
Open Research Online
The Open University’s repository of research publications
and other research outputs

The role of metaphor in user interface design
Thesis
How to cite:

Treglown, Mark (2002). The role of metaphor in user interface design. PhD thesis. The Open University.

For guidance on citations see FAQs.

c© 2002 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

The Role of Metaphor in User Interface Design

Mark Treglown

MSc Applied Artificial Intelligence, University of Aberdeen, 1991

BSc (Hons.) Computer Science, University of Sussex, 1990

Submitted for the degree of Doctor of Philosophy in Human-Computer Interaction

Institute of Educational Technology, The Open University, Milton Keynes.

December 1999

THE OPEN UNlVE

RESEARCH SCHO

Library Authorisation

Please return this form to the Research School with the two bound copies of your thesis to be deposited
with the University Library. AIl candidates should complete parts one and two of the form. Part three
only applies to PhD candidates.

Part One: Candidates Details

Name: .. M A. R K ... T.R~.t;[r.~ ~.~ PI: ... ~.7..~.~.~ 7. 2..'
Degree: r. .~.~ ... ,
Thesis title: ... 'THE ... gQ~.e. QF.. .. M.€T.~.PHQR.. . .IN ... u SE. ~ '.~R.FA'E. ..

......... l>.~~.~~N

Part Two: Open University Library Authorisation

I confirm that I am willing for my thesis to be made available to readers by the Open University Library,

::n:t Itd:.d°~~:.;;tl~C~~O~Of.~e~i~~:~: ... tt: ... ~ .. ~~ ..
Part Three: British Library Authorisation [PhD candidates only]

If you want a copy of your PhD thesis to be available on loan to the British Library Thesis Service as
and when it is requested, you must sign a British Library Doctoral Thesis Agreement Form. Please
return it to the Research School with this form. The British Library will publicise the details of your
thesis and may request a copy on loan from the University Library. Information on the presentation of
the thesis is given in the Agreement Foml.

Please note the British Library have requested that theses should be printed on one side only to enable
them to produce a clear microfilm. The Open University Library sends the fully bound copy of theses to
the British Library.

The University has agreed that your participation in the British Library Thesis Service should be
voluntary. Please tick either (a) or (b) to indicate your intentions.

~ I am willing for the Open University to loan the British Library a copy of my thesis:
A signed Agreement Form is attached

D I do not wish the Open University to loan the British Library a copy of my thesis.

Signed: I.1.~ .. --:-..I.~.r.J.n Date: .. L+.: ... ~ .. ~~ ..
h:vaxm\word\fonlls\EX12

Abstract

The thesis discusses the question of how unfamiliar computing systems, particularly

those with graphical user interfaces, are learned and used. In particular, the approach

of basing the design and behaviour of on-screen objects in the system's model world

on a coherent theme and employing a metaphor is explored. The drawbacks, as well

as the advantages, of this approach are reviewed and presented. The use of

metaphors is also contrasted with other forms of users' mental models of interactive

systems, and the need to provide a system image from which useful mental models

can be developed is presented.

Metaphors are placed in the context of users' understanding of interactive systems

and novel application is made of the Qualitative Process Theory (QPT) qualitative

reasoning model to reason about the behaviour of on-screen objects, the underlying

system functionality, and the relationship between the two. This analysis supports re

evaluation of the domains between which user interface metaphors are said to form

mappings. A novel user interface design, entitled Medusa, that adopts guidelines for

the design of metaphor-based systems, and for helping the user develop successful

mental models, based on the QPT analysis and an empirical study of a popular

metaphor-based system, is described. The first Medusa design is critiqued using

well-founded usability inspection method.

Employing the Lakoff/lohnson theory, a revised verSIOn of the Medusa user

interface is described that derives its application semantics and dialogue structures

from the entailments of the knowledge structures that ground understanding of the

interface metaphor and that capture notions of embodiment in interaction with

computing devices that QPT descriptions cannot. Design guidelines from influential

existing work, and new methods of reasoning about metaphor-based designs, are

presented with a number of novel graphical user interface designs intended to

overcome the failings of existing systems and design approaches.

Acknowledgements

My grateful thanks go to my supervisor Tim O'Shea, for his advice, encouragement,

editorial advice, and for his patience.

I would like to thank Debbie Stone and Vanessa Evers for proofreading previous

drafts, and for their invaluable comments. The work reported in this thesis benefited

from conversations with Gregory Abowd, Mark Elsom-Cook, Alan Dix, Thomas

Green, Kim Issroff, Tim O'Shea, Steve Schneider, Randall Smith, and Debbie Stone

among many others. Thank you to Matt Smith, Don Clark and Mark Elsom-Cook for

lending me hardware and office space to conduct the MacLeaming study reported in

this thesis. Many thanks and sincere apologies are due to Richard Bomat, Gill

Ritchie, Pete Woodward, Ben du Boulay, Des Watson and Roger Sinnhuber for help

with empirical work that eventually proved impossible to conduct.

I would like to thank Simon Holland who was responsible in large part for my

studying at the Open University. Thank you to Eileen Scanlon and all in the

CALRG. Thanks are due to Marian Petre for providing Sun workstations, and to

Yibing Li for making sure they ran more often than not. I would like to thank Dave

Perry, Jon Oliver, Dave Signorini, Rob Griffiths and Colin Pink for technical

support. Thank you to everyone in cyberspace who provided advice, references, code

fragments and who sent useful papers; keep on rockin' in the free world. Louis

Feinberg and Jerome and Maurice Horowitz also provided invaluable assistance.

"Technical texts are generally understood to report work that their authors have

done; they are focused on machinery in a broad sense, be it hardware, software, or

mathematics. They open by making claims - 'Our machinery can do such and such

and others' cannot' - and they confine themselves to demonstrating these claims in a

way that others can replicate. They close by sketching further work - more problems,

more solutions. Critical texts, by contrast, are the work that their authors have done.

Their textuality is in the foreground, and they are focused on theoretical categories.

-
They open by situating a problematic in an intellectual tradition, and they proceed by

narrating their materials in a way that exhibits the adequacy of certain categories and

the inadequacy of others. They close with a statement of moral purpose."

- P. E. Agre (1997) Computation and Human Experience, Cambridge University

Press: xiii.

"This is the time, and this is the record of the time. 11

- Laurie Anderson (1979) United States live I-W, Warner Brothers Records.

Table of Contents

Chapter 1: Introduction 1
1.1 The Problem 1
1.2 A Solution - Metaphor Recommended 3
1.3 A Solution? Metaphor Also Considered Harmful 4
1.4 A Solution - Ne\v Metaphors and Approaches to Metaphor 5
1.5 Overview of the Thesis 6

Chapter 2: Existing Approaches to the Use of Metaphor and 13
Analogy in User Interface Design

2.1 Introduction 13
2.1.1 WIMP Systems 14

2.2 The Desktop 17
2.3 Rooms 18
2.4 The Al ternate Reali ty Ki t 24
2.5 Metaphor and non-visual representation 29

2.5.1 Auditory Icons 30
2.5.2 SonicFinder 32
2.5.3 SharedARK 33

2.6 The "Reality" Metaphor and New Interaction Styles 34
2.6.1 Optical Metaphors 36

2.7 Conclusions 39

Chapter 3: An Empirical Study of First-time Macintosh Users 41
3.1 Overview of the study 43

3.1.1 The Subjects 43
3.1.2 Methodology 43
3.1.3 Tasks Performed by Subjects 44
3.1.4 Caveats 45

3.2 Observations 46
3.2.1 Using the Manual 46
3.2.2 Using the On-line Help Facility 47
3.2.3 Interpreting the Desktop Metaphor 48
3.2.4 Basic User Interaction 52

3.3 Conclusions 56

Chapter 4: Drawbacks to Employing Metaphors and 58
Analogies in Interactive User Interfaces

4.1 Introduction 58
4.2 Operational Metaphors 59
4.3 Structural A pproaches to Metaphor 63
4.4 Structural Approaches to Metaphor and Learning of Computer- 68
Based Systems
4.5 The Pragmatics of Metaphor 72

4.5.1 WIMP Systems 73
4.5.2 Instruction 73

ii

4.5.3 Basic user interaction 74
4.5.4 The Desktop 75

4.6 Discussion - Metaphor and System Learning and Use 76
4.7 Types and Theories of Metaphor 82

4.7.1 Interaction Theories 83
4.7.2 Metaphor and Analogy 85

4.8 Is Metaphorical Understanding of User Interfaces 88
Possible?
4.9 Cognitive Semantics of User Interface Metaphors 93

4.9.1 Image Schemata and Metaphorical Projection for 94
Understanding
4.9.2 The Lakoffllohnson Theory in HCI 98

4.10 Conclusions 101

Chapter 5: Users' Models of Interactive Systems 102
5.1 Introduction 102
5.2 Types of Users' Models of Systems 105

5.2.1 Networks 108
5.2.2 Glass Box Models 109
5.2.3 Surrogates 110
5.2.4 Task-action Mappings 115
5.2.5 Qualitative Models as Mental Models 116

5.3 The Role of the Display as Source of Information in System 123
Learning and Use
5.4 Using the Lakoffllohnson Model for Analysis and 125
Design of User Interfaces

5.4.1 Case Study I:An Immersive Environment 126
5.4.2 Case Study 2:Snap-Dragging 129
5.4.3 Case Study 3:The Apple Macintosh Trashcan 131

5. 5 Conclusions 134

Chapter 6: The Medusa System 136
6.1 Introduction 136
6.2 Basic Criteria that the Medusa System Should Satisfy 137
6.3 General Layout of the Medusa Display 138
6.4 Performing Basic Tasks in Medusa 139

6.4.1 Using the Toolbar 140
6.4.2 Collections of Objects 142
6.4.3 Moving Files between Containers 146
6.4.4 Deleting Files 147
6.4.5 Interacting with the Root Window 149

. 6.5 Breakdowns ISO
6.5.1 Hardware Breakdowns 150
6.5.2 Buffers 151
6.5.3 Predicting Breakdown 152

6.6 Conclusions 154

11l

Chapter 7: The Medusa System Design Rationale
7.1 Introduction
7.2 The Medusa System -Version One

7.2.1 The Workbench
7.2.2 Objects in the Model World
7.2.3 What Are Files?
7.2.4 An Ontology of Invisible Objects?
7.2.5 Numbers of Objects -Directories and Containers
7.2.6 The Computer-Computer Metaphor
7.2.7 Penonning Tasks in Medusa
7.2.8 Groups of Objects
7.2.9 System Feedback
7.2.10 Help
7.2.11 The File Manager

7.3 Implementing Medusa
7.3.1 Use of the Agent Notation and Language
7.3.2 System Architecture
7.3.3 The Application
7.3.4 A Partial Implementation

7.4 Conclusions

Chapter 8: A Critique of the Medusa System Design
8.1 Introduction
8.2 The Cognitive Walkthrough Method

8.2.1 Interaction and The Cognitive Walkthrough
8.2.2 Conducting the Walkthrough Method

8.3 A Cognitive Walkthrough of the Medusa System
8.3.1 Preparation
8.3.2 Perfonning the Cognitive Walkthrough
8.3.3 Task 1 - Running an Application
8.3.4 Task 2 - Moving a File
8.3.5 Task 3 - Adding a Method to the Toolbar

8.4 Design Haws in the Medusa System Version One
8.4.1 Basic Interaction
8.4.2 Understanding the Computer-Computer Metaphor
8.4.3 Directly ManipUlating the Intangible

8.5 Conclusions
8.5.1 Is The Computer Metaphor Better Than Others?

Chapter 9: Revised Versions of the Medusa System
9.1 The Medusa System - Version Two

9.1.1 Direct Manipulation
9.1.2 The Workbench
9.1.3 Objects in the Model World
9.1.4 File Management - Piles of Objects
9.1.5 Perfonning Tasks in Medusa Version Two
9.1.6 Other File Organisation Solutions

iv

155
155
156
156
157
170
172
172
175
177
182
183
186
187
188
189
190
193
194
196

197
198
199
199
201
203
203
204
205
207
209
212
212
215
215
218
219

221
222
222
224
225
227
234
247

9.2 Medusa-1: - A System Addressing Temporal Problems 259
9.2.1 Implementing Medusa-1: 263

9.3 Conclusions 263

Chapter 10: Conclusions and Further Work 265
10.1 Summary of the Thesis 265
10.2 Contributions of the Thesis 267

10.2.1 Medusa in a Cognitivist Framework 267
10.2.2 Medusa in a Cognitive Semantics Framework 269

10.3 Does the Work Address Key Issues in HCI? 270
10.3.1 Interaction Styles - What is Natural? 270
10.3.2 Input Techniques - Putting Intention into Action 272
10.3.3 Output Organisation 273
10.3.4 Response Time 274
10.3.5 Error Handling - Preventing User Errors 274
10.3.6 Individual Differences 275
10.3.7 Explanatory and Predictive Theories 276

