture is 

depicted in Figure 7.13. 

Reasons for rejecting window managers 

• They only provide an incomplete data abstraction, 

• Applications are given no abstraction for the contents of windows. 

• All that is provided by a window manager is a set of low-level graphics 

primitives, or possibly also a confusing hierarchy of panes, panels and sub

windows. 

Reasons for rejecting user interface management systems 

• The need to support interleaved dialogues, spatially-multiplexed tasks over 

different windows and applications, which are hard to model syntactically. 

• Semantic feedback, where engagement between on-screen objects and 

underlying semantic objects is expected, is hard to support if dialogue 

management is separated into a distinct component. 

• Dialogue abstraction is more suited to procedural applications, but not where 

the user has freedom of action. 

Reasons for rejecting user interface toolkits 

• Design by modification, new classes of object are hard to create, it is easier to 

modify an existing class. Designs are limited by the quality of the set of basic 

components. 

• Poor separation and high semantic seepage, no clear dividing line between 

application code and interface code. 

• Objects handle their own interaction, optimal updates and screen 

synchronisations require additional global superstructures. 

Table 7.2 Drawbacks of user interface services and reasons for adopting a user 

interface architecture. 
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Figure 7.13 The UMA user interface architecture 

The UMA architecture introduces the notion of surface interaction. Where events 

do not need to involve the Application they are handled by the surface, and so the 

display contents can be altered without semantic seepage, and without the typical 

program structure where code for the user interface is merged with code for 

managing the Application functionality. At the same time, the UMA architecture can 

support semantic feedback where the application semantics may need to directly 

alter the display contents without having to consult or inform intennediate dialogue 

manager components as is often found in user interface architectures that adopt a 

linguistic approach to dialogue management. The UMA architecture is captured by 

the following three process expressions given in the notation of Communicating 

Sequential Processes (CSP) which is employed in Abowd's (1990) agent model to 

define the external behaviour component of each agent. 

U = i:I -+ user!pick(i) -+ o:REPLY --. (user!c:COM -+ r:REPLY --. U 0 

report!(i,o) -+ (i', 0') -+ user!c:COM -+ r:REPLY -+ U) 

M = user?c:COM -+ r:REPLY -+ M I app?c:COM -+ r:REPLY -+ M 
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A = report?(i,o) - J!X· (app!c:COM - r:REPLY - X 0 (i',o') - A) 

I app!c:COM - r:REPLY - A 

Theo·concepts of surface interaction, and of distinguishing surface interaction from 

deep interaction, where events do require processing by the application, provide a 

separation of software components that allows clearer discussion of the components 

and their behaviour that make up some of the domains that our interface metaphors 

map between. The notions of surface and deep interaction also provide an alternative 

view to that adopted in (Dourish and Button, 1998) in identifying points of 

breakdown and failures of scope in metaphorical mappings in direct manipulation 

tasks, this shall be discussed further in Chapter 9. 

7.3.3 The Application 

The application component of the system described in this thesis, and in many of the 

systems described in Chapter 2, is a simple file manager. The file manager provides 

mechanisms for simple file maintenance, and provides functions for deleting and 

moving files and creating new directories within the file space. The file manager can 

be described by a single agent. The persistent state maintained and altered by the 

agent describes the graph structure of files and directories within the file store. This 

agent is based on a completion of the partial description of a file store agent given in 

Abowd (1991). This agent is, in turn, based on the formal specification of the UNIX 

filing system given by Morgan and Sufrin (1984) and the object~oriented UNIX 

filing system specification provided by Meira et al. (1994). The Medusa system is 

not, however, meant to be a direct manipulation interface to the UNIX file system, 

the usability failings of which have long been documented (Nonnan, 1981), and to 

which direct manipulation interfaces have already been constructed, for example by 

Borg (1990) and by Lundell and Anderson (1995). The functionality of the Common 

Desktop Environment front panel in Lundell and Anderson's design is subsumed by 
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the computer-computer metaphor. Medusa prototypes were, though, planned to run 

with the UNIX operating system and hence the UNIX filing system must be assumed 

in a specification at the level of detail captured by the Agent notation. The file 

manager agent, as implemented, merely provides an interface between the file 

maintenance functions invoked by user actions and the UNIX system, and is, as a 

result, a very small part of the whole system. The temporal behaviour of the file 

system agent is considered to be beyond the control of the Medusa system, as a 

result no temporal information is provided in the definition of the external behaviour 

component of the agent. Any user interface to the file manager is responsible for 

representing in a way meaningful to the user and overcoming these delays, where 

possible. 

7.3.4 A Partial Implementation 

An implementation of the Medusa system version one was begun, but remains 

incomplete. Source code is implemented in C and c++ written for the SunOS 

version 51Solaris 2.3 dialect of the UNIX operating system running on a Sun 

SPARCStation. To speed the implementation, the WIMP user intenace component 

of the system was to be implemented using the XView version 2.3 widget set built 

upon the X windows system release number 5. 

The file manager application component of the system has been implemented as a 

single class, which, \vith its associated methods, comprises approximately 200 lines 

of c++. The class methods reflect the operations penormed to alter an agent's state 

in response to receiving a message from agents that make up the user interface 

component. The application component makes up such a small percentage of the 

system code by making considerable use of high-level UNIX system calls. 

Implementation in a single class reflects that only a single agent is sufficient to 

specify the Application component. Much of the agent's state-changing operations 
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were derived from the specifications given by Morgan and Sufrin (1984), therefore 

the Application component is said to be a design specification, as it was known 

beforehand that a UNIX platform would be the target for a prototype 

implementation. 

In developing the graphical user interface, a far harder task was confronted. Bass and 

Coutaz (1991) discover, while attempting to refine a system specified using PAC 

agents (Coutaz, 1987) to the C language library interface (Xt) to the X window 

system, that refinement can only be progressed a certain numbe(of steps before the 

interaction style and code structure imposed by the window toolkit employed 

restricts the subsequent design choices that can be made. This problem was 

encountered in the partial development of a Medusa system, and in other 

applications of Abowd's agents in system design and development (Treglown, 1998). 

Principled and eventually, it is planned, automated methods for converting an agent

based specification into code are still being developed, and were in a greater state of 

infancy when an implementation of Medusa was begun. 

Approximately 9,000 lines of code of an implementation of the Medusa version one 

user interface have been developed. This code serves a number of purposes, firstly to 

provide C++ with an object class which the language, unlike truly object-oriented 

languages such as Smalltalk-80 and Java, lacks. The object class is the most abstract 

and highest class in the hierarchy onto which the Medusa on-screen object ontology 

shown in Figure 7.1 is built. The code also begins to implement the UMA 

architecture on the target system. The code, however, was developed mostly to 

develop heuristics that would guide the development of semi-formal refinement 

rules, and eventually type-checking and compilation tools, to be used to help 

automate the process of generating code from an agent-based specification of the 

Medusa system. The code developed was also used to make clear the difficulties of 

attempting to implement on-screen objects that are required to exhibit behaviour that 
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is not already captured by the widgets provided by existing programming languages 

and user interface management systems. In addition, we seek to develop heuristics 

for converting specified agent behaviour into the interaction structure imposed by 

widgets provided by existing window systems. Simplifying the process of 

programming the external ( observable) behaviour of on-screen objects and \vidgets, 

and making it possible to easily modify this external behaviour is a problem that has 

yet to be solved sufficiently for a satisfactory and complete implementation of the 

Medusa system to be undertaken. As several man-years' \vorth of effort was invested 

in the design of the Xerox Star's icons alone (Bewley et aI., 1983), and as the Apple 

Lisa is said to be the result of 200 man-years of development effort, it is no surprise 

that a complete implementation of Medusa is not available. 

7.4 Conclusions 

In this chapter the design rationale of a new user interface design entitled Medusa 

was described and the criteria and requirements of user interfaces for novices that it 

is intended to meet were presented. While an implementation of this interface \vas 

begun, it remains unfinished and hence full usability testing cannot be undertaken. In 

the following chapter, we apply usability evaluation and inspection methods that 

may be employed even when a working prototype is not available and comment on 

whether the Medusa system meets the requirements placed upon it and overcomes 

the difficulties of existing metaphor-based systems. 
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Chapter 8 

A Critique of the Medusa System Design 

"After we gazed up at the glorious stained-glass windows and exquisite statuary, she 

led me inside the sanctuary and showed me the ornate carvings on the chairs where 

the choir customarily sat. At the bottom of one seat was a carving of a dinner scene. 

My friend told me to stick my hand underneath and feel the hidden surface. 

Incredibly, the craftsmen who had designed this furniture had actually carved the 

feet oJ the Jestive celebrants under the chairs, even though no one would ever see 

their loving artistry. They did it Jor the greater glory of God, because they wanted 

things exactly right. They wanted to make sure that their work was absolutely 

flawless. 

This briefly reminded me oJ the decision by the producers oJ Cannonball Run II to 

include a cameo appearance by Don Knotts in a film that already showcased Dom 

DeLuise, Ricardo Montalban, and Jamie Farr, but I quickly realised that this was an 

inappropriate analogy, and let it go." 

- Joe Queenan (1998) America, Picador. 



8.1 Introduction 

The Medusa system design presented in previous chapters is designed to not be 

subject to many of the failings of existing metaphor-based systems. In order to test 

this claim, some determination of the usability of the system design must be 

undertaken. Techniques for examining the usability of a system are classed either as 

usability evaluation techniques or usability inspection techniques. Usability 

evaluation techniques, such as traditional experiments, analysis of system use 

patterns, questionnaires and interviews, and error rate analysis (Howard arid Murray, 

1987) all rely on the system being implemented in an executable form, even if just a 

prototype. As no working prototype of the system exists, conventional usability 

testing and laboratory-based evaluation methods cannot be employed to judge the 

usability of the first Medusa system design. 

Usability inspection methods, surveyed in Nielsen and Mack (1994), are intended to 

serve as "low cost" alternatives to usability evaluation methods. Inspection methods 

can often be perfonned by evaluators alone, without the need for involving subjects 

who represent the user population that the system is intended for. Inspection methods 

also tend not to require a full implementation of the system, they can be performed 

on specifications and storyboards; and they can often be perfonned by soft\vare 

engineers who may not be skilled in user interface design. Inspection methods, 

however, can only find a large minority of the usability faults that laboratory testing 

can reveal (Desurvive, Kondziela and Atwood, 1992). With no implementation of 

Medusa available to test, we must employ a suitable inspection method. Below we 

describe and employ a usability inspection method tenned the cognitive walkthrough 

method in order to examine the usability of the first version of the Medusa system. 
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8.2 The Cognitive Walkthrough 

8.2.1 Interaction and The Cognitive Walkthrough 

The cognitive walkthrough is a usability inspection method derived from Poison and 

Lewis's (1990) CE+ model of learning by exploration. While differing in some 

aspects, this model can be illustrated with reference to Norman's (1984) seven-stage 

cycle of interaction, which is shown in Figure 8.1. In CE+, users' goal structures are 

similar to the hierarchical structures of GOMS. Goals are represented by 

propositions and are linked to other goals, background knowledge (also represented 

as propositions), propositions that represent objects seen in the environment and to 

propositions that denote actions (PoIson, Lewis, Rieman and Wharton, 1992). 

Activation flows from the topmost goal to representations of actions, when an action 

is sufficiently activated, it is executed. New propositions are created as the 

environment changes in response to the action performed. 

Intention 
to act 

~ 
Sequence 
of actions 

+ 
Execution 
of the action 

Evaluation of 
interpretations 

t 
Interpreting the 
perception 

t 
Perceiving the 

state Of the world 

The World 

Figure 8.1 Norman's Seven-Stage Model of Interaction 
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In order for an action to be executed, a chain of associative connections must exist 

between a goal and an action. "Label following" is onc such way in \vhich this chain 

can exist. In this strategy, used commonly by na"ive users, an action, such as pressing 

a button (using the example given in Poison, Lewis, Rieman and Wharton, 1992), is 

chosen because the button is labelled in such a way that it shares terms ,vith a 

currently active user goal. The cognitive walkthrough method seeks to identify 

points in an interface's design where the chain of associative connections is broken. 

These points include the label not sharing terms with the active user goal; the link 

between the label and the button to be pressed being unclear; buttons not being 

recognisable as buttons; and there being more than one label visible associated with 

the current user goal. 

The first Medusa system is designed to be used by novices, since the cognitive 

walkthrough method \vas designed as a tool to explore the usability of such systems, 

we are justified in using it. And while we would wish to conduct empirical testing 

(this is discussed further in the concluding chapter), the cognitive walkthrough 

method has been favourably compared with empirical testing and was judged likely 

to provide useful data as to the usability of Medusa (Karat, Campbell and Fiegel, 

1992). The cognitive walkthrough method did not compare favourably with another 

inspection method, heuristic evaluation in an evaluation of HP-VUE, a user interface 

to an operating system similar to Medusa, conducted by Jeffries, Miller, Wharton 

and Uyeda (1991). Their results, however, highlighted a known failing of heuristic 

evaluation (Nielsen, 1993), that the number of usability faults discovered by one 

evaluator will be very small. A larger number of usability faults will be found \vith 

three or more evaluators (five or six evaluators has been found to be the optimal 

number, more and the costs outweigh the additional usability problems found). With 

a single evaluator, the cognitive walkthrough method will find a similar number of 

faults to heuristic evaluation, perhaps even morc. 
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May (1993) complains that the cognitive walkthrough method can be regarded as a 

form of guidelines evaluation, and as such will compare badly with methods that 

employ larger numbers of guidelines, although this was not observed in the work 

undertaken by leffries et al. (1991). Instead, we are interested in exploiting a feature 

of the cognitive walkthrough that May also regards as a failing, the emphasis on 

formal structure and the "decomposition of a task sequence to emphasise the points 

of the design that should be checked." (May, 1993: 11). We are concerned, as will be 

explored further below, with aspects of the microstructure of certain human

computer dialogue structures, the cognitive walkthrough is better suited to this 

analysis than other inspection methods. This concentration on the microstructure of 

interaction, as others have noted, risks high-level problems going unrecognised. We 

repeatedly acknowledge, however, that the usability of the Medusa system will not 

be known in considerable detail until a prototype can be developed and 

representative users involved in its testing. The cognitive walkthrough method, 

though, especially when more fully integrated with Norman's seven-stage model (it 

was simply used as an explanatory device above), offers a considerable advantage 

over other inspection methods in permitting greater analysis and discussion of the 

cognitive distances (Hutchins, Hollan and Norman, 1986) between intention and 

action, and feedback and users goals, that indicate the amount of human information 

processing involved in direct manipulation interaction (Rizzo, Marchigiani and 

Andreadis, 1997). 

8.2.2 Conducting the Walkthrough Method 

The cognitive walkthrough method comprises two phases of activity; a preparation 

phase, which is followed by the walkthrough itself. In the first phase, a set of task 

scenarios (which must be supported by the system under investigation) is created. 

For each task devised, an action sequence is created, this is a list of actions which, if 
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performed by users would result in the task being successfully carried out. Also for 

each task scenario, assumptions about the users' abilities and initial goals must be 

stated. For the second phase, the \valkthrough itself, for each of the actions in the 

action sequence defined for each task scenario, a number of questionnaire forms, 

provided in PoIson, Lewis, Rieman, and Wharton (1992) must be completed. The 

forms contain questions about the availability of operations and the observability and 

relevance of feedback in the display. In addition, the forms require the evaluator to 

describe how the current set of users' goals is revised as new goals are created and 

achieved as either the task is successfully performed, or in response to usability 

problems discovered. If the questions in the forms cannot be answered successfully, 

then a likely usability failing of the system will have been identified. Other sets of 

walkthrough questions have been provided, for example in (Wharton, Reiman, Lewis 

and Poison, 1994) and (John and Packer, 1995), but these articles seek to provide a 

more usable version of the method for those evaluators who are not necessarily 

skilled in He!. The set of questions given by Poison, Lewis, Rieman, and Wharton 

(1992) obtain the most information from a system, and so this set was employed. 

The cognitive walkthrough method was developed for evaluating the usability of 

"walk up and use" systems such as automated teller machines and information 

booths where the number of operations available at one time is limited, as are users' 

experience and prior knowledge of the tasks supported by the system. The 

walkthrough method has since, though, been shown to be of use in evaluating more 

complex graphical user interfaces, and has been shown to be capable of being 

learned without great difficulty by software designers who are not specifically 

trained in HeI (John and Packer, 1995). The greatest problem with applying the 

cognitive walkthrough method to systems such as Medusa, is the difficulty of only 

being able to step through one of possibly many action sequences that permit the 

task to be carried out. Where a choice of actions is accepted by the dialogue 

component of a system, and both actions make progress in the performance of the 
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task, only one of the available choices may be considered in detail. Solutions to this 

problem, and modifications to the cognitive walkthrough method which would 

permit choices of actions to be considered in detail will not be considered further 

here. 

8.3 A Cognitive Walkthrough of the Medusa System 

8.3.1 Preparation 

The first phase of the cognitive walkthrough method is the preparation phase. This 

phase is itself composed of a number of tasks that the system evaluator must 

conduct. The first task for the evaluator, as mentioned above, is to choose the tasks 

. to be analysed. These tasks must be resemble those that would be performed 

regularly using the final system, and must be tasks that are sufficiently supported by 

the system's. Normally a cognitive walkthrough does not consider tasks that must be 

performed using other applications in addition to the one under investigation. 

The second task to be performed during the first phase of the walkthrough is to 

provide a task description. This description is normally at a high level of abstraction, 

detailing the major task to be performed and the overall change in the system's state 

to be brought about by performance of the task. The third task is to determine the 

correct sequence of actions that the user must perform for each of the tasks 

employed to evaluate the system. Where a number of task sequences may be judged 

"correct" in that the task will be said to have been peIformed after the last action has 

been peIformed, careful choices as to the action sequence considered are required. It 

can be expected that the actions performed by users will not be optimal and error

free, so a realistic action sequence must be listed. 
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The next task for the evaluator is to identify the intended user population of the final 

system. This is a task that is deliberately ignored in this case. Where the size of the 

intended user population of the system grows, it bccomes impossible to make all but 

very general statements about the visual capabilities, physical impainnents, 

education levels, cultural background and computing experience of the users. We 

therefore make no assumptions about potential users of the Medusa systems, apart 

from general population trends, and that they can be expected to have an 

understanding of cultures in Western industrialised societies, and can read the 

display contents and use a mouse without difficulty. 