10.4 Suggestions for Further Work 277
10.4.1 Full Implementation of the Medusa Systems 277
10.4.2 Implementing Agents 278

10.5 The Future of Metaphors and Direct Manipulation 279
10.5.1 Classes of Metaphor and Understanding Directness 279
10.5.2 Metaphors for Future Computing Systems 282
10.5.3 Metaphor-based Design 283

References 286

Appendix A: Qualitative Process Theory Notation and 309
Models of Generic Processes

A.l Qualitative Process Theory Notation Employed in the Thesis 310
A.2 QPT Models of Generic Commands 311

A.2.1 Moving a file 311
A.2.2 Copying (or duplicating) a file 312
A.2.3 Deleting a file 313
A.2.4 Printing a file 314

Appendix B: Forms used to Conduct Cognitive Walkthroughs 315
RI Forms Completed During a Walkthrough 315

B.1.1 Section One of Phase Two of a Walkthrough 316
B.1.2 Section Two of Phase Two of a Walkthrough 317
B .1.3 Section 3 of Phase Two of a Walkthrough 318

Appendix C: Metaphors We Stack By 319
C.l Introduction 319
C.2 Users' Construction and Use of Piles 320

C.2.1 A Neat Office 320
C.2.2. A Messy Office 321

C.3 A Logic of Piling 323

v

List of Figures

Fi gure 2.1 A Desktop 17
Figure 2.2 Relationships between tasks,engaged tools,Rooms and windows 21
Figure 2.3 Mail,a Room for reading electronic mail 22
Figure 2.4 An ARK simulation of bodies moving under mutual gravitational 25
attraction
Figure 2.5 The ARK \varehouse 26
Figure 2.6 ARK buttons 26
Figure 2.7 ARK representatives 27
Figure 2.8 An ARK interactor 27
Figure 2.9 The ARK hand 28
Figure 2.10 The metaDESK concept 37
Figure 2.11 MetaDESK 37

Figure 3.1 An on-line help speech balloon 48
Figure 3.2 Icon denoting a file produced by SuperPaint 51
Figure 3.3 An application program 51
Figure 3.4 Close window button 53
Figure 3.5 Finder menu icon 54

Figure 4.1 Domain model of the solar system 66
Figure 4.2 Domain model of the structure of the atom 66
Figure 4.3 Highlighted text placed on a saw-tooth sheet 69
Figure 4.4 Building blocks of slipnets 80
Figure 4.5 Part of a slipnet representing the alphabet 80
Figure 4.6 GEdit,a paper-like interface 82
Figure 4.7 The our 1 schema 96
Figure 4.8 The ourl schema 96
Figure 4.9 The our3 schema 96
Figure 4.10 Some pervasive image schemata 98

Figure 5.1 QPT notation attributes and on-screen objects 118
Figure 5.2 A QPT model of a moving object in an ARK simulation 120
Figure 5.3 A QPT model of motion 121
Figure 5.4 A QPT model of moving a file within the underlying system 122
functionality
Figure 5.5 A vie\v inside Osmose 126
Figure 5.6 The Structure of the Osmose model world 127
Figure 5.7 The COUNTERFORCE schema 128
Figure 5.8 The ATTRACTION schema 130

Figure 6.1 General layout of the Medusa display 140
Figure 6.2 Invoking the tool bar for an on-screen object 142
Figure 6.3 Collections of objects - containers 143
Figure 6.4 A Toolbar for a Group 145
Figure 6.5 Placing a data file into a container 147
Figure 6.6 Visualising the Medusa keyboard buffer 152

vi

Figure 7.1 The categories of Medusa system version one on-screen objects 158
Figure 7.2 Typical text file icons 161
Figure 7.3 A Hypercard stack 168
Figure 7.4 A multidimensional icon denoting a C language file 170
Figure 7.5 The potential capacity of a directory 173
Figure 7.6 The first design of device description in Medusa 176
Figure 7.7 The second design of device description in Medusa 177
Figure 7.8 Get-value sub-task 179
Figure 7.9 An unloaded multifunction cursor for a 3-button mouse 181
Figure 7.10A sample tool bar 182
Figure 7.11 SSOU feedback states 186
Figure 7.12 An agent 190
Figure 7.13 The UMA user interface architecture 192

Figure 8.1 Norman's Seven-Stage Model of Interaction 199
Figure 8.2 Moving the pointer over an icon 205
Figure 8.3 Revealing the toolbar for a file 206
Figure 8.4 Moving the pointer over the "Run Application"toolbar option 206
Figure 8.5 Selecting the "Move to"toolbar option 208
Figure 8.6 Indicating the destination container when moving a file 208
Figure 8.7 Moving the pointer over the meta-toolbar 210
Figure 8.8 Selecting the "Add Command"toolbar option 211
Figure 8.9 Selecting the "Edit using Text Tool" hierarchical toolbar option 211

Figure 9.1 Spreading out a pile's contents by a horizontal gesture 231
Figure 9.2 Gestures to browse the contents of piles 232
Figure 9.3 Reality, alternate reality, and meta-reality 233
Figure 9.4 Starting a new pile 236
Figure 9.5 Adding a file to an existing pile 237
Figure 9.6 Spreading out a pile in a revised version of Medusa 238
Figure 9.7 An account of file copying (Dourish and Button, 1998:423) 242
Figure 9.8 The COMPULSION schema 246
Figure 9.9 Toolbar options for a conduit 247
Figure 9.10 A Lifestream 251
Figure 9.11 Data Mountain for web page favourites 256

Figure 10.1 The collaborative manipulation metaphor 281

Figure C.l A containment schema 324

vu

List of Tables

Table 2.1 Physical Instantiation of GUI Elements in a TUI 38

Table 5.1 An action-effect rule describing partial behaviour 103
of the Macintosh Finder interface.

Table 7.1 Basic interaction tasks and virtual devices 179
Table 7.2 Dra\vbacks of user interface services and reasons for adopting a 191
user interface architecture.

Table 8.1 Goal structure for first walkthrough task 207
Table 8.2 Goal structure for second walkthrough task 209
Table 8.3 Goal structure for third walkthrough task. 212

Table 9.1 Units of desk organization 228
Table 9.2 Mappings for the Time Orientation metaphor 253
Table 9.3 Mappings for the Composite Moving Time metaphor 253

Table 10.1 Part of an OSM table for a drawing package 269

viii

Chapter 1

Introduction

"So then I got down to the writing. and it was awful. I don't know why I'd ever

romanticised it. I don't know why anyone would want to do it. It stinks. It's like a

disease. It's an illness. writing. It steals your body from you. There's no audience.

You're alone."

- Spalding Gray, from the 'Monster in a Box' monologue.

1.1 The Problem

Card, Moran, and Newell (1983: vii) claim that:

"Designing interactive computer systems to be efficient and easy to

use is important so that people in our society may realise the potential

benefits of computer-based tools."

The vast majority of user interface designers and researchers of human-computer

interaction (HC!) will agree with this view. What is not agreed upon, however. is

how interactive systems should be designed; or how efficiency and ease of use may

be designed for and how a completed system can be judged to possess them; or how

one recognises a member of a society who can be expected to understand and make

use of a computing system; or how systems should be designed so that they are

comprehensible and usable in a particular culture or society; or indeed whether

computing systems, in fact, deliver any benefits to those who use them (Landauer,

1995). For Herbert Simon (1981), design, like all activity, is a matter of making

choices from options and actions in a problem space. Confronted by numerous

options, people engage in a process termed satisjicing - making choices that are

satisfactory, not necessarily those that are optimal - if they are to not be stuck in a

state of paralysis, unable to decide between a number of equally valid choices. In

some sense, we are more fortunate if constrained by time and the limited availability

of resources. For the user interface designer, there exist many tens of design lifecycle

models, interaction styles, input and output devices, programming languages, user

interface toolkits, and usability evaluation techniques which can be combined in

many \vays during a design task. This multiplicity of choice arises because of what is

claimed to be a theory gap in HCI (Landauer, 1989; Long and Dowell, 1989). There

is no theory of user interface design that allows us to construct the best interface

given a set of requirements and constraints, neither are there sufficient bodies of

knowledge or of experimental data provided by cognitive psychology which can be

employed to constrain design choices. If we are to discuss user interface design, we

are required to constrain the types of system we examine.

The interfaces we consider are those where, in contrast to command-based interfaces

where the user converses with an unseen agent in a natural or artificial language

about an unseen but assumed task domain (the conversation paradigm of

interaction), the task domain is depicted on-screen and its state may be directly

altered. These systems are said to be based on the model world paradigm (Hutchins,

Hollan, and Norman, 1986). Such systems are a subset of those systems termed

direct manipulation (Shneiderman, 1982, 1983). Direct manipUlation systems are

characterised by:

• Continuous representation of the object of interest;

• Physical actions or labelled button presses instead of complex syntax;

2

• Rapid incremental reversible operations whose impact on the object of interest is

immediately visible.

1.2 A Solution - Metaphor Recommended

Even when the types of systems we consider in this research are restricted to those

that support the model world paradigm of interaction, many design methodologies

exist that can be considered and employed in a design task. The approach we
-

consider in this research is one that is recommended by many influential and best-

selling texts (Hix and Hartson, 1993; Neilsen, 1993; Thimbleby, 1990), which is to

use a metaphor or analogy in the depiction and programming of the behaviour of on

screen objects. Analogy is recommended as a means of understanding new concepts

and problem solving in many domains, it is, for example famously advocated by

P6lya (1945) as a method for mathematical problem solving. The motivation

underlying user interface metaphors is that users can make use of their existing

knowledge structures with little modification, making the unfamiliar interactive

system easier to use and learn than if users need to be acquire new knowledge

structures (Carroll and Thomas, 1982). An example of how the use of user interface

metaphors is recommended to students of computer science students is given by

Evanson and Holland (1996):

"To make users feel comfortable, successful software surrounds them

with pictures or icons of familiar objects. Because such environments

are meant to resemble the everyday world, designers say they're using

a metaphor.

Good software uses metaphor, which allows people to draw on their

mental models of how the world works. All screen objects should fit

the metaphor and act in sympathy with the user's expectations."

3

1.3 A Solution? Metaphor Also Considered Harmful

While employing metaphors and analogies in the design of on-screen model worlds

is often recommended, the metaphor-based user interface design process has not

been described in detail by researchers. Anderson, Smyth, Knott, Bergan, Bergan,

and Alty (1994) are exceptions and do provide some details as to how metaphors

could be employed and how the best metaphor could be chosen from a set of

alternatives. While metaphor-based design is ill-defined, there is some question as to

whether metaphors do, in fact, offer the best solution to providing users with systems

that are easily learned, used, and understood. As detailed in Chapter 4, previous uses

of metaphor in user interfaces show that the metaphors employed give rise to serious

usability problems while solving others. Criticisms of the use of metaphor in user

interface design are long standing. Halasz and Moran (1982) describe the problem

most often encountered with metaphors, that they break down. There often, if not

always, exist aspects of the analogical source domain that ,viII not carry over into the

target domain, or some functionality supported by the target domain of the

computing system cannot be accounted for by the user interface metaphor. In all

accounts of the cognitive mechanisms underlying metaphor understanding that have

been proposed as valuable in user interface design, and in all existing approaches to

employing metaphors, we see that metaphors are subject to these sorts of failures and

breakdowns. That metaphors are implemented on computer hardware presents

additional difficulties, the behaviour of model worlds, system image or system

illusion, is dictated to an unpredictable degree by the behaviour of the operating

system and by the hardware on which it, and the user interface process, executes.

In addition to pragmatic difficulties, and the possibly inherent problem of

breakdowns and limitations of scope in metaphors, there exist other difficulties with

the use of metaphor in user interface design. The most serious arise from philosophy

4

and formal semantics, recent work in which fields (for example Putnam, 1981;

Lakoff, 1987), in addition to a shift from long standing views of mind and cognitive

science, points to a view that suggests that metaphor plays no role in understanding.

This work suggests that user interfaces cannot be understood through metaphor, as

metaphor is currently widely understood in user interface design.

1.4 A Solution - New Metaphors and New Approaches to

Metaphor

Current trends in user interface design show a shift away from the metaphors

currently widely used in desktop computing systems, toward immersive

environments and desktop virtual realities, augmented realities, and visual

formalisms. Also of growing importance are spatial metaphors, where the location

of objects in the model world is more important for understanding and recognition

than classification, action, and existing knowledge structures of a real world domain.