The final task to be completed by the system evaluator during the preparation phase 

is to describe the user's initial goals. That is, the system state and the state of the 

wider task domain that they wish to bring about by perf onning the task. No 

consideration is made of the user's wider aspirations, attitudes towards \\'ork and 

technology, or the basic goals they are assumed to hold in common with all 

autonomous systems. 

8.3.2 Performing the Cognitive Walkthrough 

Once the preparation phase has been completed, the \valkthrough itself can be 

performed. The walkthrough is a repeated cycle of activity where for each action in 

the action sequence constructed during the preparation phase, the individual(s) 

conducting the walkthrough are required to complete the forms and answer the 

questions provided by PoIson et al. (1992) for each action. These forms are 

reproduced in Appendix B. The questions that system evaluators must answer ask 

whether each "correct" action may be successfully planned and performed, whether 

the resulting system feedback, if any, is interpreted appropriately and useful way by 

the user, and consider \vhether progress towards completion of the task is seen to be 

being made. 
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8.3.3 Task 1 . Running an Application 

The first task considered, for which a walkthrough is conducted is runmng an 

application program using the Medusa system. The Medusa system retains from 

other model world-based systems the categorisation of files into application 

programs and data files. In this task, the user wishes to run an application program 

without making use of any particular data file. It is assumed that the icon denoting 

the application is visible on-screen and has been located and recognised by the user. 

This first task is deliberately simplified in order to demonstrate the use of the 

cognitive walkthrough method. The correct action sequence for this task is given 

below: 

1. Move pointer to application icon. [Storyboarded in Figure 8.2] 

2. Press mouse button. [Figure 8.3] 

3. Move pointer over Run application option in tool bar menu. [Figure 8.4] 

4. Release mouse button. 

Figure 8.2 Moving the pointer over an icon 

205 



Figure 8.3 Revealing the tool bar for a file 

Figure 8.4 Moving the pointer over the "Run Application" tool bar option 

The resulting goal structure arising from conducting the \valkthrough is shown in 

Table 8.1 where the notation employed in Poison et al. (1992) is used. The 

walkthrough for the first task was completed in approximately two and half hours , 

written notes were taken and a verbal protocol of the author conducting the 

walkthrough was recorded on audio tape to allow the contemporaneous notes to be 

clarified and confirmed later if necessary. Protocol analysis of the recording was not 

required as the action sequence for the task is know and prescribed by the cognitive 

walkthrough method. 
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Run application 

Move pointer over application icon 

and-then Run indicated application 

and-then 

and-then 

Press mouse button 

Move pointer over run option 

Release mouse button 

Table 8.1 Goal structure for first walkthrough task . 

8.3.4 Task 2 - Moving a File 

The second task considered is the movement of files from one location to another in 

the Medusa file space. File spaces are abstractions over the arrangement of bytes of 

information stored on physical storage devices. In addition to the abstractions 

employed by the operating system, the location of files gives them an additional 

meaning in addition to their contents. The location of a file in the file space can 

denote its meaning in the user's working history, their past projects, their on-going 

work, and the resources they are employing in their immediate tasks. The task for 

which a walkthrough is conducted is the movement of a single file from one 

directory to another. The correct action sequence for this task is listed below: 

1. Move pointer over icon denoting file to be moved. 

2. Click mouse button. 

3. Move pointer over Moue to ... option on tool bar. [Figure 8.5] 

4. Click mouse button. 

5. Move pointer to icon denoting the intended destination container or window view 

onto a directory listing file. [Figure 8.6] 

6. Click mouse button. 
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Figure 8.5 Selecting the "Move to" tool bar option 

Figure 8.6 Indicating the destination container when moving a file 

For this task and the next one considered, we alter the basic level of interaction to 

use the cognitive \valkthrough to determine whether the structure of basic selection 

tasks that make up interaction with the Medusa system should be performed by the 

"press mouse button -. move pointer over option -. release mouse button" action 

sequence found in the Apple Macintosh desktop and environments for programming 

in Small talk-80, or by the "click mouse button -. move pointer over option -+ click 

mouse button" sequence found in Microsoft Windows and some X Windows 

tool ki ts. The goal structure eventually constructed for this task, defined using the 

notation of PoIson et al. (1992) is shown below in Table 8.2. 
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Move file of interest to intended location 

make tool bar visible 

option 

and-then 

and-then 

and-then 

move pointer to icon 

click mouse button 

select option from tool bar 

and-then 

specify destination 

and-then 

move pointer to Moue to .. 

click mouse button 

move pointer to destination 

click mouse button 

Table 8.2 Goal structure for second walkthrough task. 

The walkthrough for this task was completed in two hours, hand-written notes were 

taken during the walkthrough and a verbal protocol was recorded onto audio tape. 

8.3.5 Task 3 - Adding a Method to the Toolbar 

As described in Chapters 6 and 7, commands are directed towards on-screen objects 

via the tool bar. The options available on the tool bar at any point in time are 

determined by the category of object towards which the command is issued, the 

object'S current state, and the options selected by the user to be present on the tool bar 

in certain situations. The Medusa system, through the on-screen display described as 

being part of the computer-computer metaphor, allows the user to modify the 

behaviour of the tool bar. This should be contrasted with other menu-based systems 

where menu options can be used during interaction, but the user has no meta

reference to menu options themselves, and is unable to modify them. The third task 

we consider is the addition of a previously unavailable option to the tool bar. This 
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option ,viII only appear on the tool bar when appropriate when interaction ,vith the 

tool bar, as opposed to the "meta-toolbar" is resumed. The action sequence for this 

task is given below: 

1. Move the pointer over the "meta-toolbar" in the on-screen computer-computer 

display. [Figure 8.7] 

2. Press mouse button. 

3. Move pointer to Rdd command option in the tool bar. [Figure 8.8] 

4. Click mouse button. 

5. Move pointer over Edit using leMt Tool option. [Figure 8.9] 

6. Click mouse button. 

Figure 8.7 Moving the pointer over the meta-toolbar 
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Figure 8.8 Selecting the" Add Command" tool bar option 

Figure 8.9 Selecting the "Edit using Text Tool" hierarchical tool bar option 

As with previous tasks, a goal structure for the task was constructed, experience 

gathered from conducting the second walkthrough allowed a structure that made 

greater use of hierarchy based around the smaller selection tasks that make up the 

larger task to be constructed. The goal structure constructed in the PoIson et al. 

(1992) notation is shown in Table 8.3. 
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Add option to tool bar 

and-then 

Command .• 

TeMt Tool option 

make toolbar visible (direct messages to meta-toolbar) 

move pointer to mcta-toolbar 

and-then 

add option to tool bar 

and-then 

and-then 

and-then 

click mouse button 

move pointer to Add 

click mouse button 

move pointer to Edit using-

click mouse button 

Table 8.3 Goal structure for third walkthrough task. 

8.4 Design Flaws in the Medusa System Version One 

While intended to overcome the usability difficulties of existing metaphor-based 

systems, the cognitive walkthroughs conducted on the first design of the Medusa 

system reveal that this system too suffers from some usability failings. Some of these 

failings reveal an interesting shortcoming of the principle of visibility underlying the 

system design, and reveal that even the notion we have described as letting the 

computer act as a metaphor for the target computing system may be subject to 

breakdown, and a failure in its scope. 

8.4.1 Basic Interaction 

Like other WIMP systems, the Medusa system assumes that the large part of 

interaction with the system will be accomplished by using an input device capable of 

generating location and selection information. A location, in the fonn of two-
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dimensional co-ordinates, can be generated by an input device such as a mouse or 

trackball, in the case of the Medusa version one system, the choice of devices is of 

no concern, only the design space (Macinlay, Card, and Robertson, 1990) is relevant. 

Selections are made using a single switch or button; in Medusa version one, most 

tasks are selection tasks, and no more complex form of input is required. 

Interaction with many objects in the Medusa model world is based on an object

message notion, on-screen objects change their state in response to messages (often 

in the form of options on the tool bar) being sent to the object of interest. As 

explained in Chapter 7, the metaphor of highlighting is not adopted in the Medusa 

system due to the problems that it causes users. Instead clicking on an object is 

interpreted as a cue to present the tool bar listing the commands or messages that may 

be issued to that object in its current state. This mechanism permits the distinction 

between tracking and naming objects to be exploited within Medusa, the recognition 

that one need not identify an object in order to be aware of its presence or type in 

order to perform some tasks upon it (Smith, 1996). Medusa allows this distinction to 

be employed within the model world as it can in the real world. In order to rely on 

the association in the user's mind that the toolbar that appears refers to the object that 

the pointer was over when the mouse button was clicked, two explanations can be 

given. The first is a transfer of the notion of the current object (similar to the notion 

of focus, the client application to which subsequent events should be directed) by 

those users that understand the concept from their experience of using other window

based systems. The second exploits the phenomenon, claimed by Jeannerod (1997) 

to have been first documented by Aristotle, that events arising from the same region 

of space in the visual field apply to the same object. 

This approach to interaction differs from interaction with the options listed on the 

toolbar and its associated menus. On the toolbar, an option becomes highlighted 

when the pointer's hots pot is over it. Two reasons are proposed for this difference. 
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One reason is pragmatic, deriving from a need to be aware of the applicability of 

Fitts' Law in HeI, the target of a toolbar option is small, as is the hots pot (the active 

region of the pointer, the location of which is taken to be the source of a mouse 

event), highlighting an option allows the user to confirm that the intended target of a 

movement of the pointer has actually been reached. The second reason is that we 

claim that the user selects tool bar options whereas objects in the model \vorld are not 

selected, there is no notion of a current object, only one which is the object to \vhich 

a message is sent. The first Medusa system thus employs an objecl-lnessage 

interaction style, rather than choosing between SVO, SOY or VSO· structures 

(Subject-Verb-Object, Subject-Object-Verb, and Verb-Subject-Object respectively) 

that categorise languages (Pinker, 1994), including direct manipulation user interface 

dialogue structures, thus removing the need to be aware of the culture into which the 

system is to be introduced. By avoiding the conversation paradigm, it is possible to 

consider further the continuum of model worlds from two dimensional model \\'orlds 

to augmented and virtual realities, this will be explored further in Chapter 9. Users 

must, however, learn the basic action sequences that make up selection tasks in 

Medusa. These action sequences may differ from the low-level motor sequences that 

users have mastered when using other systems, although they are also easily 

described using the dialogue modelling approach of Buxton (1990). 

One question, as mentioned above, that it was hoped that the walkthroughs would 

answer was which dialogue structure making up selection tasks in Medusa should be 

chosen. It would appear that neither choice makes much difference to the usability of 

these very basic tasks. The only problems that require further designer effort are 

those that arise when users familiar with one approach transfer the motor sequence to 

a system that uses the alternative approach. An approach to overcome this problem, 

one adopted by the Solaris desktop environment, is to support both alternatives 

within the state machine for processing mouse-generated events wherever possible. 

Different routes may therefore be taken to reach the same final (accepting) state of 
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the dialogue's state machine that is interpreted as a tool bar option selection task 

having been performed. 

8.4.2 Understanding the Computer-Computer Metaphor 

The cognitive walkthroughs revealed few usability problems that anse from 

interaction with the on-screen components whose design is motivated by the notion 

of the computer-computer metaphor. The problems that were revealed are ones of 

inelegance motivated by the requirements of consistency and visibility. The addition 

of methods to, or deletion of methods from, the tool bar in the third walkthrough 

requires that the user select methods from a complete list of all the methods to 

objects of all categories that may be encountered within the system. This arises 

because the "meta-object" in the computer-computer on-screen display is of no 

particular category (in the Medusa ontology it is simply an "object"), thus the list of 

methods from which selections can be made cannot be restricted to those applicable 

to a particular object category. While it might be possible to have the user select an 

object's category and then modify the tool bar, such a solution would require the task 

to be performed within a dialogue box. In this solution the object's category could be 

selected, and a choice from the subsequent list of associated methods made. The use 

of dialogue boxes, however, requires that sub-dialogues that cannot be interrupted be 

implemented. The user will not be able to complete other tasks or respond to urgent 

events or alarms until the task supported by the dialogue box has been satisfactorily 

completed. It is possible to refer to environments such as ARKola to show the 

advantages of the approach adopted there and also here in Medusa. 

8.4.3 Directly Manipulating the Intangible 

The first version of the Medusa system seeks to provide user interface components 

that represent important aspects of the underlying functionality sufficient for a more 
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complete understanding of the system to be obtained than can be obtained from other 

metaphors in the depiction of the model world. The results of the cognitive 

walkthroughs, however, suggest points \vhere even the scope of letting the computer 

act as a metaphor for the underlying computer system is limited, and where tasks are 

not easily supported by the Medusa user interface design. These points of breakdown 

arise from the need to provide on-screen representations of data structures that are 

not provided as part of the underlying operating system, but which are part of the 

interface itself. These representations depict data structures that do not describe a 

system state, but instead they describe the user's interaction \vith the system, often 

referring to past events, not the current state and states which might be achieved in 

the future. 

One problem arises from the basic means of interaction with the system. A task 

supported by many existing window-based systems is the use of a double click of the 

mouse button. The double click usually performs the "open" task, to \vhich the 

system responds by displaying the contents of a folder, running an application or 

restoring an icon depicting a running application to its full-sized window 

representation. The use of the double-click is ubiquitous, but problematic. A double

click is an event invested with greater semantics by the system than the combination 

of two mouse button clicks separated by a short delay that makes it up. Olsen (1998) 

suggests that this difficulty of interpretation of events is resolved by the first 

button-down event being interpreted as selection of the object, and the second 

click as opening the object. The double click thus presents the Medusa system wi th a 

number of problems. Firstly, it presents the problem of depicting the notion of the 

currently selected object, which we seek to avoid entirely. Secondly it presents the 

problem of supporting the notion of "opening" a file which relics on a metaphor 

within the model world mapping to a very wide range of different system semantics. 

Due to the range of speeds with which users can, and prefer to, double-click the 

mouse button, interface features are often provided allowing the user to place an 
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upper limit on the delay between clicks below which the sequence of actions is to be 

interpreted as a double-click event. While representations allowing users to adjust 

this value can be devised, the delay between click events is a value which must be 

stored in a data structure that is introduced by the development of a user interface. 

The designer is not required to provide a user interface to an existing data structure, 

or to support the user's existing work practice, instead the must introduce new 

concepts that are not derived from either of these domains. 

Direct manipulation user interfaces, as has been noted above, are characterised by 

easily reversible actions. The lessons drawn by PoIson and Lewis (1990) from their 

CE+ model of interface learning include the need for systems to provide obvious 

ways for the effect of actions to be undone, if the system is to be easy to learn. Many 

other authors have made similar requirements of interactive systems. The first 

version of the Medusa system does not consider how undo facilities should be 

provided. The provision of an undo facility within the Medusa system causes greater 

problems than coping with the double-click as discussed above. 

Undo facilities cause particular problems for a metaphor-based system. Whereas a 

typical user interface metaphor presents icons in the model world that denote or 

depict aspects of the underlying data structures, or the functions that apply to these 

data structures, an undo facility is not usually a feature provided by the underlying 

operating system. The problem of providing an undo facility in a metaphor-based 

system is one of providing the facility in the first place in addition to providing a 

depiction and a behaviour of the depiction in the model world. The product-oriented 

view of metaphor is not one that can be adopted therefore. Providing an undo facility 

is complex because no clear data structure to which a metaphor is required exists, 

instead an undo facility must interact with a structure that represents and captures 

aspects of the user's dynamic pattern of interaction with the system. This structure is 

required to store the system state, methods for undoing those user operations that are 

217 



undoable, as well as the user's task and command history. This structure therefore 

does not fit in either with the process-oriented view of metaphor. The undo facility, 

while it may be guided by the user's current work practice, cannot be entirely 

specified and depicted from an analysis of the way in which the user's tasks are 

currently performed and from the language with which users describe their artefacts 

of work. We consider an undo facility for the Medusa system, and ho\v undo 

facilities in metaphor-based system may be developed in general, in the final 

chapter. 

8.5 Conclusions 

In this chapter a critique of the first Medusa system design was undertaken using the 

cognitive walkthrough method. Of concern to evaluators when employing any 

usability evaluation method are the number of usability errors revealed by 

application of the method, and the assumptions about systems, users, and interaction 

upon which the evaluation method is based. These assumptions determine the types 

of usability errors that can be revealed. The numbers and types of usability errors 

that can be revealed by the cognitive walkthrough method have been previously 

examined (Bell et al., 1991; leffries et al., 1991). This work demonstrates that the 

walkthroughs conducted examining the usability of the Medusa system reported on 

above are likely to only reveal a small majority of the system's usability errors and 

that some major usability problems may be missed. One means of increasing the 

number of usability errors detected, by making a number of those conducting the 

walkthroughs experts in the task domain supported by the software application is 

clearly not possible for the sort of system considered here where no particular real 

world task domain is supported. 

The cognitive walkthroughs conducted reveal no other usability problems, but we 

can predict aspects of the system that might give rise to difficulties in a full 
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implementation. The design principle of making relevant data structures visible will 

sometimes be in conflict with the concept of tangibility. Some on-screen objects will 

be sources of information only, they will not be equal opportunity (Runciman and 

Thimbleby, 1986) in allowing their state to be changed both by the system and the 

user. An example is the keyboard buffer which shows the text that has been typed by 

the user but which has not yet been processed by the target application. The effect of 

further typing (even of presses of the delete key) will serve only to add to the 

contents of the buffer, the semantics of keys such as the delete key must be provided 

by the application. It therefore makes no sense for cut, copy, and-paste tasks to apply 

to this display, even though it resembles user interface components that might 

support such tasks. The consistency of interaction sought will still hold though, 

being an on-screen object the buffer can still be sent messages, the set of messages 

will be smaller, however, than the user might expect. 