Seeking to avoid the explicit use of metaphors in model worlds that are intended to

account for much of the target system ignores the major part metaphor plays in

understanding the real world, and by extension, in understanding model worlds.

As with many aspects of cognition, metaphor has proved to be far more complex to

understand than tasks that people themselves consider difficult. With user interface

metaphors though a poor design can seem as difficult for users to understand and

interact with as the mental mechanisms of metaphor understanding are to the

researcher. Human-computer interaction has responded to the problem of metaphor

and analogy in a number of ways. As mentioned above, current trends are shifting

away from designs in which the problem of addressing metaphor must be faced. As

with consciousness, problems can be divided into those that are easy and those that

5

are hardl
• The easy problems of explaining cognitive functions are easy because they

only require the specification of a mechanism that can perfonn the function. The

hard problem is that even after all functionality has been explained, the further

question of why functions are accompanied by experience may remain. Much of the

previous work on analogy and metaphor surveyed belo\v addresses the easy

problems. While some avoid either type of problem and regard metaphor in HC! as

an area in which all problems have been solved or are unworthy of consideration, if

user interface design is to understand the user experience, the hard problem of

experience in general \vill eventually have to be addressed.

The solutions adopted in this research are, firstly, to develop new metaphors to the

functionality and services provided by systems which existing metaphors seek to

explain. Secondly, other new metaphors are based on methods of thinking about the

analysis of systems and metaphors that have previously not been applied to user

interface metaphors and human-computer interaction, or that have not previously

been explored in the depth that they are in this research. These methods of thinking

have a focus on human experience built in and so allo\v some progress on the hard

problem to be made. Case studies examining existing interface design solutions, and

also novel interface designs, are undertaken to illustrate the approach adopted.

1.5 Overview of the Thesis

We present the motivation for a novel user interface to facilities supported by a

computer's operating system. We also present details of its design and a critique of

the design based on the results of applying a usability inspection method. This

I lbis distinction is attributed to, and is frequently discussed in the writing of, the philosopher David

Chalrners, for example "Facing up to Consciousness" in Rita Carter's (2002) Conrciousnesst

Weidenfeld and Nicholson: 50-55.

6

interface, rather than employing a single real world metaphor, attempts to make

mechanisms that would otherwise be implicit and would have to be inferred by

users, explicit. The interface is designed with the intention that users are more able

to construct a realistic mental model of the system. Important in this part of the

thesis is the realisation that the difficulties presented by existing theories of

metaphor understanding, and their application in design tasks, must be addressed. In

addressing these difficulties, a contemporary theory of metaphor, not usually applied

to user interface design, is introduced and its usefulness is explored by undertaking a

number of small case studies. In these studies, aspects of novel -user interfaces that

prove difficult to describe and account for are examined. This theory is then

employed as a predictive tool to help design a revised version of the novel user

interface design presented earlier. In the revised design, the difficulties of metaphors

are appreciated, but the pervasive nature of metaphor in understanding is not

ignored.

Chapter Two reviews a number of existing, historically important, systems which

employ metaphors and analogies in providing a user interface to the facilities offered

by the operating system of a complex computing device. Those systems that had a

profound impact on future commercially available systems, or on human-computer

interaction research, are focused on. In particular, systems that have helped to define

what is commonly understood by the use of metaphor in user interface design, or

that have employed metaphors when considering interaction using novel or

unfamiliar modalities, are surveyed.

Chapter Three presents the results of an empirical study of first-time users of the

Apple Macintosh computer. This study was undertaken to examine the robustness of

a previous similar study which explored the usability of another desktop metaphor

based user interface, and to examine the pragmatics of user interface metaphors in

use in order to question the claim that interfaces based on metaphors have superior

7

usability. Results of the study are also used to constrain the design of the novel user

interface design presented in Chapters 6 and 7.

Chapter Four examines the role of metaphors and analogies in learning to use

unfamiliar computing systems. Analogy plays an important role in learning and

problem solving. Users \viIl often make use of existing skills and knowledge and

may make spontaneous analogous connections when they are confronted \vith a new

system. The use of analogies and metaphors is not without difficulties however. In

this chapter the drawbacks of specific metaphors; the difficulties that aiise when

specific theories of metaphor are applied in an attempt to understand what role

metaphor plays in HCI; and the difficulties of attempting to evaluate chosen user

interface metaphors, are surveyed. This chapter surveys the theories of metaphor that

have previously been, or which can be, employed to design, criticise, or reason about

the usability of, user interfaces. Realising the drawbacks of existing theories of

metaphor comprehension and the limitations of other forms of mental model

description, recent work undertaken by George Lakoff and his colleagues, including

Mark Johnson, on metaphor comprehension is also considered in this chapter.

Application of Lakoff and Johnson's \vork as a candidate approach to user interface

metapho~ is then presented.

Chapter Five places metaphors in the context of other forms of mental models that

users may possess and employ \vhen interacting with computing systems. It is found

that many approaches to aiding users by providing them with an account of how

computing systems work also rely on metaphors. This chapter also seeks to stress the

importance of users having useful knowledge of how a computing system works. In

addition to knowing how their tasks should be performed, knowing how the device

works is useful if interaction with a system is to be successful; if methods for

performing new tasks are to be generated; if unexpected system behaviour is to be

explicable and, where needed, correcting tasks must be performed. Using a

8

qualitative reasomng model and notation developed in the field of artificial

intelligence, a novel attempt to model the behaviour of objects in model worlds, and

to analyse the relationship between objects in the model world and their

implementation as functionality in the underlying software, is presented. This

method of analysis supports a revised view of the domains between which analogical

mappings should be thought of as being made between when graphical user

interfaces are required to be understood. This model also reveals and captures the

mismatches between user interfaces based on a physical world metaphor and the

actual behaviour exhibited by these systems based on a physical world metaphor. It

also suggests, as with other means of capturing mental models, that knowledge of

the underlying functionality, and its actual, and temporal, behaviour is required if

user interfaces are to be understood fully. Sections of this chapter have been

previously published as (Treglown, 1994). The ability of the Lakoffllohnson theory

of metaphor understanding to provide accounts of how problematic features of

existing user interfaces can be understood, or shown to be inherently difficult to use,

is demonstrated in a number of case studies presented in this chapter. Sections of this

chapter have been previously published as (Treglown, 1999; 2000; 2001).

Chapters Six and Seven present the design of the Medusa system, the motivation for

which arises from, in particular, the design guidelines discussed in Chapter Five. The

system architecture and details of a proposed implementation are presented along

with relevant aspects of the system's specification. Medusa provides a graphical user

interface to the application programmer interface of the operating system of a

complex computing device. Medusa also provides a representation of the computer's

file space and supports file organisation and retrieval tasks. Medusa adopts three

principles that are applied consistently to every relevant instance of the classes of on

screen objects. These principles are, firstly, the idea of self-representation in icon

design, where the final form in which a data file is presented is used to generate a

rich icon design for the file. User interface design is not the only discipline in which

9

metaphors have been commonly used to account for the concepts that make up the

domain of interest. In cognitive science, particularly in naive psychology, for

example, metaphors have frequently been used to explain mental states and

behaviour. Rumelhart (1989: 298) claims that "... the serial processing Von

Neumann computer has become the dominant approach to the understanding of

higher mental processes over the past 25 years or so." Rumclhart complains that

while the metaphor has a great deal of merit, and improved upon many

conceptualisations of the mind that preceded it, the conceptual baggage carried by
-

the computer metaphor for the brain has limited, or must inevitably limit, further

progress in understanding. Rumelhart suggests that more brain-like metaphors must

replace computer-like metaphors to account for the brain. Rumelhart (1989: 299), in

short, \vants to " ... replace the computer metaphor with the brain metaphor". In the

design of Medusa , therefore, we seek for users to have greater understanding of the

system by replacing traditional user interlace metaphors with a computer metaphor

to explain a computing system .. This involves providing sufficient description and

depiction on-screen of the device components, their interconnections, and their

dynamic behaviour to permit users to easily alter accessible system parameters. In

addition, unexpected system behaviour should be noticeable and explained in a ,\'ay

that refers to the state of the hardware and operating system, but which does not

require breaking the model world's metaphor. The third principle is consistency of

task sequences, the same interaction style is adopted to permit interaction \vith every

instance and class of on-screen object.

Chapter Eight presents a critique of the Medusa system design described in Chapters

Six and Seven. As no complete working prototype of the Medusa system exists, low

cost usability inspection methods are employed to examine the usability of the

system design. The usability inspection method chosen is the cognitive walkthrough

method. This technique is termed an inspection method rather than an evaluation

method because no user studies are conducted, it is, though, a technique proven to be

10

able to deteInline the usability of a system when users attempt to perfOITI1 tasks that

the system is designed to support. A number of cognitive walkthroughs are reported

which consider realistic interaction tasks and which demonstrate the general

usability of the Medusa system. The walkthroughs, however, also reveal some minor

usability difficulties and the omission of any interface features that support recovery,

being able to reach a desired system state after perfoInling an erroneous action.

Possible design solutions to support recovery are discussed in Chapter 10. Design

solutions addressing other failings of the Medusa system are presented in Chapter 9,

the means of analysis used to justify these solutions are presented- in Chapters 4 and

5.

Chapter Nine presents details of the design of a second, revised, version of Medusa

which is based upon employing the account of metaphor understanding presented in

Chapter Eight as a predictive and critical tool. Motivation for another revised version

of Medusa, entitled Medusa-'t, is presented. Medusa-'t is closely related to the

Medusa system, it retains much of the Medusa system's design, but additional

requirements are considered. These are intended to address the breakdowns in

system behaviour and understanding that occur due to the uncertain temporal

behaviour of computing hardware and its user interface. Two approaches to

addressing the problems of breakdown in interface behaviour can be proposed, one

can give the user an explanatory account of the source of the breakdown, or one can

attempt to prevent, through appropriate hardware and software technology, the

breakdown from occuning. Medusa-'t employs on-going work in fOInlal

specification of user interface software, software architectures, and the choice, and

possible development, of appropriate programming languages to prevent temporal

breakdowns in the behaviour of on-screen objects where possible. This on-going

11

work is described. Sections of this chapter \\'ere accepted for publication2 but are to

date unpublished.

Chapter Ten concludes and summarises the thesis. The contributions of the \\'ork arc

described and suggestions for further work are presented.

2 At the International Workshop on Physicality and Tangibility in Interaction, (Sienna, Italy, 20-22

October 19(9).

12

Chapter 2

Existing Approaches to the Use of Metaphor and
Analogy in User Interface Design

"We didn't have metaphors when I was young. We didn't beat about the bush."

- Fred Trueman.

2.1 Introduction

Learning to use an unfamiliar computer system can take a considerable time as users

acquire the knowledge required to use the system successfully. Carroll and Thomas

(1982) state that the relevant knowledge structures cannot, by definition, be accessed

at first, instead related knowledge is accessed and forms a metaphor for the

knowledge being acquired. Users are often found to devise and employ metaphors

when learning a previously unfamiliar computer system (Payne, 1991a), but systems

designers can often aid users by making the metaphor to suitable related knowledge

explicit in the model world represented on-screen. Metaphors employed in user

interfaces tend to be copula, directive, instructional, statements of the form "X is

(like) aY". According to these assertions, an unfamiliar domain, X, can be explained

by making its similarities to a familiar domain, Y, explicit.

Metaphors employed in user interfaces may be employed to describe some small

aspect of the system, or a single application. The lightbox metaphor (Uidtke and

Nackunstz, 1987), for example, has been employed to present X-ray data, and the

note card metaphor (Halasz et aI., 1987) has been employed in hypertext systems.

Metaphors may also be employed to represent many aspects of a computer system,

for example, the Notebook metaphor (Fox and Gonzalez, 1989) is offered as an

extension of the sorts of window manager systems discussed in more detail below.

The metaphors of interest in this thesis are those that attempt to represent the

facilities offered by a computer's operating system to support tasks such as file

management. These interfaces are of interest as every user of the computer will

employ them at some point, and they attempt to represent an artificial domain, that

of the computer's storage facilities and operating system, \vith which most users will

not be familiar beforehand.

2.1.1 WIMP Systems

Many of the systems discussed in this chapter, and considered in the rest of this

thesis, are collectively termed WIMP systems. They are characterised by the use of

Windo\vs, Icons, Menus and a Pointing device (or Windows, Icons, Mice, and Pull

down menus, according to some interpretations of the acronym). An early discussion

of the concept of windows may be found in Kay (1969), although many of the

concepts and problems raised by windows date back through systems such as

Sutherland's (1963) Sketchpad to early research in computer graphics. A window

provides a view onto data or a data structure. Windows allow a portion of the data to

be seen where the data is too large to be comfortably displayed on-screen in its

entirety. Large graphics images and multi-page documents are examples of such

data. Douglas Engelbart's rejection of the windows paradigm, as implemented in

WIMP systems, and much of the discussion about post-WIMP interface design (for

example, Van Dam, 1997) is due to the idea that " ... WIMP interfaces are still

'marking interfaces' that in effect use 'digital ink' to make marks on digital 'paper' on

a digital 'desktop'" (Bardini, 2000: 225). The complaint offered by critics is that

windows are tied to these limiting metaphors. The power of, and the advance made

14

by, windows as proposed by Alan Kay was" ... in part to eliminate the modality of

applications. He also wanted to eliminate the distinction between operating system

and applications but succeeded primarily in making the functioning of of the

operating system visible in the form of the desktop." (Raskin, 2000: 141). The

fundamental metaphors that critics argue underlie the window concept are not,

however, faithfully implemented in real systems. Kohler (1987) observes that with

many systems, notably text editors, the space in which data is displayed, which is

viewed through the window, may itself depend on quite complex metaphors which

must be recognised and interpreted by users. Only a portion of the entire display is

visible within a window. In order to view the remaining portions of the large display

scrollbars are often attached to windows. The scrollbar determines and represents the

portion of the view currently visible in the window. The scroll bar can also give an

idea of the size of the extract visible in relation to the size of the document as a

whole, and the approximate position of the visible extract within the document.

Smith (1987) discusses the notion of features which are literal to the metaphor

employed by the system, or which are considered magical, in that they lie outside the

metaphor yet increase the ease with which functions may be performed. Windows

are powerful user interface features based on a metaphor, scroll bars have no

analogue in the real world and are therefore magical, yet are demonstrably useful

interaction objects. A more complex fundamental metaphor is discussed in detail in

Section 4.4.

Smith (1977: 71) describes icons as "two-dimensional, visual, analogical, concrete

descriptions of concepts." In the Xerox Star, icons simply denoted a closed window,

whether this window provides a view onto the files in a directory in the file store, or

it is a window employed by a currently active program. Icons are increasingly

fundamental objects in user interfaces, they are usually visually atomic in that they

have no internal structure, and hence may be employed as lexemes in human

computer dialogues. Unlike command-based user interfaces, the result of a command

15

may not merely be a description of the result of carrying out the conlmand, but may

provide objects which may be used direclly in the user's subsequent task.

Menus are often implemented as a form of window, but with simplified mechanisms

for scrolling through their contents. The menu, like its restaurant namesake, presents

the user with a list of items from which a selection may be made. In user interfaces

they are employed to present the user with a list of actions acceptable at the current

point in the user's dialogue \vith the system. Users select and interact with the objects

displayed on-screen using some form of pointing device. Light pens and dataglovcs

are examples of such devices, the most commonly used are mice and trackballs,

however, which convert the motion of the mouse, or the rotation of the suspended

trackball, into changes in the position of an on-screen cursor. Input from buttons

attached to the pointing device is used to select on-screen objects or cause operations

on objects to be performed. A requirement of any pointing device is that a sense of

spatiomimesis (Hutchins, Hollan, and Norman, 1986), immediate and appropriate

feedback in the position of the on-screen pointer in response to movement of the

pointing device, be perceived by the user. The importance of such system behaviour

will be considered further below.

In the design of user interfaces which employ icons as a major component of the

system, it has been noted (Gittins, 1986) that the model world of the system may be

represented in terms of a useful metaphor by designing the icons according to a

collective theme. A well-known metaphor employed in user interfaces, in which this

is demonstrated, is the desktop metaphor. The desktop metaphor \vas devised for the

user interfaces of the Xerox Alto and Star computer systems (Johnson et al., 1989)

and was subsequently adopted by the Apple Lisa and Macintosh computers. Unlike

some WIMP user interfaces, the desktop metaphor consistently employs icons

designed according to the collective theme of an office environment.

16

2.2 The Desktop

The desktop builds on the ideas presented in the discussion of user interfaces which

employ windows, icons, menus and some form of pointing device in employing a

consistent metaphor in the design of the user interface. The path of development of

the desktop metaphor has been a subject of much historical, and legal, argument.

Johnson et al. (1989), Kay (1993), and Levy (1994) all provide details of the

principal influences on the desktop's development. The desktop metaphor arose from
-

work by the Xerox corporation into the design of systems to support the

development of the electronic office. Smith et al. (1982a; 1982b) identified the

option available to designers of employing metaphors in the design of user interfaces

resulting in on-screen objects familiar to potential users from their everyday working

environment. An example of an electronic desktop can be seen in Figure 2.1.

,. " File Edit Ulsw 51]8Cl81 WlnllIlW&

[}] LJ LJ
S~$ttm folder WGrd111E1'i1

LJ
A6STRIIClS

LJ EJ --
LJ

mll·:sig

LJ
Hlr t;'s stuff ~Huff

~LJ
PUblic

LJ
31 urr tD print LJ Blbl1ognph1e8

LJ
LJ

cll!l.C'is

LJ
CD nt1=rl!nc 1!5

LJ
Jub:s

Superpe1nt

LJ
LA11tn

LJ
AI nuff

LJ
CSP 8. Z

LJ
,Adrni n

LJ
:11 is

Utili tll$ f11e trim f HyWorlc

Figure 2.1 A Desktop

Smith and his colleagues, the designers of the Xerox 'Alto' and 8010 'Star' systems,

the first commercially available systems to employ the desktop metaphor, recognised

17

that familiar analogies and metaphors may be used to introduce new concepts and

functions to a potential user. The approach chosen by Smith and his colleagues \vas

to create electronic counterparts of objects in the physical office with which the

intended user population were familiar. In this \vay, the icons denoting text files are

analogous to, and resemble, paper documents, directories on disks are analogous to

folders, and electronic mail facilities are analogous to in and out trays. The design of

the icons used in the Xerox 8010 Star's model world were the result of considerable

design and testing effort (Bewley et al., 1983). Operations performed on objects are

also analogous to operations that would be performed in the real world: filing a

document requires moving it to the picture of a folder, whereas in the real world it

would be carried to the physical folder itself.

Even in the design of the earliest desktop metaphor system, the Xerox Star, the

system's designers appreciated the distinction between literal and magical features.

The file storage system of the Star does not completely resemble real-world filing

cabinets in that it adds a search mechanism which allows files or folders required by

the user to be located without him or her having to browse the file structure tree. In

the empirical study reported in Chapter 3 of first-time Macintosh users, such search

facilities were used in preference to having to browse the file space. Search facilities

are magical features, however, knowledge of a typical file organisation relics on the

memory of a filing clerk, or on some some external catalogue. Certainly a request for

the whereabouts for a file will tend not to produce the file ready for use, as is

possible in direct manipulation user interfaces.

2.3 Rooms

The Rooms metaphor extends the notion of the WIMP user interface. It provides

display structures that collect together related on-screen windows and addresses the

particular issue of supporting task switching as a part of working practice and

18

computer use. Analysis of users' command histories (Bannon, Cypher, Greenspan,

and Monty, 1983) has shown that users spend periods of time performing a certain

task, but will interleave the commands employed in performing that task with the

commands used to perform other tasks. Users this way spend periods of time on

tasks punctuated by transitions and time spent performing other tasks.

In basie WIMP systems, the software tools employed in order to perform some task

will each require one or more windows to be open on-screen. However, as users

switch their attention from one sub-task to another, they are forced to switch their

attention from one set of windows to another. The arrangement of windows on

screen has a great effect on the time it takes to switch attention from one window to

another. The amount of real estate on-screen is often limited, and the number of

windows visible at one time, or the size of the visible windows will be limited as a

result (Billingsley, 1988). To overcome this space contention problem windows may

be either tiled, or may overlap (Bly and Rosenberg, 1986). In a tiled window system,

no window is obscured by any other window, however tiled windows may be very

small. If a window is enlarged by the user in order to make its contents legible, then

the other windows must be resized in order to remain visible on the screen. The

recently developed elastic windows (Kandogan and Shneiderman, 1997) model is a

space-filling tiled window, but one in which hierarchies of windows may be

constructed to suit user roles and tasks, and in which operations, such as closing,

may be performed on an entire hierarchy, not just a single window. Overlapping

windows are more complex in that, in addition to having to be resized, windows not

relevant to the current sub-task may have to be closed, or hidden behind windows

that the user is interested in.

This problem of switching between windows has been likened by Card et al. (1985)

to the use of virtual memory within a computer's operating system. Virtual memory

allows a computer system to run programs which require larger amounts of physical

19

memory than the computer has available. This is achieved by storing the contents of

memory locations that have not recently been accessed onto a secondar), storage

device and retrieving them into main memory when these data are required. Card

and Henderson (1987a) employ terminology analogous to that of virtual memory in

their discussion of the Rooms metaphor. They describe the requirement of having to

ready an engaged tool, a software application used in performing some task, by

manipulating its window, or by running the required application, as being initiated

by a tool fault. If data located in secondary storage is needed in main memory, the

terminology of virtual memory describes this as a page fault. Every time a user is

forced to switch between \vindows on a computer screen, there is a delay as the user

makes the required windo\v visible. The Rooms metaphor attempts to minimise this

overhead. The need to switch rapidly between tasks was noted by the Xerox Star's

designers (Johnson et al., 1989) and led to tiled windows being employed in that

system's user interface. As the number of tools required to perform the major task

increases, the time spent s\vitching between tools increases. In extreme cases, as with

computer operating systems, the phenomenon of thrashing can occur; where users

spend more time switching between tasks than they spend actually performing their

tasks.

The design of the Rooms user interface is influenced by the observation that work

conducted using a computing system is made up of phases of activity spent on

particular sub-tasks using software tools punctuated by transitions to other sub-tasks

performed using other software tools. The need to minimise transitions between sub

tasks and the software on \vhich they are performed and hence reduce the time taken

to complete the user's larger tasks is a particular issue addressed by Rooms. Central

to the Rooms metaphor is the notion that all of the software tools engaged to

accomplish a major task, such as reading electronic mail, are placed within one

"room", or screen-sized work space. Tasks, however, may not be independent, an

engaged tool may be used when performing two or more tasks. Also, it may be

20

desirable to have some tools, such as a clock, visible at all times in all rooms. An

engaged tool may have a different role in one task to the role it has in another task, it

should therefore be possible to adapt a tool to match the task. Figure 2.2 shows the

relationships between tasks and engaged tools and Rooms and windows.

I User Activity I
WORK

TASKS

SUBTASKS

USAGES

ET'S

I Rooms System Concepts I
OVERVIEW

ROOMS

INCLUSIONS

PLACEMENTS

WINDOWS

Figure 2.2 Relationships between tasks, engaged tools, Rooms and windows

(Henderson and Card, 1986: 380).

A Room is a named screen-sized work space; in each room are the windows opened

by the programs used to perform a major task. A Room containing a number of tools

for reading and sending electronic mail, taken from Henderson and Card (1986:

224), can be seen in Figure 2.3. Each room also contains a number of icons

resembling doors, these doors symbolise paths from one Room to another. To switch

between tasks, the user clicks on the door to the Room that contains the engaged

tools for the other major task.

21

-- . __ ._--
•• ·t •••• 1_ , ••

;'.11 J •• , ";y ., ••• , ,.; .~

P', "'"",-..-... -- - .. ~.,
t • :....... :.. :.::.:.

',1 I~" t-'f ·;, ... 1 .·d •• ·.~1 It.·; '" ~ I ' : u, •.•. ·r
"I 'It" ~~";l. ~ ... :.:'~ ~A'~~~ ••• 1 ~ 'I <.t... . tu.,·· t." ... 1. '. 1" .tll' ''(' I» ~., •

1'~ :dl,·. (". "'~f"

~E;~~~~~;~~~;I :.' ".,· .. ,· ... , ... :I·.'·'~.,.
"l'·-OIJ"'I·'.":._ tf'tA,.·, t' nl:"'~ n .• ~,. L",·· •. ,·. ,'·f ".1\,:. " .,. ' •• """:'j,'~ •
• ' f. 't ,I, • : ~ I • 1 •. " -'" ~ •••. : Tt " I., ..

. J A i~~~~:~· ~ i~~~1~~i~'~:'~~·

Figure 2.3 Mail, a Room for reading electronic mail

In case the user wishes to return to the Room that they entered the current Room

from, Back Doors are provided. These special doors overcome the difficulty raised

by most doors in the Rooms system that only permit one-way travel between Rooms,

and help the user who may not remember the name of the Room they have just left.

Card and Henderson (1987a) state that as the number of Rooms increases, the

complexity of the interconnections between Rooms can create an electronic maze,

for this reason t\VO other mechanisms to aid the user navigate a network of Rooms

are provided.