8.5.1 Is The Computer Metaphor Better Than Others? 

One question that needs to be answered is whether the computer-computer metaphor 

is an improvement over existing user interface metaphors. The methods employed 

here show that some tasks are no more difficult to perform in Medusa than in other 

systems, but that other tasks have more complex action sequences in order to be 

consistent with the design approach adopted. The consistent approach adopted 

however means that once a correct interaction sequence has been learned, it can be 

employed when interacting with all categories of on-screen objects. In the first 

Medusa system, our concern is that the semantics of operations can be easily learned 

by the user. The theoretical framework used to examine the system semantics is 

silent on how operations are invoked or performed, hence the system usability - in 

terms of putting intention into action - may be found lacking, although we found no 

serious difficulties from the testing conducted. In the other versions of the Medusa 

system described in Chapter 9, the nature of the actions needed to perform in order 
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to change the state of the system has received considerably more attention. Whether 

this attention results in improved usability is not yet determined. 
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Chapter 9 

Revised Versions of the Medusa System 

"As long as the software is nerdified. and major conceptual limitations are built 

right into the software at that level. then it cannot get far. This is a philosophical 

question: when people program - i.e. decide on which set of possible options they 

should make available - they express a philosophy about what operations are 

important in the world. If the philosophy they express is on anything like the level of 

breathtaking stupidity that the games they play and the internet conversations they 

have are. then we are completely sunk." 

- Brian Eno (1996) A Year with Swollen Appendices, Faber and Faber. 

In previous chapters, serious criticisms of the world view underlying the theories of 

metaphor assumed to be employed in user interface design and human-computer 

interaction were presented. This world view can only be assumed, however, as few 

design case studies or articles on metaphor in the human-computer interaction 

literature of which we are aware explicitly state the theory of metaphorical 

comprehension, extension, or mapping, employed in the design of a particular model 

world. Previous chapters also served to introduce a recent theory of metaphor (the 

Lakoff/Johnson "contemporary" theory) and to explicitly apply it to user interface 

designs. The case studies examined features of existing user interface designs that 

any theory must be able to explain given that these systems are used successfully by 

users, or which give rise to documented difficulties attributed to users' failures to 

recognise, comprehend. and make use of the metaphor. The Lakoff/Johnson theory 



was found to satisfy these requirements of a theory of metaphor when applied to 

graphical user interfaces. 

9.1 The Medusa System - Version T,,·o 

The first version of the Medusa system, described above, is one which uses the 

methods of analysis employed in Chapters 4 and 5 as the basis for describing objects 

in the model \vorld and designing tasks that change the state of these objects. The 

world view on which these means of analysis are based, however, is one that is 

rejected in Chapter 4. In addition to employing the Lakoff/lohnson theory of 

metaphor as a tool for analysing existing user interface designs, if it is to be judged 

worthy of further consideration, it should be employed as a means of generating user 

interface metaphors that can be more readily comprehended by the user. The design 

of a second, revised, version of the Medusa system is thus presented in this section. 

9.1.1 Direct Manipulation 

It is clear that in order for users to be able to manipulate on-screen objects, and 

perform operations on them, users must be able to recognise the on-screen arrays of 

pixels as distinct objects. The objects having attributes and functionality provided by 

the underlying software. Users must also be able to classify them so they suggest 

what actions may be performed on and using them. The action sequences that can be 

performed will come either from metaphorical extension from other graphical user 

interfaces, prior experience, or from some form of instruction or help in using the 

system. It is this aspect of the design of metaphorical model worlds that led to 

consideration of a contemporary theory of user interface metaphors after traditional 

views of categorisation were found subject to the same assumptions and problems of 

an Objectivist \vorld view. The modem view of categorisation is not adopted in the 
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Medusa version one moocl world, although subsequent versions of the Medusa 

system take this into account. 

As well as having to categorise on-screen objects to make use of them, it is 

necessary to be able to categorise events and actions in a mooel world. The most 

important category in learning and using an interactive system is that of causality. 

This is the perception of a user-initiated action causing feedback or a change in 

attributes of the object that the user directly interacts with, and in any objects and 

attributes that the user additionally interacts with indirectly during the course of their 

action. Lakoff (1987: 54-55) observes that: 

-Prototypical causation appears to be direct manipulation, which is 

characterized most typically by the following cluster of interaction 

properties: 

1. There is an agent that does something. 

2. There is a patient that undergoes a change to a new state. 

3. Properties 1 and 2 constitute a single event; they overlap in time 

and space; the agent comes in contact with the patient. 

4. Part of what the agent does (either the motion or the exercise of 

will) precedes the change in the patient. 

5. The agent is the energy source; the patient is the energy goal; there 

is a transfer of energy from agent to patient. 

6. There is a single definite agent and a single definite patient. 

7. The agent is human. 

8. a. The agent wills his action. 

b. The agent is in control of his action. 

c. The agent bears primary responsibility for both his action and 

the change. 
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9. The agent uses his hands, body, or some instrument. 

10. The agent is looking at the patient, the change in the patient is 

perceptible, and the agent perceives the change." 

In previous chapters aspects of behaviour of existing user interface designs that 

cannot be categorised as direct manipulation, and that could not be accounted for by 

a metaphorical mapping to the physical world were discussed. A criteria of the 

Medusa interface design is that such user interface behaviours should be avoided, 

and that it should be possible to categorise user actions as direct manipulation 

according to Lakofrs definition. The first version of the Medusa system above 

simplifies interaction mostly to selection tasks. While this design choice attempts to 

ensure consistency and to prevent breakdowns in the system image, methods of 

interaction and action sequences familiar to users from other flat model \\'orlds 

cannot be applied fully, but designs of Medusa interfaces cannot ignore transfer 

between systems. 

9.1.2 The Workbench 

The use of the root window in the second version of the Medusa system does not 

differ from its use in the first version, so little \vill be added in this section to that 

given in Section 7.2.1. The root window in this version of Medusa remains a 

workbench, an area for planning that allows the user to place objects and groups of 

objects in positions of their choice before using the objects in their tasks, or placing 

them in the intended final destination. Kirsh (1996) describes some ways in which 

the environment may be used in planning and perfonning tasks. An important use of 

space is to permit better choices of actions to be made, and to serve as a source of 

reminders, while tasks are being perfonned. By constraining the perceived action 

set, the actions seen as being possible at a particular moment in time, affordances 

may be simultaneously constrained and highlighted. The ways in which on-screen 
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objects can be positioned so as to aid planning and task perfOlmance are sometimes 

restricted by the user interface style. The use of windows and the restriction, by 

some systems, of icons to a fixed grid of locations physically limits the placement of 

icons on the 2D desktop. Kirsh (1996: 419) also suggests that simple linear 

arrangements of objects to be employed in a task sequence are too restrictive. He 

claims that even production line assembly plants do not employ strictly linear 

arrangements of objects to be manipulated, and that agents must usually rely on 

"known systems of arrangements, or on some design that makes sense relative to the 

subject matter. 11 Kirsch suggests that the DESKTOP metaphor encourages the 

placement of peripheral equipment such as printers and the wastebasket around the 

edges of the screen to reflect the traditional placement of office equipment around 

office walls. Such placement might not be best suited to the needs of the user in 

performing tasks involving on-screen objects. The location of objects also impacts 

upon the tasks of seeking wanted icons and determining their location. Kirsh (1996: 

422) says: 

"Perhaps the most obvious way of simplifying perception is to 

arrange objects in space so they form equivalence classes, or 

partitions, that reflect preconditions, or properties that are useful to 

track, notice or exploit...The primary value of such external 

partitioning is that it makes it easier: 

• to keep track of where things are; 

• to notice their relevant affordances." 

9.1.3 Objects in the Model World 

On-screen objects in the model world of the first Medusa system are instances of 

categories of objects defined in a hierarchy following the notions of classical 

categories, that is, membership of a category (or class, in the implementation) is 
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determined by the objcct posscssing necessary and sufficient attributes. The Medusa 

object category structure shown in Figure 7.1 is artificial and imposed by the system 

design, although a similar approach to describing the world may be found in the 

ontology of Douglas Lcnat's eye system, as described by Sowa (1995). Barsalou 

(1995: 168) states that: 

" ... clearly, the purpose of categorization is not to know an entity's 

category. Instead, the purpose of categorization is to identify 

information in memory that provides useful inferences. Upon 

accessing a category for an entity, a tremendous amount of 

knowledge becomes available that is useful in a variety of ways. This 

knowledge may specify the origins of the entity, its physical structure, 

its possible behaviour, its implications for the pcrccivcr's goals, or 

actions for interacting with it successfully. Accessing a category is 

not an end in itself but instead the gateway to knowledge for 

understanding an entity, and interacting with it properly." 

The first version of Medusa imposes a classical category structure on objects in its 

model world, as do most, if not all, object-based interfaces. The classical theory of 

categories has been questioned, however, for at least five decades, and the first 

Medusa system ignores the fact that category structures can be created to meet the 

needs of performing immediate tasks and to achieve short-term goals (Barsalou, 

1995), Many of these novel categories are based around prototypes (clear cases and 

best examples of category membership), in accordance with the modern theory of 

categorisation (Rosch, 1973, 1978) employed and described by Lakoff (1987). It 

remains a matter of further study as to what role category structures play in 

understanding and interacting with graphical model worlds. The example of GIF 

format files "'as aiscussed above as problematic in that most are still images, but 

some, as web-page programmers know and take advantage of, make up small 
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animations. It would be interesting to know if a radial category structure, of the sort 

employed by Lakoff (1987), based around prototypical still and animated files forms 

any part of users'. or perhaps only web programmers'. understanding of file systems. 

The second version of Medusa seeks to acknowledge the modem theory of 

categorisation. Previous attempts to accommodate prototypes in this theory with 

object-based and object-oriented user interface design have been unsatisfactory, 

however. as object-oriented design adopts the classical theory in the categories that 

make up class hierarchies. A better approach to the implementation of the second 

Medusa system is to make use of programming languages with a PROTOTYPE

INSTANCE object structure rather than the traditional CLASS-INSTANCE 

approach. In this way the user can more easily impose a category structure on objects 

in the model world than they can in the first version of the Medusa system. 

9.1.4 File Management - Piles or Objects 

The file management facilities provided by the first version of the Medusa system 

were developed to resolve failings in implementations of the desktop metaphor. In 

particular they address the DESKTOP metaphor's use of files and folder analogies as 

a means of accounting for the structure of the file space and the tasks that alter the 

state of the file space. The folder is only one form of possible file organisation, 

however. Despite argument to the contrary (Fertig. Freeman, and Gelertner, 1996), 

the conclusion reached by Nardi and Barreau (Barreau and Nardi, 1995; Nardi and 

Barreau, 1997) is that users prefer location-based search of files, and that locations 

of files serve as reminders of tasks to be performed. They also state that most users 

archive relatively little information and avoid elaborate filing schemes. Their 

proposed requirements for filing systems and filing tasks are thus not satisfied, and 

indeed are made more difficult. by the traditional notion of the desktop metaphor. 
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Malone's (1983) study of how documents and information resources are arranged in 

the physical office differentiates between files and piles. In Malonc's terminology 

files are defined as units where the elements (such as individual folders) are 

explicitly titled and arranged in a systematic ordcr (such as alphabetical or' 

chronological). Groups7 such as drawers in filing cabinel~7 nlay also be explicitly 

titled and systematically arranged7 but they need not be. In piles, though, the 

individual elements (papers7 folders, and so on) arc not necessarily titled, and thcy 

are not generally ordered in a particular way. Table 9.1 summarises differences 

bet\veen files and piles. 

Elements 

titled 

Elements 

ordered 

Groups 

titled 

Groups 

ordcred 

Files 

Piles 

Yes 

? 

Yes 

No 

? 

No 

Table 9.1 Units of desk organization (Malonc, 1983: 106) 

? 

? 

File management in the second version of the Medusa system is intended to satisfy 

the following criteria7 or to take account of the following observations: 

1. Categories are often devised to suit the needs of tasks and such categories are 

often based around prototypes. 

2. Objects can be placed and grouped in locations so aC) to distinguish them from 

other objects, to highlight their affordances, and to aid in the pcrformance of 

users'tasks. 

3. The folder metaphor restricts the placement of objects and is prone to 

breakdowns. 
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4. The Lakoffllohnson theory of metaphor comprehension claims that meaning is 

structured and grounded in image schema that capture our repeated and common 

experiences of interacting with the external world. 

The second version of the Medusa system therefore adopts a means of organising 

files based on piles. and tasks to interact with piles are grounded in image schema to 

obtain their meaning. A file organisation system based on a pile metaphor has 

already been devised (Mander. Salomon. and Wong. 1992). In this implementation 

of a pile metaphor. the folder metaphor is not adopted. instead files are arranged in 

pile structures. these piles can be casually organised on the root window. Electronic 

piles can be either system-created or user-created. System-created piles are stacked 

neatly, implying a set of rules behind how the pile was created. User-created piles 

have a dishevelled appearance, items are added to the pile by being "dropped" onto 

it Piles may be labelled (to indicate categories. possibly relevant to the user's current 

tasks). When a file is dropped onto a pile a dialogue box is presented asking whether 

the file should be simply added to the pile. or whether the user wishes to modify the 

script that was employed when constructing the pile. Over time the criteria by which 

it is appropriate for a file to be placed on the pile may change. hence the need to 

change the script may change. At its simplest. a file may be placed on the pile 

because the file contains particular keywords. Other. more complex. placement 

strategies require that the user is able to write scripting language programs that 

determine how piles are constructed. 

The pile metaphor devised by Mander and his colleagues adopts the product-oriented 

approach to metaphor-based design. The piles do not depict existing data structures 

within the operating system's functionality (as in the case of the treatment of files. 

links and directories in the first version of the Medusa system). instead the piles 

depict data structures added to the desktop's functionality. These data structures are 

not necessarily based on the user's work language and task processes, they are only 
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based on the broad results of the need to support casual structuring of files noted by 

Malone (1983). The resulting design process adopted by Mander and his colleagues 

was to construct runnable prototypes of paper-based designs using Macromedia 

Director which were then examined by users. 

The testing undertaken of the prototype piles addressed the piling models, the 

methods for initiating browsing, viewing cone representations and how items are 

found \\'ithin a pile. An issue that will be addressed further below is the piling 

model, \\'hether piles are "document-centred" or "pile-centred". In the document

centred approach, the pile is represented as a collection of individual items, each 

document is depicted by a rectangle, a pile being created whenever a single 

document on the desktop has another placed on top of it. Items on the pile may be 

removed by clicking on any visible region of the item of interest and drJgging it 

away from the pile. The pile as a whole, however, cannot be moved to a ne\v 

location on the desktop. In the pile-centred approach, a pile acts like a Macintosh 

folder. If a dragged file passes over a file on the desktop, the occluded file is 

highlighted (like a folder) to indicate that it is a potential target and that a pile would 

be formed if the user \\'ere then to drop the held file onto the file belo\v. Clicking on 

any part of the pile and dragging the pointer moves the entire pile around the 

desktop. 

In user testing, Mander and his colleagues (1992) found that while individual users 

displayed a preference for one or other of the pile creation methods, neither \vas 

judged to be superior. A number of problems were, however, revealed. In the pile

centred approach, users appreciated being able to add objects to the pile easily, and 

being able to move the pile as a whole, but noted the problem of selecting an 

individual item from within the pile. The opposite is true of the document-centred 

approach where users \\'ere unclear as to how to move the pile as a whole, but users 

appreciated being able to easily select an individual item from within the pile. In 
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both cases users had the difficulty of knowing whether a file dropped onto a folder 

sitting on the desktop would be placed inside the folder, or whether a pile would be 

created. Experience of the Macintosh interface was found to lead most users to 

believe that the file would be placed inside the folder. As Mander, Salomon, and 

Wong (1992) note, the design of piles and user's expectations cause questions to be 

raised about how well the pile metaphor fits into the desktop metaphor. 

Another important issue, which will be addressed further below, is the issue of 

interaction with piles. This concerns how Mander and his colleagues solve the 

difficulties of emulating interaction with complex fragile 3D structures in the real 

physical world, in an environment where interaction is limited to gestures that can be 

generated using a mouse or touch screen. Testing compared two approaches, 

between double clicking and a horizontal gesture (shown in Figure 9.1) to spread out 

the pile's contents, and between double-clicking and a vertical gesture (shown in 

Figure 9.2) to browse the pile's contents within the viewing cone. 

(a) Mouse gesture 

1-~.I 
t 

(b) Spread-out contents of pile 

Figure 9.1 Spreading out a pile's contents by a horizontal gesture 

(Mander. Salomon. and Wong. 1992: 630). 
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(a) Gesture to generate (b) Viewing cone showing (c) Document selected and 

viewing cone a page of the document 

under the pointer 

removed from the pile 

Figure 9.2 Gestures to browse the contents of piles 

The results of the testing undertaken found that 9 out of 10 users preferred double 

clicking on piles over the use of gestures, subjects finding the gestures non-intuitive 

and ambiguous. In general, users stated that they would employ the "spreading out" 

approach to viewing the contents of piles, this approach better supporting 

comparison and recognition tasks. 

Failings of the Pile Metaphor 

To understand the failings and successes of the pile metaphor requires completion of 

a larger exercise, an exercise one can describe as an effort to understand the fabric of 

meta-realityl. Meta-reality, a term coined by Smith (1986) and depicted in Figure 

9.3, is the space in ARK in which the hand resides and in which objects removed 

from ARK alternate realities reside until replaced into a possibly different alternate 

reality. A similar space can be found in each of the interfaces described in Chapter 2. 

It is the space that the pointer (or hand) resides and moves within. The pointer is an 

1 So termed by analogy with David Deutsch's om) The Fabric of Reality. Penguin, London. 
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on-screen object that only needs to exhibit spatiomimesis, and that can be subject to 

breakdowns in spatiomimesis due to temporal uncertainties in the underlying 

hardware and software. The reality (or desktop, or room network, and so on) beneath 

the meta-reality must display a larger repertoire of behaviour, and is subject to a 

wider range of breakdowns. The pile metaphor is another metaphor subject to 

breakdowns, for example. objects dropped onto electronic piles do not bounce off 

and fall to the table. and electronic piles are stable no matter how high they are built 

and do not topple over. The pile metaphor. perhaps more than other 2.5D model 

worlds. reveals that an account of understanding of such user interfaces must account 

for a reality/meta-reality split. We observe that the design space of the mouse used to 

position the pointer is a 2D plane. but the reality beneath is 2.5 or 3D, for example. 

no matter how -high- electronic piles grow, the pointer never collides with them. 

User 

within 

!he COInC)uIef 

r-:-:ta Reality 

i buntln. 

ra~~t 
~ 
~ .... --obiects 

1 
+ 

i + 
Alte rnate Ftealities 

Figure 9.3 Reality. alternate reality. and meta-reality (Smith, 1986). 