The first user navigation aid is a pop-up menu listing the names of all the Rooms in

the net\vork, from which the desired destination Room may be selected. The second

solution is the Overview. The Overview displays a grid of pictograms of all of the

Rooms currently in use arranged by the rooms' names in alphabetical order. To help

the user find a particular window, window pictographs may be expanded to allow the

user to browse through the windows in the entire set of Rooms.The paths between

22

doors and the Rooms they connect onto may, in addition, be superimposed on the

Overview to show the web of interconnections between Rooms. These features,

while improving the Rooms system, lie outside the basic Rooms metaphor, although

the menu (as was mentioned in Section 2.1.1), and the use of a plan view of the

network of Rooms in the Overview both rely on analogies and metaphors.

Other features that support users employ analogies that are closer to the central

theme of moving between a number of inter-connected rooms. Users may wish to

have an engaged tool, and the data associated with that tool, for example a text file

and the editor used to prepare the file, accompany them as they move from one

Room into another. The concept of baggage permits this. Baggage is simply the

identification of tools that should travel with the user as they move into the next

Room. If a number of tools are to travel with the user at all times, they are said to be

placed in the user's pocket and appear in a Room within every Room the user visits.

The notion of Room inclusion, having a Room contained within the current Room is

the solution provided to the problem of defining the location and position attributes

of tools that must remain constant across workspaces. If a change is made to any of

the engaged tools in the collection, the change is propagated throughout the entire

network of Rooms.

The Rooms metaphor provides a user interface which allows users to switch quickly

between tasks without being delayed by the overhead of having to resize windows or

to search for data files; the Rooms themselves, however, require a great deal of time

to configure. In order to overcome this problem, Card and Henderson (l987b)

devised the mail-order catalogue metaphor. The mail-order catalogue metaphor

allows users to install and configure Rooms far more quickly than would otherwise

be possible. Users may configure a network of Rooms by simply ordering pre

defined Rooms, Suites (small, pre-defined networks of Rooms) and engaged tools

from the catalogue. By employing the catalogue, the user can define a network of

23

Rooms which will be available instantly when the user starts the machine, users can

also use a previously unused software application with far less difficulty than if they

were using the basic Rooms system.

2.4 The Alternate Reality Kit

The Alternate Reality Kit (henceforth ARK) was developed by Randall Smith

(Smith, 1986). ARK shares many of the features of the systems, and is influenced
-

by, the same systems that influenced the development ?f the systems mentioned

discussed above. Its name, for example, follows from David Canfield Smith's

(Smith, 1977) Pygmalion system's provision of an alternate reality for supporting

creative thinking in its users. ARK's principal influence is the Small talk

programming language and the principal aim of the Small talk environment to be a

system for developing microworlds, interactive simulated environments.Motivation

for ARK followed from Smith's observation that students of physics demonstrate

difficulties in understanding the abstractions encountered in physics. Studies

conducted using ARK, which shall not be discussed further, have shown that ARK is

helpful in overcoming students' difficulties in understanding Newtonian and

relativistic physics. An example of an ARK simulation, taken from (Smith, 1987:

62) can be seen in Figure 2.4.

24

"

Figure 2.4 An ARK simulation of bodies moving under mutual gravitational

attraction

ARK simulations are constructed by providing access to object-oriented

programming in Smalltalk-80 for non-expert programmers. ARK provides a number

of pre-defined objects from which simulations may be constructed, prototypes of

these objects are all held in the warehouse (shown in Figure 2.5) from where the

instances of objects required for a particular simulation may be retrieved. ARK

provides other on-screen objects that are used to alter variables encapsulated within a

simulation object. Slider switches are used to specify numbers, they allow values of

properties associated with an object to be easily altered. Buttons (shown in Figure

2.6) are the means by which users communicate directly with objects. Buttons

contain a simple command to be applied to an object and are invoked by being

picked up using the hand pointer and dropped onto the object. If the user wishes to

remove an object from a simulation, the user drops the "vaporize" message onto that

object, the object will then disappear. Message passing is the mechanism by which

25

objects communicate with each other, message passing can also be thought of as the

means by which users interact \vith on-screen objects as suggested by Card, Moran,

and Newell (1983). This concept will become important when human-computer

dialogues in a ne\v user interface design are considered in Chapter 6.

Figure 2.5 The ARK warehouse (Smith, 1987: 65).

Figure 2.6 ARK buttons (Smith, 1987: 65).

Message boxes provide a general message passing facility, a message box consists of

the name of the message it sends and a plug that connects to the object which is to

receive the message. If the object is to return a value as the result of being sent a

message, the message box will contain a region in which the result is displayed, for

example, an object might be "asked" for its mass and this value would be displayed

within the message box. Representatives (shown in Figure 2.7) often appear as an

object that contains text describing the object being represented. Representatives

allow instances of any Smalltalk-80 class to be represented and used within an ARK

simulation. Interactors (shown in Figure 2.8) allow users to manipulate physical laws

within a simulation. Interactors define an object's behaviour, or define constraints

that apply between a number of objects, for example Newton's inverse square law of

26

gravitational attraction, and they also maintain a list of the objects within a

simulation subject to that constraint The power of an interactor lies in users being

able to adjust its attributes in the same way that they can adjust the attributes of other

objects. The user could, for example, reduce the gravitational constant, or switch it

off entirely.

Figure 2.7 ARK representatives (Smith, 1987: 65).

Figure 2.8 An ARK interactor (Smith, 1987: 65).

Users interact with all ARK simulations using the hand. The hand, like other on

screen pointers, is used to select and manipulate the on-screen objects. ARK permits

several alternate reality simulations to run at the same time, each within its own

window. A number of simulations could, for example, show the same set of objects

interacting with different sets of physical constants as a way of comparing how

27

changing the value of one constant affects the simulation. The hand (shown in Figure

2.9) is not a part of any of these realities, it exists in a meta-reality. ARK complicates

the simple physical \vorld metaphor with the concept of a reality structure. The

alternate reality simulations are self-contained, but all lie on onc plane of reality. The

hand exists in a meta-reality where it is free to move \vithout being subject to any

influences from the alternate realities, and from where it casts a shadow in the reality

belo\v. Any object picked up by the hand is taken into the meta-reality and the

objects left behind behave as if the object were no longer there. Buttons attached to

objects also cast a slight shado\v signifying that they intrude into the meia-reality.

An object's position in the reality structure is meant to aid novice programmers by

eliminating the confusion between editing and execution, the object's appearance

denoting its current role.

Figure 2.9 The ARK hand (Smith, 1987: 65).

Although the ARK is based on a physical-world metaphor, some features of the

ARK's interface, such as attaching buttons to objects, would be very difficult to

achieve if they were activities literal to the metaphor. Actions such as attaching

buttons to an object by simply dropping the button onto the object lie outside the

physical-world metaphor and are considered magical in Smith's (1987) distinction.

The use of magical features that lie outside the metaphor has implications when

users are learning to use the ARK. Smith (1987: 62-63) says:

28

" one of the lessons of ARK is that the literal aspects of the

interface are often obvious while magical capabilities are harder to

learn. In ARK, the time to explain the basics is actually measured in

seconds. Every piece of added magic is relatively 'expensive' because

it requires its own explanation: it does not 'come for free' as it does

when the user realizes there is a physical metaphor."

2.5 Metaphor and Non-visual Representations

In the sections above the use of metaphor in visual forms of representing software

objects in a small number of computing systems was considered. These systems all

rely on the visual modality to communicate the system state and in the depiction of

the metaphor employed. In all of the systems discussed above, sound is either absent

or limited to a few simple indications that an event of some sort has occurred. And

while the mouse, or some equivalent device, is used to point to and select objects

and operations on objects, these systems cannot be said to employ the haptic channel

to communicate system feedback, or to communicate the user's intentions to any

great extent. In Section 2.6, we consider the role metaphor plays in systems that

employ the haptic channel to a greater extent than in the systems described above. In

this section, we consider the role of metaphor in systems that employ other

modalities to a larger extent than in what are typically deemed metaphor-based

systems.

We are unaware of the olfactory channel, the user's sense of smell, being currently

employed to communicate information about the state of an interactive system

(except in the case of some severe hardware failures). While Morton Heilig's

Sensorama arcade rides, which are cited as early immersive reality systems

(Rheingold, 1991), would, in one ride, blow the smells of combustion fumes at the

rider of a virtual motorcycle, the rides themselves were not interactive. The user was

29

simply a passenger on a ride filmed earlier and projected onto eyepieces giving a 3D

display. In Smith's (1996: 231) terms, however, as the user can "sce through" the

projection to the actual events and objects it presents, the display does not stand in

metaphorical relation to other events and objects and so this system does not require

further consideration in this thesis. Sound, however, as a means of communicating

infonnation about the current state of a computing system, is \vorth some discussion.

2.5.1 Auditory Icons

It is claimed that other than its use in computer games, sound still tends to be

neglected as a means of conveying information in computer systems. Where sound is

used, if at all, in most systems, it is restricted to "beeps" and other simple warning

sounds. Gaver (1986) noticed this neglected modality and outlined an approach that

uses sound to convey a great deal of information about a computer system to the

user. This approach, tenned auditory icons, uses caricatures of naturally occurring

sounds to represent both conceptual objects and dimensional data within the

computer system to the user. Auditory icons are mentioned as they can evoke

metaphors in the way that they communicate information. The auditory icon

approach is not concerned with the proximal stimulus, meaning the dimensions of

sound such as pitch, loudness and duration that describe the variations of air pressure

near the ear, but rather is concerned with the diBtal stimulus, \vith the physics of the

source of the sound.

Gaver (1986: 168) described the infonnation that might be conveyed by an auditory

icon saying:

"One can imagine how a single sound could be used to give

infonnation about a file arriving in a message system. The file hits the

mailbox, causing it to emit a characteristic sound. Because it is a large

30

message, it makes a rather weighty sound. The crackle of paper

indicates a text file - if it had been compiled program, it would have

clanged like metal. The sound comes from the left and is muffled:

The mail box must be in the window behind the one that is currently

on the left side of the screen. And the echoes sound like a large empty

room, so the load on the system must be fairly low."

If a sound is to be used to represent a source of information, the mapping between

the information and the representation, the relationship between the source and the

sound, must be considered. Gaver (1986) identifies three mappings between source

and sound; nomic, termed iconic in (Gaver, 1989); metaphorical; and symbolic.

Symbolic mappings have an arbitrary mapping between the information and its

representation, they rely on social convention for meaning, examples of symbolic

mappings include sirens and telephone bells. Earcons, "which are short, rhythmic

sequences of pitches with variable intensity, timbre and register" (Brewster, Wright,

and Edwards, 1993: 222), another form of auditory feedback that have received

some attention, have only a symbolic mapping to the object, location, operation, or

interaction that they denote. Nomic, or iconic, mappings in auditory icons depend on

the physics of the source of a sound to convey meaning, an example is the auditory

icon described above representing a file being placed in a mailbox.

Metaphorical mappmgs rely on similarities between the represented and the

representing systems to convey meaning. A metaphorical mapping may either be a

structural mapping where similarities between the structure of two symbols or

objects are exploited, or it may be a metonymic mapping, where a feature of the

object is used to represent the whole object. Gaver (1986) gives the example of a

hiss being used to represent a snake as an example of a metonymic mapping. Other

metaphorical mappings rely on the notion of temporal progression of sound and the

events the sounds stand for, or on the notion of a dimensional metaphor, " ... in which

31

one ordered dimension is used to represent another" (Gavcr, 1986: 171). An example

Gaver (1986) gives of the use of a dimensional metaphor is of the change in pitch of

an object at different heights.

The mappings bet\\'een the represented object and the representation are not distinct

descriptions, it is possible for an auditory icon to employ a mapping that lies

between two of the classes of mappings described. If a metaphor is weak, or is

poorly understood, then the mapping becomes increasingly symbolic. Also, nomic

mappings depend on models of the source events for understanding, as models

become more approximate, the result becomes more like a metaphor. Nomically

mapped auditory icons also depend in some sense on metaphors, the icon's mapping

will, Gaver (1986: 172) claims, " ... be nomic to some event in the model world

presented to the user, not to underlying events in the computer itself." Auditory icons

have, to date, been implemented within two important systems, the SonicFinder

(Gaver, 1989) and SharedARK (Gaver, Smith, and O'Shea, 1991), these are briefly

discussed below.

2.5.2 SonicFinder

The SonicFinder (Gaver, 1989) augmented the desktop metaphor of the Apple

Macintosh Finder user interface with auditory icons. The auditory icons were added

to the Finder system to provide auditory information whenever the user interacted

with an object on the model desktop. For example', if the user clicked on the visual

icon representing a file and dragged the icon across the screen, the user heard the

sound of the object being hit (clicked on) and a scraping sound as the object was

dragged. Further sounds were added to typical actions that can be performed within

Finder; the actions of opening windows and scrolling the contents of a window, for

example, had auditory icons associated with them.

32

Gaver (1989) realised that this use of auditory infonnation is redundant, the Apple

Macintosh had been used successfully for some time without sound being employed

to the extent it was in the SonicFinder. His claim, however, was that learning and

remembering the system is aided by this redundant infonnation, by these

confirmatory sounds (Gaver and Smith, 1990), and that users' perceived senses of

direct engagement with on-screen objects should be enhanced - although no studies

exist to substantiate these claims.

2.5.3 SharedARK

SharedARK is a multiuser version of the Alternate Reality Kit (described in Section

2.4). In ARKola, a simulation implemented in SharedARK, auditory icons were used

to convey infonnation about hidden processes in a soft-drinks bouling plant (Gaver,

Smith, and O'Shea, 1991). The ARKola bottling plant is made up of a number of

interconnected component machines, but only a few machines can be seen on a

user's workstation at anyone time so much of the operation of the plant will be

invisible. Auditory icons were used to convey infonnation about these invisible

machines.

The use of auditory icons in such an application is likened to the way in which some

people, especially trained and experienced mechanics, can detennine the status of a

machine with which they are familiar depending on the noise that the machine is

making. If there is a fault within a machine, it is assumed to cause a characteristic

noise which can aid diagnosis of the fault. Within the ARKola factory, users are able

to tell if the factory as a whole is running well from the noises made by the separate

component machines. If there is a fault in the running of the factory, users are able to

tell which machine to examine from the characteristic noise made by the faulty

machine, for example if the bottle storage area is being overfilled, the sound of

33

breaking bottles can be heard. Studies of collaborating users undertaken using

ARKola (Gaver, 1991; Gaver and Smith, 1990; Gaver, Smith and O'Shea, 1991)

demonstrated that for some states of the system the use of audito!)' icons assisted

users in determining which tasks they should attend to next. Some sounds were less

effective than others, the absence of critical sounds \vas in particular not regarded

\vith the urgency it should have been. The results, however, lead Gaver and his

colleagues to claim that auditory icons are useful for communicating semantic

information, rather than just for event notification or communicating simple status or

mode information, which are the typical uses of sound in interactive systems.

2.6 The "Reality" Metaphor and New Interaction Styles

The systems described above are landmarks in metaphor-based user interfaces. All

of these systems are confined to the (physical) desktop and to running on a

conventional workstation (\ve shall ignore personal digital assistants for now). The

"reality" metaphor is a term coined by the researchers working on the Wearable

Computers project at the MIT Media Laboratory. The "reality" metaphor describes

the presence of both real physical objects and computer-generated artefacts in the

user's visual field. A growing movement in computer science is the design of

systems that are mobile, ubiquitous, or a natural part of the environment. \Ve are

required to consider such systems, not just because of their growing importance, but

also because of the role metaphor plays in the design and understanding of them. We

shall not revie\v all the systems that can be termed as applying the "reality"

metaphor, but shall briefly discuss illustrative examples of the different interaction

styles that fall under this heading. We discuss in greater detail the fundamental

metaphors claimed to be the foundation for many systems designed according to the

"reality" metaphor.

34

Ubiquitous computing, as the term suggests, is concerned with making computing

systems a part of the everyday environment. This can be achieved by introducing

computing machinery into artefacts that have previously not contained computing

systems, such as LEGDI bricks (Resnick et al., 1996) or office whiteboards

(Stafford-Fraser and Robinson, 1996), or by making computing systems smaller and

mobile, as in the form of PDA's (personal digital assistants). Whereas in ubiquitous

computing systems, the computing system and the physical artefact occupy the same

object, be it a LEGO brick, doorknob, running shoe, and so on, in augmented reality

systems the external world provides implicit input into a computing system. In

augmented reality the user interacts with a real world augmented by computer

generated information. Examples of such systems include repair assistants (Sass et

al., 1997) where instructions can be displayed over the image of the actual object

being repaired. A CCTV camera mounted in the computing device, or head-up

display provides an input source to the device and possibly relays the image of what

it is looked at to the user. Devices with such an arrangement of camera and display

are described as employing a magnifying glass metaphor (Rekimoto and Nagao,

1995). This term is a true metaphor (the "information is detail" metaphor) in that it

describes a system, but not one where the image of the world seen by the camera is

magnified In the display and more detail can be seen. Instead" the image is

magnified 10 terms of the information available, additional information being

supplied by the computing device, not the world itself.

Some systems employ the reality metaphor to support the task domains supported by

the workstation-bound user interface metaphors discussed above. The desktop

metaphor is typically used to support tasks that are performed in an office setting,

the desktop metaphor, however, mirrors the environment into which it is introduced,

it is not fully a part of it. Documents must be printed if they are to be stored in

1 LEGO is a trademark of LEGO Systems, Inc.

35

physical filing cabinets, but a printed document is unavailable for manipulation in

the electronic domain. The DigitalDesk (Wellner, 1991), for example, overcomes

these problems, by use of image projectors, cameras linked to image processing

software, and a touch- and gesture-sensitive physical desk surface. In the

DigitalDesk, electronic and physical documents have equal status within the system,

images of electronic documents may be projected onto the desk's surface and real

documents may be scanned and an electronic version of them created. Systems

developed as part of the Tangible Media project at the MIT Media Laboratory (Ishii

and Ullmer, 1997; Ullmer and Ishii, 1997) demonstrate a similar equality of physical

and electronic objects within the representation and embodiment of the task domain ..

2.6.1 Optical Metaphors

The tangible user interfaces developed by Ishii and his colleagues are based on

metaphors of light, shadow, and optics, which are claimed to be "particularly

compelling for interfaces spanning virtual and physical space." (Ishii and UlImer,

1997: 240). The activeLENS system, an arm-mounted flat-panel display is described

as being modelled in both its form and function as a jeweller's magnifying lens, the

same notion drove the design of the passiveLENS, a simpler transparent glass

surface onto which the metaDESK display projects information. The metaDESK

greatly extends the use of optical metaphors.

The metaDESK concept, depicted in Figure 2.10 (MetaDESK itself is shown in

Figure 2.11), is an effort to integrate both computer and physical worlds. Via the

desktop metaphor, aspects of the physical world are emulated in the 2D model world

implemented by a PC. The metaDESK concept simultaneously attempts to

physically instantiate windows, icons, menus, handles, and control metaphors back

into the real world (denoted A in Figure 2.10), as well as expoiting affordanccs of

36

real world instrument and artifacts made obsolete 1n the development of the

personal computer (denoted B in Figure 2.10).

desktop
metaphor

Figure 2.10 The metaDESK concept (Ullmer and Ishii, 1997: 224).

Figure 2.11 MetaDESK (taken from Dourish (2001: 45)

The metaDESK concept is illustrated by the prototype application Tangible

Geospace. In this system, small physical replicas (collectively termed phicons) of

landmarks found on the MIT campus can be placed on the surface of a desk onto

37

which a map of the MIT campus rotated and translated appropriately to match the

orientation and location of the phicons is back-projected. Viewing the desk through

the activeLENS \vill cause an appropriate 2D projection of the 3D scene that could

be 'seen' from the comparable location of the lens in the real world to be displayed in

the lens' panel. Placing a second phi con on the desk causes the map to be scaled,

\varped, and rotated so that the phi con lies on the appropriate location in the map.

Moving the relative positions on the ph icons causes the projected map to be adjusted

accordingly. Table 2.1 lists the tangible user interface counterparts of common

graphical user interface components.

G VI: Graphical Vser Interface TUI: Tangible User Interface

Windo\v Lens

Icon Phicon

Menu Tray_

Handle Phandle

Widget Instrument

Table 2.1 Physical Instantiation of GUI Elements in a TUI

In terms of optical metaphors, phicons are linked with the notion of "digital

shado\vs". As illuminated objects cast shadows, so phi cons cast digital shadows that

project information as to their virtual contents. Thus Ishii and Ullmer suggest that a

suitably modified torch (flashlight) can be used to project different wavelengths of

virtual, or semantic, light onto the desk. One fonn of light might render physically

constrained shadows of the physical building, while another might cause funding for

the faculty to be rendered.

The ambientROOM system provides information not only to 'foreground' perception,

as with the metaDESK, but also to peripheral perception through ambient media,

38

light, shadow, sound, air and water flow. Where ambient information needs to

brought into the foreground for closer attention, the ambientROOM provides

phicons that act as sources of the ambient information, which may be moved into the

proximity of an information sink, such as a loudspeaker where the information can

be suitably rendered. The use of optical metaphors in all of these systems is justified

by Ishii and Ullmer's (1997: 240) claim that:

"Perhaps the most compelling aspect of the optical metaphor is its

seamless consistency with the physics of real space. By not only

invoking but also obeying the optical constraints metaphorically

imposed on our physical interface prototypes, we are able to

maximize the legibility of interface in our creations. People know

what to expect of a flashlight, know what to expect of lenses. By

satisfying these expectations, we can truly realize truly seamless

'invisible' integration of our technologies with the physical

environment. "

We shall consider these claims further in Chapters 6 and 9.

2.7 Conclusions

This chapter served to review a number of existing user interface designs which

employ metaphors in order to attempt to represent a large part of the underlying

computer system. While the systems described above revolutionised, and continue to

revolutionise, the usability of computing systems and make them accessible to a far

larger number of users, the use of metaphors in the designs of their model worlds is

not a perfect solution to the problem of improving system usability. In the following

chapter we examine user interface metaphor in general, and the problem of

39

understanding and interacting with computing systems in terms of metaphors and

analogies. In particular, we survey the difficulties that user interface metaphors pose

for the user.

40

Chapter 3

An Empirical Study of First-time Macintosh Users

"/ feel/am beyond metaphorical assistance. "

- 'Cher' in "Clueless", the television series.

In the previous chapter a number of important and influential computing systems and

user interface designs that implement user interface metaphors or which rely on

metaphor comprehension in order to be understood and used successfully were

reviewed. These systems helped to make the personal computer the pervasive

technology that it is in many parts of the world. They also helped make the computer

accessible to a wider range of users than other visions of personal computing might

have seen come about. The design principles of these systems can be contrasted, for

example, with Douglas Engelbart's "bootstrapping" concept and NLS technology

(Bardini, 2(00), which was intended for use by knowledge workers who were

expected to invest tens of hours in the initial training period. Many of the systems

described in the previous chapter have not been subjected to usability testing that

would make the case for their usability and usefulness compelling. Alternatively,

usability testing might have been undertaken, but the results of such testing might

have been withheld for commercial reasons. The study reported below, for example,

seeks to copy one whose results were withheld for some time at the behest of the

company that sponsored the original work (John M. Carroll, personal

communication).

The systems described in the previous chapter all use or rely on metaphor for their

understanding and use. A survey of the HeI literature, however, finds that metaphor

is also a source of users' difficulties. In this chapter we report on a small study of

first-time users of the Apple Macintosh to test the notion that metaphor is always

advantageous in interface designs. This study also seeks to examine the findings of

Carroll and Mazur (1986) who undertook an empirical study of the Apple' Lisa (the

forerunner of the Macintosh) and found a number of usability faults that wcre not

resolved by the use of the desk top metaphor. Indeed they found (their study is

described in more detail in the following chapter) that the use of metaphor can be a

source of users' difficulties.

In Carroll and Mazur's (1986) study, a small number of subjects from thc staff of

IBM were recruited \vho used an Apple Lisa for weekly sessions lasting between two

and three hours to undertake a medium-scale project and report. Due to constraints

imposed on the study reported below, our study examines a much shorter period of

initial use of the DESKTOP metaphor. Like Carroll and Mazur, though, we also

found that the DESKTOP metaphor used in the user interface, while it is an

improvement over command-based interfaces, was a source of users' difficulties.

These difficulties, among others, that are due to the use of metaphor arc explored

further in the next chapter.

42

3.1 Overview of the study

3.1.1 The Subjects

Seven subjects. recruited from the staff of the Open University. participated in the

study. The subjects were selected on the basis of availability. and were all paid a

nominal fee. All of the subjects were familiar with IBM PC compatible computers •

. and. over the group. were familiar with spreadsheets. database ·software, terminal

emulators, C language compilers and word processing packages. All of the subjects

were users of the Microsoft Windows graphical user interface to MS-DOS. As

subjects were only available during their lunch break, sessions were planned so

significant progress could be make in no longer than an hour.