Both folders (called files by Malone) and piles pose additional problems that are not 

part of the metaphors that are used to understand them, but which must be solved to 

allow tasks to be performed on them._ The principle concern in this thesis is to 
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provide facilities that allow objects in the on-screen model \\'orld to be arranged to 

aid users in the performance of their immediate tasks. The user should be able to 

arrange information resources (files in traditional computing terms) to aid rcminding 

and to constrain and suggest actions. Malonc's study rcveals that piles, in 

themselves, do not aid with identifying the priority of tasks. Malone suggests that the 

colour of items on the electronic desktop could denote their priority, a system feature 

that can be found in recent versions of the Macintosh Finder running \vith colour 

display hardware. Malone suggests an alternative means of denoting priority is the 

size of icons, this suggestion is hard to integrate into a system such as Medusa where 

the physics of the model \vorld is intended to be plausible and suggest grounding in 

image schemata familiar from interaction with the real \\'orld. A mapping of 

LARGER ++ HIGHER PRIORITY has less meaning than mappings such as 

HIGHER PITCH ++ MORE (the familiar UP is MORE schema) mentioned above. 

The other alternatives that Malone suggests to indicate priority are the location of 

items, a criteria that the second version of Medusa is designed to support, and 

frequency-based reminding, a task best delegated to an assistant. 

9.1.5 Performing Tasks in Medusa Version Two 

The first version of Medusa, described above, adopts the convention of the folder 

metaphor for file organisation, which has the advantage of allowing hierarchical 

categorisation and organisation, but the failings of the folder convention and 

difficulties in understanding the concept of files were addressed and hopefully 

resolved. The folder convention was found lacking in the need to support ad hoc 

categorisation of on-screen objects to perform tasks, and in the association of 

category with physical location that the second version of Medusa was designed to 

support. An obvious user interface design that supports these facilities (one assumed 

in the second version of Medusa) is the pile. This is the second approach to file 

organisation in information-rich work identified by Malone (1983) and which has 
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already been prototypcd and subjected to some user testing (Mander, Salomon, and 

Wong, 1992). 

Unfortunately, as is revealed by the analysis of interaction with piles presented in 

Appendix e, the image schemata that ground users' understanding of folders (in the 

terms of the Lakoffllohnson theory) are the same that ground understanding of 

interaction with piles. A consequence, of recognising that understanding and 

interaction with both piles and folders are grounded in the same schemata via 

metaphors with similar mappings (FOLDER is CONTAINER, and PILE is 

CONTAINER) are that interaction with piles in Medusa version two is similar to 

interaction with folders in Medusa version one. This is especially the case as actions 

can only be expressed via the narrow channel of the mouse in our current designs. 

Piles in Medusa Version Two 

The design of the second version of Medusa adopts the pile metaphor as its file 

organisation mechanism in the pile-centred form. The folder metaphor is not adopted 

in this system design. The folder metaphor is part of the wider OFACE metaphor 

and has the difficulties described above in supporting multimedia file types. 

Adopting the pile metaphor also resolves the problem of ambiguity as to whether a 

pile, or a folder on top of a pile, is the target for a file being moved, without the need 

for more complex mouse gestures or multimodal input. In a pile-oriented version of 

Medusa, a pile could be created explicitly by informing a file that is not currently a 

member of another pile or too close to other files on the workbench that it is the first 

element of a new pile. A toolbar option that would implement this is shown in Figure 

9.4. 
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Figure 9.4 Starting a new pile 

In a class-instance view of how categories of objects are realised, making a file the 

first element of a pile \\'ould suggest that the file would now multiply inherit 

properties and tool bar actions from a second pile category. In a prototype-centred 

view, new attributes and methods are simply dynamically added to the file's 

interface. Once a pile has been started, other files can be added to it. Drag and drop 

operations such as moving files into folders, or placing a file onto the top of a pile in 

Mander, Salomon, and Wong's (1992) prototype, risk semantic errors being made. 

The toolbar interaction style of Medusa is meant to prevent this possibility. A toolbar 

option that allows files to be added to an existing pile can be seen in Figure 9.5. 
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Figure 9.S Adding a file to an existing pile 

In a Mander, Salomon, and Wong's pile-centred system, the viewing cone is used to 

scan through the contents of a pile, in a pile-oriented version of Medusa a Spread 

out contents option would be placed on the toolbar but would only appear when 

the pointer is over a file that is a member of a pile. The pile is assumed to be the 

object towards which messages from the toolbar are directed, files must be removed 

from the pile if they are to be the focus of action, in keeping with everyday 

experience of piles of objects, and the containment schema underlying understanding 

of the pile. Spreading out the contents of a pile in a pile-oriented version of Medusa 

is storyboarded in Figure 9.6. 
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3 

Figure 9.6 Spreading out a pile in a revised version of Medusa 

How Many Piles c an a File be in? 

A pile is a depiction of all the files that meet the conditions of category membership 

that the pile denotes. Using the Lakoff/lohnson theory, it is claimed that 

understanding of the pile is based upon a PILE is CONTAINER metaphor, currently 

there is no formulation of machine support for pile creation in Medusa version two. 

In subsequent work, however, to provide such machine support, the risk of falling 

into the same trap as Lifestreams and the Semantic File System, described below, 

must be noted and avoided. Adopting the Aristotelean CATEGORY is 
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CONTAINER metaphor underlying the classical theory of category membership, 

according to Lakoff (1987) and Johnson (1987), must be avoided. Even without 

machine support to construct piles. the problem of determining which pile a file 

should be in remains. It is possible to argue that a file can be placed in many piles at 

the same time. In the folder metaphor this is achieved either by means of aliases or a 

filename-inode link. both of which were examined above. In the second version of 

Medusa there is only one copy of an object unless the file is explicitly duplicated by 

the user, reflecting experience of files in the physical world. our concern being to 

support direct manipulation as described by Lakoff (1987). If a file' is duplicated, the 

problem of version control must be addressed. simple replication of a file's contents 

raises the problem of not only having to remember a file's location, but also the 

location of the version wanted, as can be seen in the protocols quoted in Appendix 

C. 

Piles Across Volumes 

The computer-computer metaphor makes explicit the presence of additional storage 

volumes connected to the workstation. The root window displays the piles supported 

by the internal hard disk, there is also, however, the problem of depicting the files 

stored on other volumes. In the folder metaphor and in the container concept of 

Medusa version one, the external volume is just another container and the interaction 

design of allowing dragging within directories and moving across directory and 

volume boundaries is adopted. There are no directories within a volume in the 

second version of Medusa hence allowing direct manipulation to occur. The design 

of existing operating systems makes the design of Medusa-style interfaces to this 

problem difficult. 

For example, in UNIX file systems (each physical disk may store up to seven file 

systems) can be mounted into, and un-mounted from, an overall file space. Hiding 
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the implementation of filespaces is achieved in UNIX by forbidding links that cross 

file systems, the data and the links to it (what appears in a directory listing) must 

exist in the same file system. If a file system is un-mounted then its contents are 

invisible to both the user and system until remounted. In the Macintosh system, by 

contrast, aliases may cross volume boundaries and, as in UNIX, an un-mounted 

volume only becomes apparent by its absence, the volume's icon does not appear on

screen, and double-clicking on an alias's icon will cause an error message to be 

displayed. While neither the UNIX link nor the Macintosh alias owe their design to 

the LINK schema (Johnson, 1987: 117-119), the UNIX link is more in keeping \vith 

it, in that links between objects (filename/inode and datablocks in the case of UNIX) 

are typically "spatially contiguous within our perceptual field." Links between more 

than t\VO objects and spatially and temporally discontinuous entities (action at a 

distance) are less typical. We have repeatedly stated that the difficulty with links 

arises at points of breakdo\vn, either in breaking of the link itself, or in direct 

manipulation in the model world. In the second version of Medusa, physical \\'orld 

notions are adopted to improve understanding of the model world. For this reason 

links are not employed in the second version of Medusa, instead each icon depicts an 

instance of a file, if a file needs to be present in a number of piles then it must be 

duplicated. The problem that must then be confronted is that of version control, 

knowing and determining the state of an object in the model world. 

A related problem, one also related to the problem of version control, is managing 

file organisation on volumes that are only occasionally connected to the workstation, 

such volumes including floppy disks, ZIP drives and equivalent removable disk 

technologies, and personal digital assistants with some storage capacity. The need to 

take such technologies into account means that it is not possible for Medusa to adopt 

a solution to managing the piles on the root window similar to that in the Kansas 

environment (Maloney and Smith, 1995). In Kansas, the root window is very large, 

and only a small user-selectable region of it can be seen at anyone time. The 

240 



advantages of Kansas's being a synchronous shared workbench designed as a 

collaborative environment (although subject to the drawbacks inherited from the 

Alternate Reality Kit) are also lost in Medusa. 

The same interaction style as in Medusa version one is employed in the second 

version of Medusa to implement copying files across volumes, copying being the 

default operation across the data path shown in the computer-computer metaphor. 

The toolbar contains Moue and Copy operations and the user must specify one of 

the external volumes in the computer-computer metaphor on-screen schematic as the 

destination for the file or pile to be transferred. Dourish and Button (1998: 421), 

considering file copying in a system based on the folder metaphor, note: 

•... the abstraction that has been offered by the system - the folder 

- hides the details on which ... understandings could be based. The 

differences between local and remote folders, the difference in the 

operation of local and remote copy operations, and the consequences 

of these differences are hidden from view. 

Furthermore, it is not sufficient simply to offer two different kinds of 

folders providing a distinction between local and remote ... Actions 

and accounts are situated within the specific circumstances of their 

production, not within abstract characterisations of them. In other 

words, what is important here is not the differences between two 

abstract types of copying (local copying and remote copying), but the 

specifics of this or that copying operation. There are far too many 

different features of the occasion (including distance, available 

network bandwidth, other people's activities, the types of files 

involved, and even the type of network infrastructure) for designers 
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or users to be able to distinguish among then1 in the abstract model 

that the system offers." 

The second versIon of the Medusa system does not have local copying, only 

movement across the workbench. The problem of depicting remote copying remains, 

however. Dourish and Button, rather than "trying to provide different abstractions 

for all the different circumstances in which copying may take place", propose 

providing an aCCOU1lt of copying, "a metaphorical frame drawn from the 

ethnomethodological perspective on the organisation of action." Dolirish and 

Button's account of file copying is a schematic, shown in Figure 9.7, depicting data 

buckets and connections between them which is claimed to have some explanatory 

power in cases of breakdown. 

Name Name 

Figure 9.7 An account of file copying (Dourish and Button, 1998: 423) 

Accounts are related to Dourish's (1995) notion of reflection in computing systems2• 

A reflective computing system is one in which a program has access to its own 

representation and execution environment, and is able to understand how a particular 

state came about and can alter its own subsequent execution. While notions similar 

to that of reflection fonn the Medusa system design, including object-based help and 

visibility and tangibility, Medusa is limited in the degree to which the end-user (and 

the system itself) can modify and re-program it. What Dourish and Button do not 

2 The idea of reflective computing systems is due to Brian Cantwell Smith, full details may be fOlUld 

in (Smith. 1996). 
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provide, it should be noted, is an appreciation or analysis of the metaphors 

underlying their account of file copying, and the functionality hidden, as well as that 

revealed, by their metaphors. It was stated in Chapter 6 that the computer-computer 

metaphor-inspired depiction of the copying process differs from Dourish and 

Button's account of copying. The relationship between the ideas underlying Medusa 

and reflective systems remains a topic requiring further consideration. 

Versions 

The ability to duplicate files, and to copy files onto disk volumes or PDAs that may 

belong to other users, raises the problem of version control and the depiction of 

different versions within both Medusa system designs. The problem is more acute, 

however, in the second Medusa system. There are a number of ways of managing 

versions of a particular file that the user may modify. One approach is to allow 

complete independence of objects, any modification produces a new version within 

the same pile or region of workbench as other previous versions. While possibly 

useful for some users, this approach pennits the phenomenon quoted in Appendix C 

where the user may lose track of the location of the draft sought. Many operating 

systems limit the number of versions in the same container to the current draft and 

the most recent version prior to modification. The computer-computer metaphor 

schematic allows a change of version strategy to be included as part of the system 

behaviour that the user may control. Where duplicates of a file exist in a number of 

piles another version strategy that the user may adopt is for each copy to be a 

manifestation of the same most recent draft3• Two existing designs implement this 

functionality without the drawbacks of links and aliases. The first is the publish-and-

3 An analogy may be found in particle physics. one answer offered to the question of why all 

observed and studied electrons have the same properties is that there is only one electron, but it moves 

around quickly. 
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subscribe model from the Macintosh operating system (described in Olsen, 1998, 

Chapter 13). In this model the user selects some information and informs the 

application that they \vish to publish it. An edition file containing the published 

information is then created and the user must then create a subscription in the 

destination file. Any changes to the edition file cause corresponding changes in the 

sUbscription. Such a mechanism is compatible with the user determining how many 

past versions of a file are placed in a pile. 

The publish and subscribe model is compatible with file movement across volume 

boundaries, and has advantages over the other mechanism for file synchronisation 

Olsen (1998) also describes, the moniker, found in Microsoft's OLE architecture. 

The first part of a moniker is an absolute pathname in which the linked information 

is stored, the second part are identifiers that reference the linked data within the 

duplicated file. In thc moniker approach, the link may break and identifiers may also 

be deleted from the file during editing, making duplication and synchronisation even 

more difficult across distributed disk volumes. If a file is to appear in a number of 

piles, possibly on different disk volumes, a publish-and-subscribe mechanism will be 

required. Following Dix, Rodden, and Sommervillc (1996), howcver, it is known 

that in a collaborative version of Medusa, with multiple disk volumes and 

occasionally attached PDArs, the notion of "the current version" of a file is almost 

meaningless, and that the Medusa system will need to reflect this. I t is believed that 

little needs to be added to the Medusa system design to make this apparent, however. 

Versjons and Synchronisation in a Revised Medusa Design 

File version and synchronisation mechanisms based on the idea of links, as described 

above, are prone to difficulties and the metaphor breaks down quickly. On PalmPilot 

devices, synchronisation of data when the palmtop device and the personal computer 

on which a duplicate of the data on the palmtop ,vas once created (copies on either or 
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both machines may have since been modified) is performed by a conduit. In the 

Palm operating system. this term means a form of dynamic library that dynamically 

and temporarily extends the facilities offered by the personal computer's operating 

system in order to allow the synchronisation to occur. It is possible to investigate 

whether the use of the term ·conduit· is more than just a case of designers needing to 

select or coin a term to name a particular type of computer program. Reddy (1993) 

proposes that our ideas of communication. and the language used to talk about 

language itself, are grounded in the CONDUIT metaphor. The components of this 

metaphor being: 

.(1) language functions like a conduit, transferring thoughts bodily 

from one person to another; 

(2) in writing and speaking, people insert their thoughts or feelings in 

the words; 

(3) words accomplish the transfer by containing the thoughts or 

feelings and conveying them to others; and 

(4) in listening or reading, people extract the thoughts and feelings 

once again from the words.· (Reddy. 1993: 170) 

10hnson's (1987: 59) list of the parts that make up the CONDUIT metaphor is more 

useful for considering the design of a file synchronisation mechanism that assumes 

his and Lakofrs theory of metaphor. 10hnson's list of parts is: 

• 1. Ideas or thoughts are objects. 

2. Words and sentences are containers for these objects. 

3. Communication consists in finding the right word-container for 

your idea-object. sending this filled container along a conduit or 

through space to the hearer, who must then take the idea-object out 

of the word-container.· 
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In the Lakoff/Johnson theory, metaphors are grounded in terms of image schemata. 

The CONDUIT metaphor is, in Johnson's description, grounded in a number of 

schemata. One of these is the COMPULSION schema (shown in Figure 9.8) in 

which a force has a magnitude, moves along a path and has a direction. In Figure 

9.8, the solid line denotes an actual force vector, the broken line denotes a potential 

foce vector or trajectory. In the CONDUIT metaphor, the COMPULSION schema 

captures the illocutionary force of an utterance. 

~1"""""""""~~·············11'. 

Figure 9.8 The COMPULSION schema (Johnson, 1987: 58) 

The other schemata that ground the CONDUIT metaphor are BLOCKAGE, 

REMOVAL OF RESTRAINT, DIVERSION. and COUNTERFORCE. The 

suggestion made in Appendix C is that the schemata that ground an interface 

metaphor possess entailments that must be addresses by attributes or actions 

provided to the user \vho must understand the metaphor and perform actions in 

keeping \vith the metaphor that change the state of on-screen objects. In a revised 

version of Medusa, the toolbar for the root window might contain the option 

Create a CondUit, as other object-based interfaces must allow the user to create 

new instances of objects, or must allow instances of them to be fetched from a 

convenient store. The issue of ho\v a conduit object can be rendered will be ignored 

and will be left as a topic for further graphic design and usability testing effort. 

When a conduit object is created and becomes part of the Medusa model \vorld. 

According to the Medusa design principles, it should be possible to interact with the 

conduit, it should possess an associated toolbar that will contain options that follow 

from the entailments of the schemata that ground the CONDUIT metaphor. A first 

list of suitable options can be seen in Figure 9.9. ~urther options might be added, but 
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they should, where possible, be entailments of the schemata that ground the 

CONDUIT metaphor. 

Rdd file to synchronise .. 

Remoue file .. 

Synchronise direction .. 

Check: settings 

Set transfer speed .. 

Synch clash settings .. 

Removal of BLOCKAGE 

Create BLOCKA GE 

COMPULSION 

REMOV AL OF RESTRAINT 

COMPULSION 

COUNTERFORCE 

Figure 9.9 Toolbar options for a conduit 

9.1.6 Other File Organization Solutions 

Piles and folders are two important approaches to information organisation within 

interactive computing environments, important because they are prompted by 

existing practice of those engaged in tasks drawing on other information resources. 