3.1.2 Methodology

Subjects were supplied with a copy of the Apple Macintosh manual (Apple, 1990)

and a blank, pre-formatted floppy disk. Subjects were also given a list of short

exercises to perform (shown below). These exercises were designed to be similar to

the sorts of tasks that users of the Apple Macintosh would perform every day, and

were designed to force those subjects who attempted them into using particular parts

of the system. The subjects were not obliged to perform the exercises, although they

all attempted them. The subjects were then free to begin to investigate the Macintosh

system. Subjects were asked to "think aloud" as they worked, otherwise they were

free to work as they wished. No advice was offered as the subjects worked. When

they could see no solution to their problems, the session was considered to be at an

end and advice was given. Notes were taken and the subjects' screen activity was

videotaped and their speech recorded. The time subjects spent working ranged

between forty minutes and an hour and ten minutes.

43

3.1.3 Tasks Performed by Subjects

Participants \vere provided \vith the list of tasks below, as mentioned they "'ere

under no obligation to attempt them, although all participants did, with mixed

success. Participants were told before attempting the first exercise:

Try to do as many of the exercises as you can. Don't worry if you

cannot complete an exercise or if you haven't completed an exerCise

ber ore time runs out.

The instructions for the tasks were as follows:

Exercise 1

Write down the names of the files in the folder Experiment 1

Exercise 2

Delete all of the picture files from the folder Experinlent 1

Exercise 3

Copy the application program in the folder Experinlent 1 to the

floppy disk provided.

Exercise 4

Find the file Mary's lamb, open it, and add the line the lamb was

sure to go to it. Save the file and make a duplicate copy of it. Place

the duplicate copy of the file on the floppy disk.

44

Exercise 5

Eject the floppy disk from the computer.

3.1.4 Caveats

Although Carroll and Mazur's (1986) study was taken as the starting point for this

study, this study differs in a number of respects. Firstly the machine used was not an

Apple Lisa, instead an Apple Macintosh SEl30 running the System 7 revision of the

operating system was used. This machine was chosen as one of the particular aims of

the study was to investigate users' understanding of the mechanism which allows the

computer to have a number of programs active at one time and which allows the user

to switch between these programs.

The internal floppy disk drive of the machine used was faulty, and an external floppy

disk drive had to be used instead. The Apple Macintosh supports three methods of

ejecting floppy disks from machine. The "proper" way is to drag the icon of the disk

to be ejected to the trashcan, the automatic mechanism within the disk drive will then

eject the disk. The second method, which is commonly used when copying files from

one floppy disk to another, is to select the Eject Disk option from the SpeCial

menu or to use the XE shortcut. Again the automatic mechanism will eject the disk,

but a greyed out image of the disk's icon will remain visible on the desktop. At some

point in the future the system will request that the disk be replaced so that any

outstanding or final operations on it may be performed. The third method, which is

only recommended should the machine crash and there is no other way of retrieving

the disk, is to push a rod (such as a straightened paper clip) into the hole to the right

of the disk drive, this action will manually eject the disk. The external drive, unlike

internal Macintosh disk drives, had an eject button, which acted in the same way as

the HE key combination. Whilst this study used an atypical hardware configuration,

45

many flaws in the subjects' understanding of the computer system were brought to

light as a result.

The principle differences between this study and Carroll and Mazur's are the time

students used the system for, and the tasks they were asked to perfonn during that

time. Subjects could only give up an hour of their time, so many aspects of the

Macintosh user interface could not be encountered by them. The exercises that the

subjects were set (see above) were considered reasonable for the length of the

session, although those subjects that completed the exercises did so in less than the

time available. The subjects in Carroll and Mazur's study were available for two

three-hour sessions, hence were able to perform a much more complex task using the

Lisa, and many more aspects of the Lisa's interface were encountered by their

subjects.

3.2 Observations

3.2.1 Using the Manual

The subjects were all provided with a copy of the user manual supplied with the

Macintosh computer (Apple, 1990), none of the subjects, ho\\'ever, found it to be of

much use. Subjects 2 and 7 were the only participants to attempt to make much use

of the manual, the other subjects who used the manual did so only as a last resort

(three of the subjects did not refer to the manual at all).

One problem that arose \\'as the layout of the manual; subjects would find the page

number of a topic they were interested in, but would find that the contents of that

page addressed a different topic. Because of the method of instruction used by the

manual, subjects had difficulty searching from the page containing information that

they did not want to the information that they did require. Subjects would be

46

presented with the sequence of steps to be followed to perform some specific task,

but they were unable to apply this action sequence in the particular context of the

task they wanted to perform.

Using the manual to search for information on a specific topic was complicated by

some subjects re-phrasing the terminology of the desktop metaphor into terminology

with which they were familiar. this re-phrasing was also evident when users

attempted to perform certain other tasks. This meant that subjects would re-phrase a

problem in the list of exercises into terminology they knew, and then search the

index for the familiar term rather than the correct term. The subjects would then be

unable to obtain the correct information, if they were able to obtain any useful

information at all.

3.2.2 Using the On-line Help Facility

The computer system used for this study was equipped with an on-line help facility

called Balloons. When the user runs this program, a small speech balloon appears

next to an object that the user points to using the mouse. The balloon contains a

small piece of text that describes the object and its possible uses. A typical speech

balloon can be seen in Figure 3.1.

Subject 2 made particular use of these balloons, usmg them initially to gain

information about all of the on-screen objects, then, as the session progressed. she

used them to gain information about single objects that she had not encountered

before. On-line help such as this proved initially very helpful. As the session

progressed, however. some shortcomings became apparent. Firstly, speech balloons

had only been defined for a limited number of objects, and had not been defined for

objects used by a number of application programs. Thus there was no information

about objects that were new to the subject. Secondly, Subject 2 in particular became

47

frustrated by the text that appears in the speech balloon being a constant piece of

"canned text", the infotmation does not change according to the particular state of

the machine or in relation to the task the user is trying to perform.

This is an application-a program
",Hh which you can perform a
task or create a document.
Applications includE' word
procE'ssors I graphics programs J

database programs I games I and
spreadshE'E'ts.

Figure 3.1 An on-line help speech balloon

3.2.3 Interpreting the Desktop Metaphor

The subjects were all familiar with the Microsoft Windows user interface. so they

already possessed many of the basic skills needed to use the Macintosh. Some of the

subjects' existing skills, however, \vere particular to the Windows environment and

interfered with their attempts to learn the Macintosh. The aspect of the Macintosh

that caused most problems when subjects attempted to apply their existing

knowledge is not one which is covered by the desktop metaphor, hence discussion of

this will be delayed until Section 3.2.4. Some problems with the desktop metaphor

did, however arise.

Most of the problems observed by Carroll and Mazur were caused by the

terminology used to describe the system, this also caused problems in this study. The

notion of an application file caused problems for some subjects, they simply were

not sure what was meant by this term. Even when they had double-clicked on an

48

application's icon and could see the program running, some subjects (especially

Subject 6) could not associate an application with a runnable program. The concept

of a folder caused some confusion, most of the subjects at some point remarked that

they assumed by the new term "folder" that the more familiar term "directory" was

meant. Folders caused a problem for Subject 7. He did not relate the icons that

appeared in the window that opened when he double-clicked on a folder's icon to the

files contained within that folder, he assumed them to be more folders, even though

none of the files had a folder-shaped icon attached to them.

The terminology used to describe the Macintosh and its user interface created more

serious problems when users tried to perform certain tasks. The exercises listed in

Section 3.1.3 were all phrased in the terminology used in the system documentation,

but as users attempted to perform these exercises, especially in the case of Subject 3,

the terms used were translated into more familiar terms. However, in reformulating

the description of the task it was sometimes then impossible to perform the task.

When, for example, Subject 3 came to delete a file on the hard disk, she saw the task

as one of "erasing" a file. She was then forced to use a number of elaborate strategies

in order to perform the act of "erasing" when she could find no information on

"erasing" files in the manual. For example, she carried out a lengthy search of the

options listed on the pull-down menus and even opened the file in the hope that she

would find an option within the application that would be capable of erasing the file.

The trashcan was also found to create problems for the subjects. Users seemed not to

notice that a desktop metaphor was being used as far as the trashcan was concerned.

Only Subject 1 knew that files could be deleted by dragging them to the trashcan,

and she admitted that she had been told about this before the session. The other

subjects tried to apply their knowledge of Microsoft Windows and went on, often

lengthy, searches for a delete option on a menu. Most subjects resorted to the manual

49

after this searching proved fruitless. It occurred to Subject 4 that dragging files into

the trashcan might delete them, which he then tried. This provoked him to remark:

"It's that easy is it? ... I suppose if I'd taken the time to read the

manual I'd have found that out."

Once subjects had learned to delete objects, some still did not infer some other tasks

that could be perfonned using the trashcan, Subject 2, for example, asked:

"Ho\v do I retrieve things from the wastebasket?"

Only one subject discovered that disks can be ejected from the disk drive by

dragging their icon to the trashcan, but she discovered this infonnation by stumbling

across it in the manual. All of the subjects initially used the eject button on the drive.

This, as was mentioned in Section 3.1.4, causes the user to be frequently prompted

by the system to re-insert the disk. These frequent requests prompted only one user

to ask if there \\'as another way to eject disks, the others were seemingly content, and

did not notice that the system had not completed any outstanding operations on the

disk before ejecting it.

The design and use of icons on the Macintosh were not as successful as might have

been assumed. For example, only one subject was able, from looking at the icon

alone, to deduce that the icon shown in Figure 3.2 represented a picture created using

a graphics soft\vare package. The remaining subjects used combinations of t\\'O

strategies to detennine the contents of the file. Onc method used was to simply

double click on the icon of every file installed on the system's hard disk that they

were interested in discovering the contents of. This had the effect of running the

application used to create the file, or ran the application itself, and the subjecl~

would then decide the nature of the file from what appeared on the screen. The other

50

method was to use the Get I nfo option on the Finder's File menu. This has the

effect of displaying information such as the size, creation date, and the nature of a

file, whether it is a document or application and so on.

m
~

Figure 3.2 Icon denoting a file produced by SuperPaint1.

Again, similar strategies were adopted to determine which was the application file to

which the exercises referred, (the shape that all application icons should have, shown

in Figure 3.3, is described on the very first page of the Macintosh manual, but went

undiscovered). This is surprising as all of the subjects had experience of a graphical

user interface, it suggests that an association is learned between the icon shape and

the file and the software package used to create that file. Subjects were unable to

decide which icon denoted a picture because they had not learned the association,

but it had been assumed before the study began that subjects would be able to infer

the nature of the file from the design of the icon.

Figure 3.3 An application program

1 SuperPaint is a trademark of Silicon Beach Software, Inc.

51

3.2.4 Basic User Interaction

All of the subjects were familiar with the Microsoft Windo\\'s user interface, hence

they already possessed much of the knowledge required to use the Apple ~1acintosh

system. This knowledge, however, also interfered with their attenlpL~ to learn the

new system. An example of this was the subjects' use of the mouse button. To pull

down a menu within the Microsoft Windows system, for example, the user has only

to press and release a mouse button. On the Macintosh, however, thc mc·nu remains

visible only while the mouse button is presscd, if the uscr releases the button \\'hile

an option on the menu is highlighted, thcn that option is selected. Thc subjccts all

required several attempts at pulling down a menu beforc they learned that they

needed to keep the mouse button prcsscd, once they had learned this, most of them

had no further problem using menus.

Problems that seemed to bother all of the subjects, but which posed particular

problems for Subject 5, were the inconsistent results of sclecting options on mcnus

and the results of pressing buttons on windows. Mostly, operators are o\'erloaded,

that is, the same operator is ablc to pcrfonn the same function on a number of

different objects. These are the generic operations, such as ope 11 , close, and print

that are discussed by Rosenberg and Moran (1985) and which werc invoked by keys

on the Xerox Star keyboard labelled with the operator's namcs. Somc opcr~tors are,

by contrast polymorphic, operators with the same namc havc different semantics

depending on which object they are applied to. On the Macintosh system used in this

study, the same operator name, or button on a window, provided a number of

different operations but no information was provided by the display to tell users

which operation would occur. The close window button (shown in Figure 3.4) is an

example of this, sometimes clicking on this button causes a window to close, but the

application continues to run, sometimes the application is closed down. Without

52

checking the list of active programs on the Finder menu, it is often difficult to tell

which operation has occurred.