Many have said, however, that the computer is not merely a tool, but also a system 

that can support new ways of working that are not merely imitated (or used as source 

domains) in user interface designs. Other user interface solutions to the problem of 

file organisation have been suggested, these are briefly surveyed below in order to 

determine whether other interface designs have advantages that suggest that any 

subsequent versions of the Medusa system should adopt these designs. 
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The Spatial Data l\llanal:ement System 

While the Spatial Data Management System (SDMS) was first developed by 

Nicholas Negroponte, Richard Bolt, and their collaborators, in the 1970's, and 

examples such as Bolt's "Put that there" are well-known historical artefacts, the 

SDMS project can be claimed to be on-going as display and rendering technology 

advances. As Medusa is currently tied to the desktop, we are most interested in the 

early versions of SDMS, more recent versions being closer to notions of virtual 

reality environments. The first SDMS employed a wall-sized display upon \\'hich on

screen objects denoting items of interest could be placed and moved to meaningful 

locations. The SMDS system is claimed as being a major influence on the computer 

desktop, but computer desktops are smaller than real desktops, requiring additional 

metaphors such as Rooms or mechanisms such as Sun Microsystems' workspace 

switch in their Common Desktop Environment. SDMS, in particular in "Put That 

There", however suffer from some of the same problems that folders, piles, and 

environments in which both can be found, give rise to. While speech recognition and 

pointing de-referencing allow deitic reference to objects to be made ("put that 

there"), ambiguities such as that found by Mander, SaIomon, and Wong (1992) still 

require resolution. If a folder is on top of a pile and an additional file is to be added 

to the pile, is the pile or folder the target? Section 6.4.5 addressed resolving this 

ambiguity of reference. 

Dynamic Queries and the Semantic File System 

An issue that is essentially at the heart of file organisation and interaction with 

information resources is category construction, "finding" information where file 

placement facilities support "reminding". Dynamic queries, an approach developed 

by Ben Shneiderman and his colleagues at the University of Maryland, of which 

FilmFinder is a representative system, combines direct manipulation \vith database 
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visualisation to allow users to filter information through the use of features such as 

buttons and sliders. Records in the database may be reduced to a manageable set by 

adjusting the range of values between which field values may lie using interface 

components that directly manipulate these ranges of values. While the user can 

quickly find records they are interested in, the dynamic query approach does not 

address how the records are described and indexed, categories (such as "thrillers" 

and "action movies"), and members of the categories are defined by those who build 

the database. For the user of a system in which they create many of the objects to be 

indexed and retrieved, and define categories to suit their tasks, dynamic queries offer 

little. 

The semantic file system (Gifford, Jouvelot, Sheldon, and O'Toole, 1991) addresses 

tasks performed prior to those supported by dynamic queries. It constructs sets of 

potentially useful files, by giving additional semantics to files as well as providing 

associative access to a file system via virtual directories. Using familiar UNIX 

directory commands such as Is and cd, associative queries are interpreted to 

produce file listings that are more meaningful than the basic hierarchical directories 

that the semantic file system adds to. Transducers are devices added to the basic file 

system that associate additional attributes with each file extension (the filename's 

suffix such as ".C" which normally denotes the file's type). The mail transducer, for 

example, would associate the field-attribute pairs "from:". "to:". "subject:" and 

"text:" with each file with the suffix ".txt". It is recognised that a similar mechanism 

to the transducer is needed in an implementation of the Medusa systems in order to 

"register" new file types so that suitable icons can be constructed, among other 

functions. These attributes can be used in queries that resemble conventional 

commands to generate more meaningful lists of files. A query such as "Is -F 

/sfs/owner: /smith" described by Gifford et al. (1991) lists all the files owned 

by a user with the system name "smith" stored in the directory /sfs. 
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While adding much to basic file y terns, the u er interface to the emantic file 

ystem adds little to the UNIX command-based u er interface, the failing of which 

have long been documented (Norman, 1981). Again the pr blem f command-ba ed 

y tern, forcing the u er to have a conver ation with an un een agent ab ut an 

un een ta k domain, arise. While adding additional emantic t the file y tern, the 

extra attributes are hidden, as are the commands u ed t di c v r them, in addition 

the attributes depend on the person who con truct tran ducer . Thi per n i n t 

the user in existing implementations of the emantic file y tern. The type f bject 

that can exist within the file sy tern are al 0 still limited to the et f fil nam 

suffixes. As Medusarequires a form of object type regi tration mechani m, it can be 

hopefully seen that some of the more u eful idea intr duced by the emantic file 

ystem can be adopted and improved upon. 

Lifestreams 

Lifestreams is prompted by a number of objection t the de kt p metaph r, 

including an objection to the notion of the need to upp rt I cati n-ba ed earch 

mecharusms. Fertig, Freeman, and Gelemter (1996) note that Barreau and Nardi' 

(1995) studies of users of the Macintosh and a number of PC-ba ed op rating 

systems show the following similarities between u er : 

"1. A preference for location-based search for finding file (in 

contrast to logical, text-based search); 

2. The use of file placement as a critical reminding fun [ion; 

3. The use of three types of information: ephemeral, working and 

archived~ 

4. The 'lack of importance' of archiving files. tI 
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Fertig et al. claim that imilaritie 1, 2, and 4 are artefacts of the computing systems 

studied rather than tatements of the way users actually acquire, organise, and 

maintain information. Fertig, Freeman, and Gelemter's Lifestreams system propose 

a new metaphor that replace traditional files and directories. Lifestreams, shown in 

Figure 9.10, i claimed to be based upon the metaphor of a time-ordered stream of 

document . E ery document created i tored in the lifestream, the tail of the stream 

is the past, in the future the tream contains documents that the user will need , such 

as reminder , "to do" li ts, and meeting chedules. In the present, the stream contains 

items such a work in progre and recently anived e-mail. The claims made for 

Lifestream include that the y tern supports reminding and archiving inherently in 

the model , and al 0 that it aids in locating information. One way in which 

Lifestreams does thi is by ephemeral and working information typically being 

located in the pre ent part of the stream. The other is by allowing the easy creation 

and destruction of ub tream by filtering the stream as a whole according to 

appropriate cri teria. 

. ~e..:'.'Iid __ BT 

... 
Figure 9.10 A Life tream (taken from a video presented at CHI'964). 

4 http://www.acm.orgl ig / igchi/cbi961proceedings/videos/Fertigletf.htm 
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As can be seen in Figure 9.10, the Lifestream of documents forms a diagonal line 

across the display. Documents in the present are shown in the bottom right-hand 

corner of the screen, documents are stacked so that the rear-most document in the top 

left-hand corner of the display is the oldest one rendered. After a period of time, 

documents "fall off" the edge of the screen and are automatically archived. A 

scrollbar allo\vs the time parameter to be altered affecting the documents that are 

shown in the region of the display where "present" documents are displayed. In order 

to move into the future, however, so that reminders may be introduced, the 

Lifestreams system "clock" must be altered by a function reached from -a menu 

option. Lifestreams is proposed as an alternative to the desktop metaphor, one that 

has the "organisational metaphor" of a time-ordered stream of documents. It is 

possible, however, to employ the Lakoffllohnson theory to critique Lifestreams. The 

frequent use of the \vord "stream" to describe the Lifestreams interface is to employ 

an appealing metaphor. In terms of Lakoff and Johnson's (1999, Chapter 10) analysis 

of the metaphors that describe understanding of time, however, Lifestreams suffers 

from problems, and it may not differ considerably from the systems it seeks to 

replace. 

While Lifestreams adopts a metaphor in which the passage of time maps onto the 

position and motion of objects, Lifestreams does not adopt the MOVING TIME 

metaphor, \vhich based on the following schema: 

"There is a lone, stationary observer facing in a fixed direction. There 

is an indefinitely long sequence of objects moving past the observer 

from front to back. The moving objects are conceptualised as having 

fronts in their direction of motion." (Lakoff and 10hnson, 1999: 141) 
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This schema combines with a TIME ORIENTATION metaphor, the mappings of 

which are shown in Table 9.2, to produce a set of composite mappings shown in 

Table 9.3. 

The Location of the Observer 

The Space in Front of the Observer 

The Space Behind the Observer 

--
-

The Present 

The Future 

The Past 

Table 9.2 Mappings for the Time Orientation metaphor 

(Lakoff and Johnson, 1999: 140). 

The Location of the Observer - The Present 

The Space in Front of the Observer - The Future 

The Space Behind the Observer - The Past 

Objects - Times 

The Motion of Objects Past the Observer - The "Passage" of Time 

Table 9.3 Mappings for the Composite Moving Time metaphor 

(Lakoff and Johnson, 1999: 142). 

It should not be concluded that the Lifestreams interface metaphor is not grounded in 

a pattern of interaction that people can understand easily, only that the schema that 

grounds the Lifestream concept is one unfamiliar to many people. To speakers of the 

Aymara language used in Chile (described by Lakoff and lohnson, 1999: 141) the 

metaphor ·THE PAST is IN FRONT" is grounded by the notion of being able to see 

the results of what you have just done in front of you. Thus while Lifestreams may 

have an acceptable level of usability, its design conflicts with the culture and 

everyday experience of embodied interaction with the world of most of its intended 

user population. 
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One can also question whether Lifestreams is as radical an alternative to electronic 

support for the notions of piles and folders as it is claimed to be. The analysis of 

piles and folders presented in Appendix C shows that both these forms of file 

organisation can be understood in terms of the same image schemata and metaphors 

with similar mappings. Similar claims can be made for ho\v Lifestreams is 

understood. The MOVING TIME metaphor that underlies Lifestreams (albeit 

combined with a mostly unfamiliar TIME ORIENTATION), , and the MOVING 

OBSERVER metaphor (the other mutually exclusive metaphor used in descriptions 

of temporal events in most languages) are both extensions of an EVENT-FaR-TIME 

metonymy (Lakoff and 10hnson, 1999: 154). The example "The Kronos Quartet 

concert is approaching" given by Lakoff and lohnson (1999: 154) obtains its 

meaning by the event of the concert standing for the time of the concert, and the time 

is conceptualised as approaching. In the EVENT-FOR-TIME metonymy: 

"Times are then conceptualised as locations or bounded regions in 

space or as objects or substances that move. Events are then located 

with respect to those locations in space or objects that move." (Lakoff 

and 10hnson, 1999: 155) 

Thus within Lifestreams, newly edited or created documents and reminders are 

located with respect to locations or bounded regions in the part of the display 

denoting the stream. We could therefore undertake an analysis similar to that in 

Appendix C of how present, ephemeral, and sub-streamed documents are referred to 

and find that manipulation of items within the categories formed in these regions of 

time is reasoned about in the same way as a pile or folder. It is noticeable that, like 

the second version of Medusa, Lifestreams resolves the problem of ambiguity 

introduced by trying to integrate folders with the overall organisation structure of the 

user interface by not having a folder interface feature at all. Also noticeable are the 
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commands provided by Lifestrcams to manipulate documents and streams, new, 

clone, transfer, find, and summary, most of which either have the same 

semantics as the generic commands, or those of class instance creation in object

oriented programming languages. 

While Lifestreams may not be as radical an alternative to piles and folders as its 

creators believe, and relies for understanding on schemata that are unfamiliar to 

many users, the Lifestreams system does address a number of important problems. 

The most serious problems are the related issues of archiving and- scalability. The 

pile metaphor does not address archiving, information is used only for comparatively 

short periods of time and then disposed of, suiting the habits of knowledge workers. 

Scalability is not a problem that needs to be addressed if the information to be 

employed in tasks or the creation of new files is ephemeral, but where archiving is 

employed the number of files in an information space may grow to be large. In 

Lifestreams, files that are pushed off the edge of the display are automatically 

archived. The user must scroll back into the past in order to enter the region of time 

where the (now invisible) files may be found, although most of the depiction of each 

file will be hidden by the more recent files. The user may also use the find facility, 

but this function serves to create a substream. It is worth investigation to determine 

whether time-based search (when did I create that file?) is as prone to the difficulties 

of location-based search (where did I leave that file?), especially in terms of the 

consequences mentioned above of conceptualisations arising from the EVENT-FOR

TIME metonymy. 

Data Mountain 

Data Mountain (Robertson et al., 1998) is a relatively simple means for storing and 

retrieving web documents. The Data Mountain, shown in Figure 9.11, is a texture

mapped rectangular plane segment angled at 60° to the horizontal plane extending 
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away from the viewer and rendered in perspective. The Data Mountain is intended to 

replace the "favourites" or "bookmarks" mechanism of world-wide web browsers as 

a means of noting and returning later to web pages of interest to the user. Thumbnail 

icons, reductions of a \veb page to icon size, may be placed on the mountain in 

locations meaningful to the user and icons may occlude others. If icons are placed at 

the top of the mountain the act of rendering them in perspective will make them 

appear smaller than icons placed at the foot of the mountain. 

Figure 9.11 Data Mountain for web page favourites 

(Robertson et al., 1998: 153). 

Data Mountain, it should be noted, is, like the Spatial Data Management System and 

Perspective Wall, a spatial metaphor (Jones and Dumais, 1986), not a spatialization 

metaphor (Demasco, Newell, and Arnott, 1994; Regier, 1996) of the sort grounded 

in UP, IN, OUT, and so forth, schemas, discussed above. Lakoff and Johnson (1980) 

report that the mountain is a poor concept to ground in the body. Only reference to 

"the foot of the mountain", as we made in the last paragraph. is meaningful, and 

leads others (Bederson et al., 1996) to claim that the MOUNTAIN is BODY 

metaphor is a dead metaphor. Data Mountain is however interesting in allowing 

casual arrangement of icons collected together in space allowing ad hoc 

categorisation, and allowing spatial memory to aid in locating web pages sought. 
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This ability is very effective in the Data Mountain system (Czerwinski et al., 1999) 

even when the thumbnail images are removed leaving only blank icons, although 

. mouse-over text giving the page's title for each icon is found to be required to 

maintain retrieval ability over long periods of time. There remain, however, 

unanswered questions as to the scalability of this design in domains other than web 

page bookmarks. , In a web favourites system the number of bookmarks is likely to 

be small and there is likely to be a fast turnover of those links that become redundant 

quickly (it is claimed that between 2 and 9% of any web search engine's indexed 

collection of links will be out of date at any time). 

Alternative Interface Physics 

The metaphor-based interfaces to file organisation systems considered so far have 

mostly been flat model worlds (ARK, the desktop, Rooms), or augmented real-world 

environments (OigitalOesk, metaDESK, and wearable computers). In these systems 

the image size is fixed and the user's viewpoint is changed, either by manipulating a 

set of 2.50 windows, moving to another Room, shifting the radar view, or by motion 

of the head. A recent alternative solution is to adopt a different physics in which the 

size of the workbench is fixed, often a screen-size in area, but the workbench can be 

deformed to bring regions of interest into the region of attention. According to 

Carpendale, Cowperthwaite, and Fracchia (1995: 219) this concept" ... provides a 

useful metaphor for the actions performed to create the distortions. Pulling a section 

towards oneself to see it better, or ... magnify it, appears to be a natural response." 

A system that implements alternative interface physics is the Perspective Wall 

(Mackinlay, Robertson, and Card, 1991). The Perspective Wall is a pliable flat sheet 

on which icons denoting documents are placed. The central region of the wall is 

placed closest to the observer's point of view, parallel to the plane of the screen, and 

contains most information in greatest detail. The portions of the wall either side of 
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the central region bend away from the observer and are rendered in perspective. If 

the user clicks on an icon on a portion of the wall outside of the central region, the 

wall scrolls and distorts until the icon lies within the central region and the portions 

of \vall either side of the icon outside of the central region increase or decrease 

appropriately. 

The Perspective Wall exploits computer animation technology, metaphors from 

pliable surface interfaces, and metaphors to the relative acuity of vision across the 

surface of the retina, but is still limited in the numbers and types of files it can 

provide access to. The version of the Perspective Wall described by Mackinlay, 

Robertson, and Card (1991) arranges icons by advancing creation date from the 

oldest to the youngest from the left of the wall to the right. The wall maps the file's 

type, drawn from a fixed set of categories, to the vertical dimension of the wall. 

The PAD++ environment (Bederson et al., 1996) has a more pliable surface than the 

Perspective Wall. It may be deformed by the semantic zooming process on a more 

local scale within the central region, which in the case of PAD++ occupies the entire 

screen. The regions outside the central region can be brought into view using links 

and portals to other parts of the model world. PAD++ has been employed as a 

framework in which a number of familiar types of systems have been implemented, 

these include a \vorld-wide \veb browser and a file directory browser. The browser 

uses thumbnail icons of \veb pages, as in the Data Mountain, to depict particular 

pages. These icons can be enlarged by zooming to better detennine the identity of 

the web document, or completely enlarged until the document is rendered full-size 

and as the focus of the user's attention. The directory browser is similar to the 

PAD++ web browser, but files are only depicted as coloured squares, the colour 

denoting category membership, until zoomed to the maximum magnification 

possible where the file's contents become visible. 
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Further Developments of the Pile Metaphor 

The initial work on the pile metaphor undertaken by Mander, Salomon, and Wong 

(1992) was based upon prototypes built using Macromedia Director. These 

prototypes, however, were shallow, in that most proposed user interface features 

were implemented but not linked to any underlying functionality. Subsequent 

prototypes employed clustering techniques to support both piles and documents in 

the same information space and both direct manipulation and automatic sorting 

tasks. Using clustering to collect together seemingly related files allows the task of 

subpiling to be delegated to an electronic assistant. How the 'agent' that performs this 

task can be comprehended as part of a desktop metaphor (viewing it as part of a 

wider OFFICE TASKS metaphor raises the problems encountered with Ed discussed 

in Chapter 4) is not explained though. Unfortunately work (Rose et al., 1993) that 

might have continued on employing clustering techniques to widen the sorts of 

categories of objects that piles contain; to allow user-defined categories to be 

automatically constructed from more complex file attributes; and to resolve 

remaining pile user interface's inconsistencies, was abandoned (Rose, 1998) when 

Apple's Advanced Technology Group was disbanded. It is clear, however, that work 

picking up where on piles left off should be added to the topics for further study if 

the scalability problem of managing files in user interfaces to organisation 

mechanisms is to be addressed. 

9.2 Medusa-"t: A System Addressing Temporal Problems 

In their view of design, taking into account long-standing criticisms of the 

Objectivist tradition underlying classical views of metaphor, Winograd and Rores 

(1986: 178) state: 
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"Computers have a particularly powerful impact, because they are 

machines for acting in a language. In using them \ve engage in a 

discourse generated \vithin the distinctions set down by their 

programmers. The objects, properties, and acts we can distinguish and 

perform are organised according to a particular background and pre

understanding. In most cases this pre-understanding reflects the 

rationalistic tradition we have criticised ... It includes biases about 

objectivity, about the nature of 'facts' (or 'data' or 'information') and 

their origin and about the role of the individual interacting with the 

computer. 

We have argued that tools based on this pre-understanding will lead 

to important kinds of breakdown in their use." 

It has already been discussed above how the mismatch between the objects and 

objects' attributes, and tasks that objects' behaviours support, provided in a model 

world and what is suggested by the metaphorical source domain can cause 

breakdowns in user interfaces. Delays and lags are other causes of breakdown in 

metaphors and analogies in model worlds. The tradition that informs Winograd and 

Aores suggests that breakdowns force the user into a state of having to account for 

the breakdown, a true state of being in the (model) world is denied them. Rather than 

being able to naturally perform their work in the task domain, additional effort must 

be expended to model the system. In addition to the sources of breakdown caused by 

failure of metaphors, breakdowns also occur due to the unpredictable temporal 

behaviour of computing systems (Dix, 1987). 

Two approaches may be found to solve the problem of temporal behaviour of 

systems that users may find troublesome. One approach is a design solution, the 

temporal behaviour of the system may be examined, modelled and understood (both 
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from a system and the users' perspective} and the user interface may be designed to 

incorporate features which explain the temporal behaviour within the system's 

conceptual model. This approach is adopted in the design of the first two Medusa 

systems. Another approach is a technological approach. The system may be designed 

and implemented so that the temporal behaviour of the system is controlled and 

guaranteed. An example is the attempt to guarantee the instantaneous response to 

typed input in a commercial word processor by only updating the line on which the 

cursor currently lies, and updating the layout of the remainder of the document 

visible on-screen when the user pauses typing (reported in Dix, 1991). 

The Medusa-'t system is based upon the Medusa system, and assumes the same task 

domain as the Medusa system. The concern of the Medusa-'t system is to guarantee, 

where possible, the temporal behaviour of the system so that feedback of the system 

state and updating of the diagrammatic display depicting parts of the system image 

are appropriate and immediate. This approach simplifies the conceptual model and 

the interface design, the details of software design, however, as well as the 

implementation details, become more complicated. The issues of software 

architecture, implementation, operating system design and treatment and modelling 

of concurency and real-time system development require considerable attention if 

the Medusa-'t system is to be successfully implemented. 

Some authors doubt that the real-time behaviour of systems needs to be considered. 

Took (1990a: 126), for example, claims that: 

" ... timing is much less critical in general user interface systems than 

in process control applications, for example, because human users are 

more tolerant of delays or variations in timing than machines." 
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Hill (1992) states his hope that the complexities of real-time programming can be 

avoided in user interface design. The need to consider temporal issues in user 

interface design is becoming more widely recognised (Johnson and Gray, 1995), 

however. When polled as to their requirements, users state that they prefer fast 

system responses, and data exist on the optimum rates for displaying text, for 

example. Feedback can, however, be too immediate, if information flow is from the 

system to the user, there are maximum rates at which information may be presented 

if users are to be able to obtain information from the display (Card, Moran, and 

Newell, 1983). 

Where the effects of actions and operators on the state of the user interface must be 

interpreted or learned for later use, reinforcement in the learner's mind that a 

particular action helps bring about a desired system state is reduced if the system 

feedback, and subsequent reinforcement is delayed (Kaelbling, 1993). Effects of 

system response time on the strategy users employ when interacting with user 

interfaces have also been noted. With increasing delays between user input and 

system response, users avoid actions which may cause errors and do not request 

output to confirm the system state, actions are increasingly planned and 

experimentation avoided (Grossberg et al., 1976). Where system delays are shorter 

than the many seconds in Orossberg's et al. (1976) experiment, but also vary, 

changes in user strategy have been observed by Teal and Rudnicky (1992) (although 

not as clearly in the replication of Teal and Rudnicky's experiments performed by 

O'Donnell and Draper, 1995). Their experiment considered user input to an 

unbuffered system where delays between user input and system feedback varied, and 

users were unable to enter further input until feedback was received. Where delays 

exceed 1.75 seconds, users are said to adopt a monitoring strategy, waiting for 

system feedback before continuing. Between delays of 0.75 seconds and 1.75 

seconds users are seen to adopt a pacing strategy, entering input to the system 

without waiting for feedback, judging delays between input and adjusting the delay 
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in response to errors where the judged delay is shorter than the actual system delay. 

Where delays are shorter than 0.75 seconds the user is able to adopt a strategy of 

automatic performance, latencies between keystrokes due to cognition and the 

human motor system are longer than system delays. 

As well as long delays between user input and system feedback causing users to alter 

their behaviour to compensate, and the learning of systems being complicated, a 

number of other arguments for addressing the temporal behaviour of user interface 

software have been proposed. The seven stage model of interaction with interactive 

systems proposed by Norman (1984), for example, relies on there being no 

perceivable delays between the execution of user actions and system feedback for 

the loop of interaction to be maintained. 

9.2.1 Implementing Medusa-,; 

Work has progressed on the refinement and implementation of systems described in 

the Agent notation (Treglown, 1998), and we have now a complete formal 

operational semantics and heuristics for converting the required external behaviour 

of agents into Java code (but not a full set of refinement laws). Methods for 

converting a timed Agent model, developed for the task of describing systems such 

as Medusa-"t into a suitable language running on a suitable combination of hardware 

and operating system, remain to be completed. 

9.3 Conclusions 

The first version of the Medusa system, the version that has received most design 

effort, while attempting to overcome known difficulties in the application of 

metaphors in the design of the model world is based in the Objectivist tradition 

rejected in the last chapter. In this chapter, two revised versions of the Medusa 

263 



system, one taking into account the Lakoff/lohnson theory of metaphor 

understanding, another recognising breakdowns introduced by the temporal 

behaviour of interactive systems, were discussed. In the following chapter, the 

contributions of the Medusa systems to HCI, and suggestions for further work, arc 

presented, as are conclusions drawn from the work presented above. 
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Chapter 10 

Conclusions and Further Work 

What keeps you awake at night? 

Trying to finish the phrase 'A bad simile is like a ... I 

- Mark Lamarr, questionnaire column, The Guardian, 5/9/98. 

10.1 Summary of the Thesis 

In this chapter we summarise the work undertaken, suggest the contribution of the 

work to HeI theory and to user interface design, indicate further work immediately 

arising from the work reported on here, and introduce on-going work to resolve 

unfinished problems. The work undertaken and reported in this thesis can be 

summarised as follows: 

• a survey of interface styles and design methods revealed the problem of choice in 

the user interface design process, and resulted in the role of metaphor and analogy 

in user interfaces and in user interface design being considered for investigation, 

• a survey of a number of important and influential systems that are based on explicit 

metaphors in their model worlds revealed the important concepts, interaction 

styles, and widgets that these systems introduce, 

• a literature review showed the limitations of employing metaphors and analogies in 

previous user interface designs, 



• a small-scale study of first-time Apple Macintosh users supported findings of a 

previous similar study and identified problematic features for which improved user 

interface designs were judged to be needed, 

• a literature review sought to examine where metaphors fit into the wider context of 

users' mental models of interactive systems and the pervasive nature of metaphor in 

these models \vas discussed, 

• an analysis and model-building exercise of current systems applied the QPf 

method of describing mental models which is not usually employed in HCI. These 

models revealed inherent flaws in some metaphor-based systems, and revealed that 

some reconsideration was required of the domains between which metaphorical 

mappings are thought to be made. This consideration supported Laurel's (1993) 

previously proposed analysis of domains and mapping in interface metaphors, 

• an examination of current system design showed the failings of existing user 

interface metaphors and of the existing theories of metaphor understanding, 

• an application of a contemporary theory of metaphor due to Lakoff and 10hnson to 

user interface design was made by recognising the need to be aware of results in 

formal semantics that question the nature of metaphorical understanding previously 

assumed in HCI, 

• a number of case studies extended the limited use to which the Lakoffllohnson 

account of metaphor understanding has previously been put in analysing user 

interface designs, and which further demonstrated the usefulness of this approach, 

• a new system design named Medusa based on the guidelines and the QPT models 

discussed in Chapter 5 was designed, 

• revision of the first Medusa system design were presented based on the results of 

usability testing, and based on the results of applying the theory introduced in 

Chapter 8 as a generative source of novel user interface designs, 

• a comparison between the second, revised, design and recent user interface designs 

for the same task domain showed the comparability of these designs and suggested 

optimism for the usability of an implementation of the revised system design. 
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10.2 Contributions of the Thesis 

Bannon and B~dker (1991) identify two approaches to design within HCI, a task 

analysis approach, which they criticise and reject in favour of an artifact approach. 

The task analysis approach informs the development of the first Medusa system. 

This approach is characterised by the assumptions underlying cognitive science and 

psychology, and the use of task analysis methods and programmable user models in 

design. In this approach, the computing system is programmed from an analysis and 

structured description of the tasks currently performed by eventual users of the new 

system, or from an analysis of the cognitive resources and knowledge structures 

needed to perform the task. 

The artifact approach, by contrast, assumes that tools (hence also computing 

systems) are only fully revealed and understood in use, where "in use" has a far 

wider meaning than studying systems in the laboratory with representative users as 

subjects. While the second version of Medusa cannot claim to be informed by the 

artefact approach, it is based on assumptions that criticise some of the assumptions 

underlying the first Medusa system. Below we discuss the contributions of the two 

Medusa systems in terms of the two approaches to HC! design, and also in terms of 

one set of suggestions for key HCI issues that should be addressed. 

10.2.1 Medusa in a Cognitivist Framework 

The first Medusa system, described in Chapter 6 and evaluated in Chapter 7, is 

grounded in the traditional cognitivist framework that is rejected in the methods of 

analysis used in the design of the second Medusa system. The use of the Qualitative 

Process Theory in Chapter 5 to describe mental models of model worlds based on 

physical world metaphors, and to provide a semantics to user operations in order to 
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explain changes to objects in the Medusa model world assumes an Objectivist world 

view. The work on Medusa version one makes two contributions. Firstly, Laurel's 

(1993) notion of user interface similes is strengthened as identifying the important 

domains between which mappings should be made in user interface metaphors. 

Secondly, mismatches between the on-screen model world and the underlying 

functionality are identified as a key source of user difficulties in understanding the 

system. 

In addition, the way of viewing software that this contribution employs has also been 

acknowledged l as being an influence on the design of the Ontological Sketch Model 

(Blandford and Green, 1997) for modelling user interfaces and identifying usability 

faults. The Ontological Sketch Model (OSM), as its name suggests, requires the 

system designer or analyst to construct an ontology of interface objects and the 

actions that can be performed on them. The analyst lists the things that the user must 

know about in the interface, their attributes, accessibility, relevance to either the 

application domain or the device domain, whether the object is visible and whether 

or not it has a meaningful name or symbol. OSM, being more of a system 

engineering approach, captures aspects of the model world that QPT does not, QPT 

not being initially devised for use in He!. OSM and QPT are comparable, however, 

in the number of aspects of system described in models of user-initiated actions and 

the effects that these actions have on interface objects. QPT describes these effects in 

a more formal way, however, and more tools exist that currently do for OSM to 

make predictions of the outcomes of effects. A section of an OSM description of a 

drawing package (taken from Blandford and Green, 1997) can be seen in Table 10.1. 

1 Thomas Green (personal communication) 14th November 1997. seminar at the Knowledge Media 

Institute. The Open University. Milton Keynes. 
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Action Object Effect Context Notes 

click drawing area lay down a discrete mode 

point for a 

sketchy-line 

drag drawing area lay down continuous speed of 

shape for a mode dragging 

sketchy-line affects 

sketchiness 

Table 10.1 Part of an OSM table for a drawing package 

10.2.2 Medusa in a Cognitive Semantics Framework 

The second version of Medusa adopts the LakofflJohnson contemporary theory of 

metaphor in order to account for how some interactive computing systems can be 

understood. While the application of this theory to interactive computing systems is 

not unique. our application of it began independently of Rohrer's work (1995). The 

contribution of the work contained in Chapters 8 and 9 and in (Treglown, 1999) is to 

demonstrate the applicability of the Lakoff/Johnson theory to describe a wider range 

of interactive systems than it has been attempted to describe before. This work also 

promotes the Lakoff/Johnson contemporary theory as a candidate theory applicable 

to the design and evaluation of computing systems. The comparative analysis 

presented in Chapter 9 and Appendix C shows the value of applying the 

contemporary theory of metaphor as a predictive and analytical tool to reason about 

modem metaphor-based software technology. Benyon and Imaz (1999) demonstrate 

their recent adoption of the approach to design suggested by employing the 

Lakoff/Johnson theory in HCI and show that the contemporary theory is gaining the 

attention of other members of the HCI community. 
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10.3 Does the Work Address Key Issues in HeI? 

Shneiderman (1986) identifies seven key issues that HeI should address, in this 

section we examine whether the work conducted and reported in this thesis is 

appropriate in terms of work that is deemed valuable and necessary, and whether the 

\vork addresses any of Shneiderman's challenges to researchers. According to 

Shneiderman's (1989) more recent, but less finely delineated, identification of 

important future directions in HeI research, we can claim that the work undertaken 

addresses the need to cater for office practice and the inclusion of more complex 

documents (containing media other than just text) in the model world. We can also 

claim that the Medusa systems contribute to understanding the temporal behaviour of 

interactive systems. Below we consider in further detail the contributions of the work 

in terms of Shneiderman's (1986) classification. While the detailed challenges he sets 

the HeI community are presented in tenns of the prevailing technologies of the era 

in which his paper was published, the delineation of research problems is still 

valuable. 

10.3.1 Interaction Styles - What is Natural? 

In Shneiderman's analysis, natural interaction is said to be strongly related to the 

notion of directness, irrespective of the modality of interaction. Frolich (1993) 

observes that the meaning of directness has altered from Shneidennan's original 

meaning of the "first personness of interaction through manipulation" to Hutchins, 

Hollan, and Norman's (1986) meaning of it being a combination of distance and 

engagement. Engagement refers to first personness, the sense that the on-screen 

objects are the actual objects being manipulated. The term distance is employed in 

Hutchins' et al. conception of direct manipulation systems to refer to the complexity 

of mapping goals to actions meaningful to the computer at the interface. Systems 

270 



termed direct are designed so that this distance is minimised. Frolich notes that it is 

legitimate to apply the notion of directness to both conversational and manipulative 

systems and that the trend towards interfaces exclusively based upon manipulative 

interaction is an accident of history and is a trend that he states should be halted. For 

tasks such as information retrieval, mail handling, time handling, and programming, 

conversational and mixed mode systems are said to be more appropriate and more 

direct than action-based systems. 

Frolich also claims that the historical association of directness with model world 

interfaces leads to an assumption that the use of real world metaphors improves 

directness. He suggests instead that it is also possible to conceive of direct 

conversational systems which do not employ metaphorical devices to reduce 

psychological distance. and also that the traditional historical association diverts 

attention away from supporting action-based interaction by using non-metaphorical 

icons to represent abstract computational structures. While we agree with another of 

Frolich's observations, that some real-world metaphors can result in indirect systems 

that do not enhance the user's experience of using the system, we offer different 

views to Frolich's. In the light of modem theories of metaphor examined and 

employed in this thesis we disagree with Frolich's central claim that designers should 

be encouraged to be sceptical about choosing action-based solutions to design 

problems. We also disagree with the suggestion that visual formalisms (that are 

claimed to rely less on metaphor for their semantics) and that language-based or 

mixed language/action-based forms of interaction should be used. 

The contemporary theory of metaphor suggests that language cannot be as free of 

metaphor as Frolich believes, and that metaphor is central to cognition and 

semantics. Neither is it clear that. in the light of the contemporary theory, that visual 

formalisms, as described by Nardi and Zarmer (1993), are entirely free of metaphor 

in their semantics, as has been suggested. Graphs (x-y plots of data), for example, 
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are often mentioned as examples of visual formalisms, but, as is employed in some 

audio representations of data values using varying pitch (Buxton et al., 1985), 

underlying the semantics of the representation is an up is lnore metaphor. In other 

visual formalisms, for example graphs (nodes and links) such as Petri nets, quantities 

such as time may be grounded in terms of physical location in the diagram. Where 

visual formalisms are also dynamic and interactive, with further investigation it may 

prove that metaphors, in the terms that we now think of them, may be relied upon 

more for understanding of the formalism. than claimed. 

In contrast to Frolich, we claim that while some metaphors can produce indirect 

systems, the key to directness is not necessarily to employ language-based or 

collaborative manipulation interfaces (described below). Instead we claim that 

directness is a product of the type and complexity of image schemata that ground a 

metaphorical mapping. We have shown that a feature found in an implementation of 

the desktop user interface breaks the invariance principle and is hard to account for. 

It also fails to suggest suitable actions that would allow tasks to be performed. The 

schemas that ground interaction \vith the second version of the Medusa system are 

simple. The resulting interaction with the system would appear to be direct. A claim 

that we tentatively propose, and shall investigate as further work, is that directness is 

a concept related to Lakofrs invariance principle, and that collaborative 

manipulation systems should be adopted only when the schemata that ground 

metaphors and actions become complex or the invariance principle is broken. The 

Medusa systems, and the approaches adopted to understand them, do, at least, seem 

to provide a framework in which directness can be consistently discussed. 

10.3.2 Input Techniques - Putting Intention into Action 

The choice and use of particular input devices with an interactive system is a topic 

related to the issue of naturalness of interaction. It remains a topic of ongoing \vork 
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as to how the amount of distance and directness between user intention and system 

terminology is changed by the use of different input devices. Application of results 

reported in leannerod (1997) suggests that a number of recent and novel input 

devices can be very direct if used in physical world metaphors. The mouse, however, 

despite its prevalence as an input device in direct manipulation interfaces, presents a 

number of problems. We cannot yet detail the image schemata underlying 

spatiomimesis and mouse-based interaction in general, and account for the reduced 

directness that the mouse seems to give rise to. Work to fully provide a rigorous 

grounding of mouse-based interaction in terms of image schemas and metaphor is 

ongoing. This work is likely to draw on results discussed in Lakoff and lohnson 

(1999). This work demonstrates that where Regier (1996) shows how the linguistic 

and pre-linguistic spatial concepts that form many of the image schemata that we 

have employed in the analyses of user interfaces above can be acquired from 

prototypical examples, these spatial concepts can also be used to suggest and 

generate suitable motor skills to perform tasks (Bailey, Feldman, Narayanan, and 

Lakoff, 1997; Narayanan, 1997). 

10.3.3 Output Organisation 

Concern for visibility and tangibility ensures Shneiderman's recommendation to 

enforce consistency in the model world. The use of either the browser metaphor or 

pile metaphor for file organisation reflects the user's need for organisation (either 

messy or tidy) and classification of objects according to the immediate needs of their 

tasks and their category structures, according to the version of Medusa being used. 

The more focused concerns under this issue, such as the fonts and colours used, 

remain design options to be addressed if a full implementation of the system is 

developed. 
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10.3.4 Response Time 

The need to account for the temporal behaviour of the Medusa systems was 

mentioned above alongside descriptions of the user interface features in Medusa that 

are intended to aid the user in forming a useful and accurate mental model of the 

system. We have suggested throughout the thesis that the designs of both versions of 

Medusa, and the design of Medusa-"t, are motivated in part by the need to address the 

issue of system response time, and to account for a system's temporal behaviour. The 

Medusa systems and Medusa-"t adopt two different strategies in their -design, 

respectively providing the user of an account of the cause of temporal breakdowns, 

and attempting to ensure that breakdowns do not occur. 

10.3.5 Error Handling - Preventing User Errors 

It is normally assumed that in "extreme" direct manipulation interfaces, i.e. those 

that implement physical world metaphors, it is not possible to make errors, as 

commonly understood. Alternatively it is assumed that only semantic errors can be 

made, where the user is not prevented from performing erroneous physical actions 

that have little sensible meaning in the machine's terms. In the first version of the 

Medusa system, the object-message style of interaction limits the number of errors 

that can be made; messages that cannot be sent to an object in its current state do not 

appear on the toolbar. In the second version of Medusa tasks that might cause errors 

to arise, particularly file movement tasks, are less likely to occur as the semantic 

distance between the on-screen world and the system semantics is reduced. Users 

may still perform tasks that they may not actually have wanted to perform, however, 

and will require undo and recovery facilities. 

As noted in Chapter 7, the first Medusa system makes no explicit provision for undo 

and recovery facilities within the model world and in the support of users' tasks. 
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Undo (the provision of a feature that allows a previous system state to be returned 

to), and recovery (the ability to return to a previous state and to rerun history issuing 

a different set of commands), present particular difficulties in the design of an 

interactive system. Neither facility is product-oriented (task analysis cannot fully 

reveal the ways in which recovery might be conducted using a facility yet to be 

introduced). Rather the true usability of such features will be revealed in system use, 

the tool itself will be changed by the introduction of an undo facility, and so the true 

nature of interaction with a system that supports undo cannot be fully predicted. An 

analysis of the schema that might underlie potential metaphors for undoing 

commands remains to be conducted. This is despite the need to provide one for the 

Medusa system identified in Chapter 7, and the recognised need to understand the 

limits and possibilities of undo in metaphor-based user interfaces in general 

(Tognazzini, 1992: Chapter 10). 

10.3.6 Individual Differences 

The differences of gender, age, ethnic background, cultural heritage, and so on, that 

Shneiderman judges must be accounted for by design guidelines are not considered 

in any detail in this research. The intended user population of the Medusa systems is 

all users of the systems who perform tasks supported by the operating system 

through necessity not choice. Therefore, it should be possible to perform all tasks 

supported by Medusa with little expertise. The issue of cultural diversity and 

metaphor understanding in interactive system design is briefly discussed in Section 

10.4.2. 

A topic that Marcus (1993) discusses, that is also deserving of further investigation 

continuing the work begun and reported in this thesis, is the need to be aware of 

cultural diversity in the design of computing systems. In Marcus' analysis, the types 

of metaphor that he considers important in forming the basis for a user interface 
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design, and the types of metaphor that he feels help the designer to design a product 

for an international audience, are metaphors that are broad in scope and that are 

meant to encourage understanding of a large part of the system's functionality. These 

metaphors are subject to the problems described in Chapter 3 and by 10hnson (1994). 

The use of metaphor in the second version of Medusa described in Chapter 9 

recognises the centrality of metaphor in cognition and understanding claimed by the 

Lakoffllohnson theory of metaphor understanding. In the contemporary theory, 

cultures define the categories that people possess, their conceptual structures, and the 

prototypical effects in category usage that will arise from the categories and 

conceptual structures. One conclusion that the contemporary theory allows us to 

reach is that since cultural effects are demonstrated even in the very basic image 

schemata that underlie people's understanding of the world, the strictly action-based 

Medusa version two system, or any other direct manipUlation interface, can never be 

an "interface for all." Lakofrs (1987) survey claims, for example, that even FRONT

BACK schemata (very basic and common patterns of interaction with the external 

world) differ across cultures. However there exists within Medusa considerable 

scope for exploring further limits to the comprehensibility and usability of direct 

manipulation interfaces where metaphor is employed in their meaning and 

understanding. 

10.3.7 Explanatory and Predictive Theories 

Shneiderman's (1986) most firmly stated demand is for HCI to develop robust 

theoretical foundations, theories forming a basis for research, design guidelines, and 

teaching. The complaint underlying the research reported here is that while metaphor 

is thought to be central to understanding the world (and user interfaces), and while 

theories of metaphor and metaphor understanding exist, few applications of specific 

theories of metaphor as applied to HeI seem to exist. The work reported here has 

sought to remedy this, and as such can be said to address one of the issues that 
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Shneiderman judges important. The work undertaken to date has not invalidated the 

notion that the Lakoffllohnson contemporary theory is a promising candidate theory 

capable of accounting for much of metaphorical understanding of interfaces, and 

understanding of metaphor-based systems. A continued investigation of how 

successful and useful a predictive tool the contemporary theory can be in user 

interface design is ongoing, and some discussion of this work can be found below. In 

some views of the process of scientific endeavour, a theory is of worth if it is, in 

principle, falsifiable. Further work using the LakofflJohnson theory should therefore 

address criticisms of it (for example Vervaeke and Green, 1997). 

10.4 Suggestions for Further Work 

10.4.1 Full Implementation of the Medusa Systems 

As discussed in Chapter 7, usability evaluation methods are based upon assumptions 

about the nature of learning and using interactive systems. These assumptions 

determine the types of usability errors revealed. Usability evaluation methods also 

differ in the number of usability errors that they reveal. The cognitive walkthrough 

method employed in Chapter 7 reveals only a small number of usability errors, this 

number would be increased if the number of system evaluators were increased. The 

use of a usability inspection method was required due to the lack of a working 

prototype of the Medusa system described in Chapter 6. 

The Medusa systems are grounded on particular models and theories, and a partial 

implementation of the first version was based on an (again partial) formal 

specification using the Agent notation (Abowd, 1990). The aims of the research 

include examining the possibility of specifying aspects of direct manipulation. The 

research aims also include examining the possibility of being able to formally 

describe system features which can maintain metaphors that do not suffer from the 
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breakdowns common to existing metaphors. However, even if a full specification 

had been completed, and principles of usability, such as those provided by Dix 

(1991), had been applied to the specification and the specification verified, it is 

unlikely that all usability errors would have been revealed. Work by Harrison, Roast, 

and Wright (1989) and Wright, Merriam, and Fields (1998) shows that the abstract 

model of a system cannot reveal all usability problems; testing involving a 

completed system and human subjects is required to reveal the true range of usability 

problems. Given the more complex model of metaphor and cognition assumed in the 

design of the second version of the Medusa system, the need for user testing is even 

greater than for the first Medusa system. The "scientific" model of usability analysis 

presented by Wright, Merriam, and Fields (1998) is of particular interest. For 

example, the testing of claims made by formal models by usability testing allows 

formal models to be refined and made more useful. The empirical study reported in 

Chapter 4, and the issues surrounding metaphor, action, and categorisation 

demonstrated by recent models and theories show that data obtained from people is 

the most valuable source of data when seeking to understand the user's 

understanding of an interactive system. Progress toward identifying useful interface 

metaphors and the schemata that structure them can be made by investigating 

existing systems and tasks in detail. Given a suitable corpus of interaction data, 

existing metaphor-based design methods seek to determine the verbs and nouns 

making up the task domain. In our approach, demonstrated in Appendix C, we 

attempt to identify the spatialisation, and other, metaphors that the task domain is 

understood in terms of. It is these larger metaphors that we will use in future to 

generate better visual representations and interaction sequences. 

10.4.2 Implementing Agents 

The formal notation explored as a means of specifying the Medusa systems, as 

mentioned, was Abowd's (1990) Agent model and language. While work has 
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continued on applying this model to the specification of interactive systems, and the 

problem of refining the specification into code (Treglown, 1998), refinement into all 

programming languages suitable for interactive user interfaces is not yet possible. 

Also, the additional theory developed, while permitting refinement of the external, 

dynamic, behaviour of agents, relies on transformation by hand~ tools to automate 

the refinement process remain a topic for further work. The agent model is, however, 

unsuitable for specifying some classes of systems that work in user interface 

metaphor must address. The model of concurrency adopted by the external 

behaviour of all the agent models that we have employed to date in this work cannot 

capture truly concurrent events. This problem will need further attention if the 

problem of designing a collaborative and shared Medusa environment is considered. 

The first step in this process is to continue work reported in (Treglown, 1998), and to 

generate a semantic equivalence between agent specifications and modules of code 

in a suitable programming language. This should be done instead of continuing to 

translate a transition system compiled from the external behaviour components of the 

agents making up a system into high-level language code in a principled, but 

informal way. 

10.5 The Future of Metaphors and Direct Manipulation 

10.S.1 Classes of Metaphor and Understanding Directness 

The types, or paradigms, of interaction that the user might have with a computing 

system are defined by Hutchins (1989) who refers to these types of interaction as 

interaction metaphors. The definitions employed in this thesis are Hutchins', but we 

have avoided referring to them as metaphors to reduce confusion. The types of 

systems we considered in this work were said to be based on the model world 

paradigm, in contrast with the conversation paradigm. Hutchins defines two other 

interaction metaphors, however, and some consideration should be paid to these, 
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especially if they should become increasingly relevant, and prevalent, in future 

systems. The declaration metaphor is based on ideas from speech act theory where 

utterances are sufficient to change the state of the \vorld (for example, "I pronounce 

you man and wife"). A declarative interface differs from the conversation paradigm 

in that utterances have a "causal force" in the world. The declaration metaphor is a 

poor metaphor, however, as \vhen the user issues an ungrammatical expression, no 

change in the world occurs. Thus if the user issues an expression with no causal 

force, or one that cannot bring about a change in the state of the world, there is no 

way to filter ol:lt or report objections to these expressions. Interaction witli such a 

system would eventually prove frustrating, not least because many expressions, 

notably those involving deictic reference, cannot be acted upon. 

The final interaction metaphor defined by Hutchins ( 1989) is collaborative 

manipulation, which is depicted in Figure 10.1. In this interaction metaphor, 

Hutchins states that the computer should be an actor in the setting in which it is 

employed and thus should behave as a human does in human-human interaction and 

should support conversational interaction. The model world metaphor, the 

interaction style that has been the subject of this thesis, is based on the assumption 

that people are skilled at manipulating objects in the environment. Because work is 

often conducted in a social world, and in a collaborative manner, this implies that 

user interfaces should consist of both a model world and an intelligent agent. Both 

the user and the agent should have equal ability to alter the system's state, but the 

agent can automate those tasks that are tedious for the user to perform. 
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Figure 10.1 The collaborative manipulation metaphor (Hutchins, 1989: 25). 

The notion that the collaborative manipulation metaphor represents the future of 

direct manipulation is one advocated by Frolich (1993). Shneiderman's 

(Shneiderman and Maes, 1997) antagonism towards agents, by contrast, means that 

he feels that the user should be the sole party in control of the system and that 

improving information visualisation should be the aim of the designer. Frolich 

(1993), building on recognised limitations of direct manipulation systems; and Maes 

(Shneiderman and Maes, 1997), arguing from the observation that file storage 

systems are no longer restricted to a small number of volumes on a local area 

network); both conclude that software agents and virtual partners are required. While 

the Medusa system designs do not exclude the possible inclusion of an agent as an 

application consistent with the model world, the file space model assumed by the 

first Medusa system better permits repetitive tasks and searching of the world-wide 

web to be conducted. These tasks use the same data structures that the user must 

understand and interact with in the local file space. The second version of the 

Medusa system, because it considers the grounding of metaphors in physical 

experience and because it is based on physical world metaphors, requires that any 

agent will be less consistent with the local model world. The agent's representation 

of the wider file space will be inconsistent with the user's, and it will be harder for 

the user to state their intentions so that the agent can act on them. By contrast, 

discussion of the local model world is easier. If the assumption that the image 
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schemata that the Medusa model world metaphors are grounded upon are common to 

the experience of the users is correct, then we possess a means for an agent and the 

user to discuss tasks and changes in the system's state. We also possess a basis for 

the same meaning of their respective utterances, irrespective of modality, to be 

inferred. 

10.5.2 Metaphors for Future Computing Systems 

In Chapter 2 a short review was undertaken of interesting computing systems of the 

sort described as antisedentary beigeless computing (ABC) by Underkoffler (1997) 

in which clear use of metaphor in their user interface is made. Marcus (1993) 

provides one analysis of the use of metaphor in ABC systems. In contrast to Frolich, 

Marcus is a proponent of the use of metaphors in user interfaces, and in future user 

interfaces. The principal type of ABC system that Marcus (1993) addresses are those 

termed personal digital assistants (PDAs). This class of ABC system is subject to 

the same criticisms of existing desk-bound systems that motivated the design of the 

Medusa systems. 

Unlike Norman's (1998) information appliances, which are typically computing 

systems dedicated to a single information-based task with the ability to share this 

infonnation with other information appliances, PDAs provide several application 

software packages that typically support office-based tasks in a single device. The 

PDA, therefore, must provide user interfaces to each of these applications within the 

capabilities provided by the PDA as a whole. Marcus' (1993) analysis provides 

metaphors (such as the Rolodex, the "to do" list, calendars, assistance, search, and 

selection) that a PDA must support. A basic PDA therefore presents the same 

problems in terms of its use of metaphor as those described in depth in Chapter 3. 

Where some PDAs differ from simply being a pocket-sized implementation of the 

desktop, however, is in preferentially supporting the verbs over the nouns that 
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describe users' tasks in the design of the user interface metaphors. The data objects 

which the applications manipulate are hidden or bound with the application's state 

rather than denoted as on-screen objects in their own right. One can see a key reason 

for this if the physical size of a typical PDA screen is compared with the screen real 

estate needed to implement a folders and files, or pile-based, data retrieval and 

storage mechanism. A focus of further work will be to examine how a Medusa-like 

system might be implemented for a PDA. Our experience of living with a PalmPilot2 

PDA for some time has demonstrated that support for classification and dynamic 

reclassification of events and data files, a topic addressed in detail in Chapter 9, is 

often in conflict in existing PDAs with support required to model the conceptual 

structures used to describe the model world. 

10.5.3 Metaphor-based Design 

Above, a number of new interface designs were presented, but although attempts 

were made to justify particular design decisions, very little was said about the 

impact, if any, of the development of Medusa on design practice. As with many 

other activities, analogy plays a part in design (Maclean et al., 1991), but we have, so 

far, not devoted much attention to how design of metaphor-based systems is, or 

should be, conducted. A small number of design methodologies for metaphor-based 

systems have been devised, and while they differ in the number of steps in the design 

process, many of the steps are common to the different methodologies. Marx (1994), 

Madsen (1994), and Carroll, Mack, and Kellog (1988) agree that design is a four

step process. Firstly, potential metaphors, from the user's point of view, are 

identified. Matches between these metaphors and underlying software are then 

identified with respect to representative task scenarios that the system must support. 

2 PalmPilot is a registered trademark of 3COM corporation. 
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Likely mismatches and their implications are also identified. Finally, design 

strategies to help users manage mismatches must be identified. 

For Smyth et al. (1995) design of metaphor-based systems is based upon a far 

simpler model of metaphor understanding than those described in Chapters 3 and 8, 

and comprises six stages. Firstly the system functionality is defined, next potential 

vehicles (source domains) are generated and described. Vehicle-system (target 

domain) pairings are then analysed to identify mismatches, including conceptual 

baggage - user's assumptions arising from the metaphor that cannot be applied in 

the electronic domain. Implementation of the metaphor eventually chosen requires 

that the issues of representation, realism and consistency must be considered. The 

next step in Smyth's et al. design process is to examine and choose suitable 

evaluation techniques, finally, lessons learned while undertaking the design of a 

metaphor-based system are used to adjust the details of how process steps are 

performed in future design tasks. 

Moll-Carrillo et al. (1995) adopt the same steps as Smyth's et al. design process. For 

Tscheligi and Vaananen-Vainio-Mattila (1998), design of metaphor-based systems 

consists of the following steps; firstly analysis of the task domain is undertaken, then 

mappings between sources and the target are generated. Visualisations of the sources 

in suitable graphical representations are then generated, the final step is to conduct 

evaluations of the mappings and their graphical representations. Tscheligi and 

Vaananen-Vainio-Mattila's work is interesting in that they, unlike others who have 

proposed metaphor-based design methodologies, have developed a design support 

environment to aid the development of metaphor-based interfaces. This tool, called 

ShareME, is limited, however, in that it addresses only the analysis problem -

finding suitable metaphors for a task domain - and only organisational metaphors 

such as houses and libraries for navigation tasks are stored in its metaphor library. If 

tools are to be more useful they must address more steps in the design process, and 
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they must havc access to a widcr range of possible source domains. Marcus (1994: 

42-43) suggests that: 

"What we shall see is not only the phenomenon of massive doses of 

ever changing news, sports, fashion, and tools delivered wirelessly 24 

hours per day, but also constantly fluctuating 'artifacts' or 'vehicles' 

for the delivery of the content. User interfaces will become 

publications themselves ... As new metaphors emerge, older ones will 

disappear. The constant will be change. Imagine what it would be like 

if the Macintosh GUI were announced one week with world-wide 

flare and were gone in three months to be replaced by another variant. 

Welcome to the future.· 

Donald A. Norman3 promises, or perhaps threatens, that "there will always be new 

metaphors" for user interfaces to information systems. The theories and analysis 

methods described above will give us ways of determining which of these new 

metaphors, irrespective of an overall design methodology devised, and the design 

support tools eventually employed to create them, can be understood by users. 

These methods also give us ways of suggesting consistent ways of interacting with 

these new systems. 

3 Personal commWlication at book signing of (Nonnan, 1998), London, 26th October 1998. This 

remark, however, contradicts sections of (Norman, 1998), see pages 180-181, which were discussed 

in Section 5.1. 
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Appendix A 

Qualitative Process Theory Notation and Models of 
Generic Processes 

"One day, J had a saucepanjull of water on the gas ring. Just as it was about to boil, 

I was suddenly called away. When J came back, 20 minutes later, the saucepan was 

quite empty. Now I had locked the door; the window was closed, and the room was 

empty except for the cat. So obviously it was the cat who drank the water. " 

- Erik Satie (1866-1925), from sleeve notes, Piano Music, EMI Records. 

This appendix summanses the Qualitative Process Theory notation due to Forbus 

(1984) employed in this thesis. Possible QPT models of the generic commands that 

may be applied to files (Rosenberg & Moran, 1985) are also presented. 



A.1 Qualitative Process Theory Notation Employed in the 

Thesis 

Quantity-type 

Has-Quantity 

Individuals 

Preconditions 

Declaration of an object attribute. 

Declaration of an attribute possessed by a 

particular object type. 

The objects involved in, and affected by a process. 

Conditions which lie outside process definitions, 

usually suggesting some human intervention. 

Quanti tyCondi tions Conditions of values of attributes that must apply 

Relations 

Influences 

A[ ••• ] 

Am[ ••• ] 

1+( ••• ) 

1- ( ••• ) 

(T ••• ) 

OCQ+ 

before a process becomes acti vc. 

Relations between values of attributes of object. 

Values are directly influenced by other values 

while a process is active. 

The amount (value) of some attribute of an object. 

The magnitude of a value (sign is ignored). 

Value is directly influenced by other values. The 

value increases while the process is active. 

Decreasing direct influence. 

The proposition~ or condition~ is TRUE. 

A value is qualitatively proportional to another. 

The value increases while the process is active, 

but the relationship is not as well defined as with a 

direct influence. 

A value is inversely proportional to another. 
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A.2 QPT Models of Generic Commands 

A.2.1 Moving a file 

Process move-file 

Individuals: 
source-file an object, Has-Quantity(source-file, size) 
dest-file an object 
source-dir a directory 
dest-dir a directory, 

Has-Quantity(dest-dir, free-space) -
path a data-path, 

Connection(data-path,source-dir, dest-dir) 

Preconditions: 
(T task-is-move-file) 
Aligned(path) 

QuantityConditions: 
A[free-space{dest-folder)] > A[size(source-file)] 
A[size{source-file)] > ZERO 

Relations: 
Let move-rate be a quantity 
A[move-rate] > ZERO 
move-rate ocQ+ device-speed (dest-folder) 
move-rate ocQ_ system-load 

Influences: 
1- (size{source-file), A[move-rate]) 
1+ (size{dest-file), A[move-rate]) 
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A.2.2 Copying (or duplicating) a file 

Process copy-file 

Individuals: 
source-file an object, Has-Quantity(source-file, size) 
duplicate-file an object 
source-dir a directory 
dest-dir a directory, 

Has-Quantity(dest-dir, free-space) 
path a data-path, 

Connection(data-path,source-dir, dest-dir) 

Preconditions: 
(T task-is-move-file) 
Aligned{path) 

QuantityConditions: 
A[free-space(dest-dir)] > A[size{source-file)] 
A[size(source-file)] > ZERO 

Relations: 
Let copy-rate be a quantity 
A[Copy-rate] > ZERO 
copy-rate ~Q+ device-speed(dest-folder) 
copy-rate ~Q_ system-load 

Influences: 
1+ (size{duplicate-file), A[copy-rate]) 

312 



A.2.3 Deleting a file 

Process delete-file 

Individuals: 
file an object, Has-Quantity(file, size) 

Preconditions: 
(T task-is-delete-file) 

QuantityConditions: 
A[size(file)] > ZERO 

Relations: 
Let delete-rate be a quantity 
A[delete-rate] > ZERO 
delete-rate ocO- system-load 
delete-rate ocO+ device-speed 

Influences: 
I- (size(file), A[delete-rate]) 

313 



A.2.4 Printing a file 

Quantity-Type (pages-to-print) 
Quantity-Type (document-type) 
Quantity-Type (paper) 
Quantity-Type (printer-model) 
Quantity-Type(pages) 

process print-file 

Individuals: 
doc a document, 

Has-Quantity(doc, document-type), 
Has-Quantity(doc, pages) 

myprinter a printer, 
Has-Quantity (myprinter, pages-to-print), 
Has-Quantity (myprinter , printer-model), 
Has-Quantity (myprinter, paper) 

network a datapath, Connected (doc, myprinter, 
network) 

Preconditions: 
Aligned (network) 
(T task-is-print-file) 

QuantityConditions: 
A[paper(myprinter)] > ZERO 
A[pages-to-print(doc)] > ZERO 

Relations: 
Let print-rate be a quantity 
A[print-rate] > ZERO 
print rate ~Q printer-model(myprinter) 
printrate ~Q document-type(doc) 

Influences: 
I-(pages-to-print(doc), print-rate) 
I-(paper(myprinter), print-rate) 
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Appendix B 

Forms used to Conduct Cognitive Walkthroughs 

Chemist: Ah, certainly. Walk this way please. 

Man: If I could walk that way, I wouldn't need aftershave. 

- Chapman et al., Monty Python's Flying Circus: Just the Words Vol.}, Methuen. 

B.I Forms Completed During a Walkthrough 

During the second phase of a walkthrough, the walkthrough itself, a number of 

questions must be answered and forms completed by the individual(s) conducting the 

walkthrough for each action in the action sequence prepared which, if performed, 

would result in the successful completion of the task.. The forms for the full version 

of cognitive walkthrough undertaken and reported above are taken from Poison, 

Lewis, Rieman and Wharton (1992) and reproduced below. 



B.1.1 Section One of Phase Two of a Walkthrough 

Cognitive Walkthrough For A Step 

Task _____________ Action # ________ _ 

1. Goal structure for this step 

1.1 Correct goals. What are the appropriate goals for this point in the 
interaction? Describe as for initial goals. 

1.2 Mismatch with likely goals. What percentage of users will not have these 
goals, based on the analysis at the end of the previous step? Check each goal in 
this structure against your analysis at the end of the previous step. Based on that 
analysis, will all users have the goal at this point, or may some users have 
dropped it or failed to fonn it? Also check the analysis at the end of the previous 
step to see if there are unwanted goals, not appropriate for this step, that will be 
fonned or retained by some users. (% 0255075 100) 
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B.1.2 Section Two of Phase Two of a Walkthrough 

2. Choosing and executing the action. 

Correct action at this step: ____________ _ 

2.1 Availability. Is it obvious that the correct action is a possible choice here? If 
not, what percentage of users might miss it? (% 0255075 100) 

2.2 Label. What label or description is associated with the correct action? 

2.3 Link of label to action. If there is a label or description associated with the 
correct action, is it obvious, and is it clearly linked with this action? If not, what 
percentage of users might have trouble? (% 0255075 100) 

2.4 Link of label to goal. If there is a label or description associated the correct 
action, is it obviously connected with one of the current goals for this step? 
How? If not, what percentage of users might have trouble? Assume all users 
have the appropriate goals listed in Section 1. (% 0 2550 75100) 

2.5 No label. If there is no label associated with the correct action, how will 
users relate this action to a current goal? What percentage might have trouble 
doing so? (% 0 25 50 75 100) 

2.6 Wrong choices. Are there other actions that might seem appropriate to some 
current goal? If so, what are they and what percentage of users might choose 
one of these? (% 0 255075100) 

2.7 Time-out. If there is a time-out in the interface at this step does it allow time 
for the user to select the appropriate action? How many users might have 
trouble? (% 0 25 50 75 100) 

2.8 Hard to do. Is there an)1hing physically tricky about executing the action? 
If so, what percentage of users will have trouble? (% 02550 75 100) . 
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B.l.3 Section 3 of Phase Two of a Walkthrough 

3. Modification of goal structure 
Assume the correct action has been taken. What is the system's response? 

3.1 Quit or backup. Will users see that they have made progress towards some 
current goal? What will indicate this too them? What percentage of users will 
not see progress and try to quit or backup? (% 0 255075 100) 

3.2 Accomplished goals. List all current goals that have been accomplished. Is 
it obvious from the system response that each has been accomplished? If not, 
indicate for each how many users will not realise it is complete. 

3.3 Incomplete goals that look accomplished. Are there are any current goals 
that have not been accomplished, but might appear to have been based on the 
system response? What might indicate this? List any such goals and the 
percentage of users \vill (sic) think they have actually been accomplished. 

3.4 "And-then It structures. Is there an "and-then" structure, and does one of its 
subgoals appear to be complete? If the subgoal is similar to the supergoal, 
estimate how many users may prematurely terminate the "and-then" structure. 

3.5 New goals in response to prompts. Does the system response contain a 
prompt or cue that suggests any new goal or goals? If so, describe the goals. If 
the prompt is unclear, indicate the percentage of users \vho will not form these 
goals. 

3.6 Other nelV goals. Are there any other ne\v goals that users will form given 
their current goals, the state of the interface and their background knowledge? 
Why? If so, describe the goals, and indicate how many users \vill form them. 
NOTE that these goals mayor may not be appropriate, so forming them may be 
bad or good. 
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Appendix C 

Metaphors We Stack By 

"PeT IBak] has an appealing visual analogy faT a system at the critical state: a sand 

pile. " 

- Roger Lewin (1993) Complexity: Life at the Edge of Chaos, J. M. Dent. 

C.I Introduction 

The second version of the Medusa system, discussed in Chapter 9 above, is designed 

to make use of a version of the pile metaphor to support casual organisation of the 

user's work and to support ad hoc categorisation to aid performance of the user's 

immediate tasks. In this appendix an analysis is undertaken using the 

Lakoff/Johnson theol)' to attempt to ground the metaphorical language used to 

describe user's work and organisation of information. This analysis also seeks to 

define the aspects of the second Medusa user interface that support file organisation 

tasks. As we have not yet undertaken a study of users' existing pile-related tasks ( 

the analysis below is based upon the study undertaken by Malone (1983), who 

provides considerable data from the users that he studied. We quote considerably 

from Malone's (1983) paper below and use his text as the corpus to be analysed. The 

need to conduct a study of our own similar to Malone's is prompted by the analysis 

presented below, and would help to identify further issues and task scenarios that a 

computer-based pile system may need to support. 



C.2 Users' Construction and Use of Piles 

Malone classifies the construction and use of piles into two types, neat and messy. 

These categories reflect a user's job type and status in addition to their need for, and 

use of, information resources. This distinction is maintained below in collecting 

meaningful passages describing pile organisation from Malone's study in case a 

number of metaphors are found to be needed to describe piles and their use. 

e.2.1 A Neat Office 

In Malone's study, 'Michael' is said to have a neat office. Malone describes Michael's 

office and information usage saying: 

"As a purchasing agent, Michael's' \vork is based primarily on a set of 

standard forms. The arrangement of his office reflects the flow of 

these forms, and the description will focus on this flow. There are 

different piles and files in the office for different kinds of forms and 

for forms in various stages of processing. Michael summarised one 

aspect of this as follo\vs: 

The good stuff is all out on the table. The paperwork flow is 

always out. I don't put paperwork - other than the stuff that is in 

the suspense file - in a drawer. (M.P., 10/27/81) 

According to Michael's description, purchase requisitions enter his 

office in his in-basket (top of tray A) and he sorts them into two 

groups awaiting processing in pile B. Some requisitions can be 

processed immediately and put in the out-basket (bottom of tray A); 

others are kept in the 'hold' tray (middle of tray A) until further 

infonnation can be collected (usually by telephone). Each morning, 
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Michael sorts the processed forms from the out-basket (bottom of 

tray A) into folders in tray D for distribution. 

When his copy of a purchase order returns to Michael's in-basket, he 

files it in the suspense file (F) of open orders according to the date 

when the merchandise is supposed to be delivered. When forms 

confirming delivery ('receivers') amve from the receiving 

department. they are temporarily placed in pile H and then matched 

with the purpose orders on file ... Pile C contains purchase oroers from 

file F that require some special action as a result of someone calling 

to check on them or change them. 

The bookshelf contains primarily books and catalogues. loosely 

arranged. The bottom drawer of file F contains information on freight 

and commodities. arranged by subject. Information to be files here is 

also stacked in pile I and tray E. The desk file drawer includes more 

product information, administrative memos. and blank forms - again 

arranged by subject. Michael sometimes uses his blackboard to list 

important things to remember to do. and he has a bulletin board that 

contains some telephone numbers and address lists." (Malone, 1983: 

101-102) 

C.2.2. A Messy Office 

Malone offers as an example of a messy office that of 'Kenneth', saying: 

"As a research scientist. Kenneth has very little routine paper flow. 

Most of the information in his office consists of books, papers, 

magazines. personal notes, and computer listings. In contrast to 
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Michael's fairly neat and narrowly defined piles, Kenneth's office is 

filled with loosely stacked piles of mixed content. For example, here 

is how Kenneth describes the contents of piles A, B, C, D and E. 

Kenneth: Beside my terminal [piles A and B] are basically piles 

of stuff about what I need in hacking in the recent past. The 

deeper you go, the further back it is. Off to the right [gestures to 

piles C, D, and E] is stuff that I've shoved to the right when the 

pile beside my terminal got too high. But I've periodically 

pruned it so it's no longer useful; it's just a pile of junk .... 

Interviewer: ... But these things [gestures to piles A and B] - you 

know pretty well what's in these piles? 

Kenneth: Vh .. there's probably one or two copies of the paper 

David and I have been working on, piles of notes on [two 

projects], and there's probably some other random things -

documentation for computers ... Here's [pulls document out of 

pile B and reads its ,title]. Actually I have a ne\ver one 'sitting in 

the - I know there's a newer one sitting in the pile [looks through 

the pile A]..and I don't know where it is. Ah! here's a good one -

the new one. 

A similar lack of clear organisation prevails on the desk as well: 

Kenneth: The desk is sort of random. It's sort of mostly recent 

stuff, because I periodically do clean off my desk. For about 30 

seconds it's clean. I usually separate it into piles that have to be 

instantly answered, should be answered in a week, or whatever 

has appropriate places. That pile there is mostly stuff that should 

be dealt with in a \veek .. And it's been sitting for months. 

The desk mostly has right now sort of - I get infinite junk mail, 

subscribe to too many magazines. So a lot of that is magazine 

reading I haven't caught up on. And there's a few piles of critical 
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stuff in there. I don't know . .I'm sure when I find them. 

somebody will be mad at me for not answering their letter. I 

have a letter from Baker hidden someplace in here complaining 

about one of my papers. It's been here for a year and a half and I 

haven't answered it. (K. H. 10/16/81) 

The rest of the office has other piles of books and papers on the floor 

as well as on tables and shelves. The bookshelves include binders of 

computer documentation. technical reports. and back -issues of 

journals. some of which are filed with cardboard dividers. There are 

two bulletin boards containing assorted items such as letters. phone 

messages. research notes. and a raffle ticket The blackboard 

contains. among other things. remnants of several conversations and 

two partially redundant lists of things to do." (Malone. 1983: 103-

104) 

The two case studies that Malone details. which are quoted from above. differ in 

their use of piles .• In both cases. though. the exact roles of piles in the temporal 

order and time scales in which tasks must be performed (and in the success with 

which deadlines are met) are similar. Also similar are the language and metaphors 

used by Malone. 'Kenneth'. and 'Michael' to describe interaction with piles. These 

metaphors will be examined in the following section. 

C.3 A Logic of Piling 

A fundamental image schema that describes much bodily experience. 10 the 

Lakoffllohnson view, is the CONTAINER schema. lohnson (1987) observes that 

human beings constantly experience their bodies as containers and as things in 
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containers (for example, rooms). The notion of containment, as is captured in an 

image schema, is depicted in Figure C.l. 

o 
Figure e.l A containment schema (Johnson, 1987: 23) 

The container schema, in Lakofrs (1987) description has the structural elements of 

an interior, a boundary and an exterior, and like many image schemas its internal 

structure yields a basic "logic". This logic is described by Lakoff (1987: 272) as 

follo\vs: 

"Everything is either inside a container or out of it - P or not P. If 

container A is in container B and X is in A, then X is in B - which is 

the basis for modus ponens: If all A's are B's and X is an A, then X is 

aB." 

10hnson (1987: 22) identifies a number of consequences of the structure of in-out 

schemata of the sort that will ground understanding of actions that bring about or 

change instances of containment, these consequences being: 

"(i) The experience of containment typically involves protection 

from, or resistance to, external forces ... 

(ii) Containment also limits and restricts forces within the 

container ... 

(iii) Because of this restraint of forces, the constrained object gets 

a relative fixity of location ... 
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(iv) This relative fixing of location within the container means that 

the contained object becomes either accessible or inaccessible 

to the view of some observer. It is either held so that it can be 

observed, or else the container itself blocks or hides the object 

from view. 

(v) Finally, we experience transitivity of containment. If B is in 

A, then whatever is in B is also in A.II 

We can reveal the user's work language and the metaphors that ground 

understanding of a domain by applying the methods suggested by the few metaphor

based design approaches that exist. The method used by Lakoff and Johnson 

(Lakoff and Johnson, 1980; Lakoff, 1987; Johnson, 1987) is to catalogue actual 

speech production in order to highlight metaphors and to link speech to the concepts 

underlying it. The method is similar to that of the textual analysis used in object

oriented design, we identify metaphors by highlighting (by underlining) verbs and 

nouns that describe piles and interaction with them. It is possible, by examining the 

ways that Malone and his subjects talk about pile organisation and the gestures 

observed by Malone as his subjects describe their information resource organisation, 

to conclude that understanding of piles is based on the PILE IS CONTAINER 

metaphor. The first Medusa system, described in Chapter 6, examined the 

consequences of the FOLDER IS CONTAINER metaphor underlying document 

organisation in systems that implement the desktop user interface metaphor. Also in 

Chapter 9, the question raised by Mander, Salomon and Wong (1992) as to how 

their pile metaphor fitted in with the Apple implementation of the desktop metaphor 

as a whole was considered. As piles and folders are understood in terms of the same 

image schemata, one can question whether the pile is much of an advance over the 

traditional folder. One is able to understand users' confusion over the behaviour of 

piles and folders being used in the same desktop environment when files pass over, 

or are dropped onto, piles and folders. The image schemata that ground 
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understanding of both piles and folders are the same. We can suggest, therefore, that 

a user confronted by a folder on the top of a pile is likely to conclude that a file 

dropped ont~ the pile will be placed in the folder, the folder being the apparent target 

for the file when dropped. Means of overcoming this ambiguity within the second 

version of the Medusa system were discussed previously in Chapter 9. 
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