§D-- -- -

Figure 3.4 Close window button

The Open ... operator on the File menu caused particular problems for Subject 5,

again due to inconsistent assignment of operators to names and buttons. The version

of Microsoft Word installed on the machine used in the study had the behaviour that

if the user pulled down the File menu and dragged the pointer to the Open ...

option - but not release the mouse button - a sub-menu listing readable files in the

current directory would appear. Subject 5 tried to apply this knowledge at the

desktop level of the Macintosh's interface. This caused her to be unable to perform a

seemingly simple task. Exercise 4 asks the subject to find a file that contains a few

lines of text and to add a further line of text. Most subjects, possibly because of the

way in which they use Microsoft Windows, did not browse the hierarchy of files on

the hard disk, rather they used the Find option on the File menu. Subject 5, again

rather than search for the file, remained at the root folder of the file space tree and

attempted to discover the contents of each of the sub-folders. She did so by selecting

the folder of interest, highlighting it, and choosing the Open option from the File

menu. Rather than release the mouse button she waited for the sub-menu to appear,

when it did not, she falsely concluded that the highlighted folder was empty. A

possible explanation for this is the subject perceiving the keyboard shortcut HO on

the menu as #0, meaning that the number of items in the folder is zero, that the folder

is empty.

53

Making the underlying state of a computer system visible, or easy to infer, has been

stressed as important when considering what makes a systenl usable and when

considering how successful mental models are formed. A large number of problems

that arose \vere due to information about the system's state not being made as explicit

as it should have been. The System 7 revision of the Finder user interface allo\\'s a

number of programs to be resident in memory at one time, if there is sufficient main

memory, and the user can then switch between these programs. If the user clicks on

the Finder menu icon (see Figure 3.5) a menu listing the programs currently resident

in memory \vill appear, the user may then make one of these programs active by

selecting it from the menu.

Figure 3.5 Finder menu icon

We described above ho\v the close window button was thought by Subject 5 in

particular (although this problem was encountered by all subjects to some extent) to

close down an application rather than simply close the window. This effect was

compounded by the occasional use of the close window button actually shutting

down the application. This result is interesting as the system is still said to be

predictable (Dix, 1991). After the user closes a window, the menu bar at the top of

the screen states that the system will behave as if it is still running Microsoft Word,

say, because the system is still running Microsoft Word. This on-screen information

was ignored, however, by users who believed instead that they had achieved their

goal of closing down the application program. Roast and Harrison (1994) discuss

templates, areas of the display that contain information about the state of the system

relevant to the user's goals when performing tasks. In this situation it seems that the

desktop appearing from beneath the closed window confirms the user's hypothesis

54

that the application has been closed down, and that the information contained in the

menu bar (a far smaller section of the screen) is ignored. A further source of

information that would inform users that the application was still active, the list of

resident applications, is hidden in the Finder menu and by the time subjects

discovered this menu, they were unable to relate the list of programs to their

command history. They did not know that the list of applications presented by the

Finder menu was a list of applications that they had previously run and which had

not been closed down. Subjects seemed to persist in the belief that they had closed

down applications even when problems arose when they attempted to run other

additional applications. One subject was informed by the system that there was

insufficient RAM to run the application that she wished to, but it did not occur to her

that other programs were idle and taking up space in main memory that could be

otherwise used by shutting down some unused programs.

The problems that arise due to subjects not being aware of programs still being

resident in the computer's memory are compounded by the hiding of information

about the state of the underlying machine, but one can understand why. For users to

successfully use this version of the Finder user interface, called MultiFinder, they

need to be aware of the program switching mechanism and need to be aware of some

mechanism which can focus its attention on a single program and run it. Users need

to be aware of a (however vague) notion of a hidden processor, but this lies outside

the scope of the DESKTOP metaphor. In providing this mechanism for allowing

uses to switch between a number of programs, the advantage to the user of

employing a metaphor, making the underlying computer system invisible, has been

lost. Also, in trying to reconcile the program switching mechanism and the

DESKTOP metaphor, information in the display needed to make the system usable

has been hidden.

55

3.3 Conclusions

The results of this study concur with those of Carroll and ~1azurs study (which is

described in more detail in the next chapter). Subjects were found to ha\'e problems

\vith basic user interaction with the system as well as in conlprehending the desktop

metaphor. Many of the problems with the basic aspects of the systenl appeared to be

a result of subjects' prior knowledge of a different graphical user interface being

applied to the new system. A number of these problems, however, were compounded

by the design of the Macintosh user interface itself, and by infonnation that would

have helped subjects learn a correct model of the system being hidden.

The documentation supplied with the Apple Macintosh appears to rely on rote

learning of the skills needed to use the system successfully. This contrasts with the

active learning approach adopted by the subjects, who would tl)' any seemingly

useful approach to achieving some goal before "resorting" to the manual. Indeed.

three subjects announced that they were totally confused and left the session early

after trying to perform comparatively simple exercises, when the information they

required was easily obtainable from the manual, and should have been deducible

from the desktop metaphor.

Subject 3 gave some hint as to how learning this sort of interactive system could be

made more successful. She remarked that the method adopted by the study where

subjects worked alone without human advice was not her preferred \vay of learning,

she preferred to have an adviser on hand should she need someone to answer her

questions. Certainly a facility, human (such as a work colleague or helpdesk advisor)

or otherwise (such as an intelligent help system or agent), able to offer some fonn of

context sensitive advice would have been useful to the subjects and help, if offered at

the right time would probably have prevented the subjects who left early from doing

so. Context sensitivity was something lacking from the balloon on-line help, the

56

subject who made great use of the balloons bemoaned the use of canned text in them

and would have preferred more specific help.

The introduction to this thesis hinted that while metaphor is a widespread and useful

technique in user interface design, it can also be a source of users' difficulties and

usability problems. In the next chapter drawbacks and usability problems arising

from the use of metaphor-based user interfaces will be described in more depth. A

number of these drawbacks were observed during the small empirical study that was

reported in this chapter. In order to go on to present new user interface designs based

upon a fuller account of metaphor as it applies in HeI, we must examine the

difficulties that metaphors can give rise to. This is the task of the next chapter.

57

Chapter 4

Drawbacks to Employing Metaphors and Analogies
in Interactive User Interfaces

"So the question is, willlhey see the metaphor? 11

- Arthur Miller.

4.1 Introduction

In Chapter 2 a number of computer systems which exploit metaphors in order to

support file management, support object-oriented programming, provide a user

interface for application programs, and provide mechanisms for switching between

application programs \\'ere discussed. Although metaphors and analogies are

suggested as a partial solution to the problem of designing usable software,

metaphors often cannot account for aspects of a software system, and sometimes the

use of a metaphor can create new usability problems while solving others. In this

chapter some of the dra\vbacks of employing metaphors in user interface design are

presented.

Carroll, Mack, and Kellogg (1988) identify three strands in research in the use of

metaphor in human-computer interaction. They make a distinction bet\\'een

operational and structural approaches to metaphor, and the praglnalics of metaphors

in use. This distinction is adopted in the consideration below of some of the

drawbacks in adopting metaphors in user interface design. In the following

discussion, the seeming convention of considering analogy and metaphor to be

synonymous in user interface design is adopted, but this will be challenged later.

4.2 Operational Metaphors

Operational metaphors are applied in an educational context in order to make the

process of teaching some concept simpler. Metaphors are provided by the teacher or

instructional material and their value is judged by the learning gain that results over

circumstances where no explicit metaphor is employed. Operational approaches to

metaphor, according to Carroll et al. (1988), therefore attempt to provide examples

of "good" and" bad" metaphors for certain concepts.

The work of Richard Mayer is often cited as an example of employing operational

metaphors to teach and explain computing systems. Mayer demonstrated the value of

teaching programming in the BASIC programming language with relation to a

concrete analogical model of the underlying system. The model taught to some of

Mayer's subjects is described in Mayer (1976). Input to the system is said to pass

through a physical window in the form of cards with some data written on them.

Output from the system resulting from the execution of WRITE commands, is

written on the topmost available line on a pad of paper. The flow of execution

through a program is monitored by the commands making up the program being

listed on a card, and the current command being pointed to by an arrow. The current

values of the program variables is written into boxes on a chalkboard, each box is

labelled with the name of the corresponding program variable. As the variable's

value is altered, the learner erases the current value from the relevant box on the

chalkboard and writes in the new value. This model of program variables has been

shown by Burstein (1986) to be insufficient to prevent some learner errors arising,

however.

59

Mayer (1981), as well as considering the teaching of programming languages, also

provides a concrete model for a computer's file storage system and file management

command language. This again is presented in the form of concrete analogies, a

\vriting pad is used for output from the system, and a chalkboard is used for

representing the list of variables used by the program. Program instructions are listed

on a pad and a pointer is used to indicate the current instruction, as in the case of the

set of analogies used to teach BASIC programming. The file management system

differs from BASIC alone in having a filing cabinet used as an analogy for the

storage of a set of files. Each file exists in a separate drawer in the cabinet, and is

said to be made up of a number of records on cards. Files are read by removing the

cards from the filing cabinet drawer and placing them in an IN tray on a desk. As the

file is processed, some record cards might be discarded, these cards are placed in a

DISCARD tray. Cards that are altered and are to be saved are placed in a SA VE tray,

from where they are returned to the appropriate drawer in the filing cabinet.

Mayer's studies of employing such analogies showed demonstrable positive effects

on learning if learners \vere given such models of the system before reading

conventional user manuals. Mayer suggested that the analogies provide a framework

into which the new information contained in the manuals may be assimilated. As

will be discussed further in Section 4.5, properties associated with the metaphorical,

or analogical, explanation may not match properties associated with the system to be

explained. In the case of the explanation provided for the file management system,

Mayer is forced to tell learners that only one drawer of the filing cabinet may be

open at a time. The reason for this is that only one file in the computer's storage

system may be accessed and altered at a time for reasons that are well known in the

design of database and operating systems. Learners may be aware that more than one

file of a typical real-world filing cabinet may be opened, hence the filing cabinet

analogy does not provide a perfect match for the storage of computer files. The

learner may demand some reason for the mismatch, which will have to be given in

60

terms of the actual properties of the file management system. Real filing cabinets

may indeed only permit one drawer to be open at a time, but it is difficult to explain

the prevention of file corruption through mutual exclusion of file updates in terms of

the weight of open filing cabinet drawers causing the cabinet to topple over. While

Mayer reports positive outcomes from providing students with a concrete analogy

for the BASIC language, the evidence for the usefulness of such advance organisers

is mixed. A similar study conducted by Foss et al. (1982), in which learners of a new

system were given a model very similar to that given by Mayer in order to explain

the file save facility of a text editor demonstrated a far less· clear advantage.

Experiments conducted by Payne (1988), by contrast, show advantages in learning

device semantics and command abbreviations when metaphorical instruction is

provided.

Rumelhart and Norman (1981) present a model of learning in which new knowledge

structures in the form of schemata (Bobrow and Norman, 1975), are developed

initially by applying existing schemata which may be employed analogously to the

problem at hand. The example they give is of drawing a pentagon in the Turtle

graphics system of the LOGO programming language, which is described as an

analogous procedure to drawing a square. In this example, the structure of the

schemata which is employed in the operation of constructing the command to draw a

square stays the same, but the loop parameter used to specify the number of sides is

altered, and the internal angle between sides of the intended polygon is adjusted.

Rumelhart and Norman go on to examine their model of analogical use of schemata

in the context of the result of a study of users learning to use the UNIX text editor

Ed. They suggest instances of the system's commands which can be employed using

schemata analogous to schemata representing understood commands, and they

suggest that evidence from protocols taken during the study support the view that

learners do employ such mechanisms in learning. Problems arose, however, when

learners reasoned analogously from the known results of some known commands to

61

the expected effect of other unknown commands. The result of issuing a command to

print a line, for example, is for the contents of that line of the document to appear on

the display. Learners reasoned that the result of deleting a line would cause that line

to disappear from the display, which it did not. Rumelhart and Norman's suggestion

is that the mental models that learners bring to the learning of the system play roles

in the analogies they apply when using the system. The role of mental models in

system learning will be discussed in Chapter 5. In order to overcome the problems

raised by the system not behaving as the learners' analogical reasoning predicted,

Rumelhart and Norman were forced to give the learners further information about Ed

more appropriate to its use than the analogical predictions made. Rather than give

information about the system inappropriate to the learners who had little knowledge

of computers, a solution similar to Mayer's operational accounts of BASIC \\'as

adopted, and the system \vas described in terms of a 'secretary' model, a 'tape

recorder' model, and a 'card file' model. The secretary model is used to account for

the mixing of commands and text supplied to Ed by the learncr. It is oflcn found,

however, that when a system displays some intelligent behaviour, users often bestow

more intelligence upon the system than it actually possesses. Describing Ed in tcrms

of an intelligent system, a secretary, led to users behaving as if the system should be

able to recognise typed input that should be interpreted as commands when in Ed

was in the append mode (where typed input is merely appended to the text file). The

tape recorder model overcomes this problem, termed the append-lnode trap, by

providing the model of a system which records everything faithfully until explicitly

ordered to stop recording. This model, however, cannot account for delete functions

that Rumelhart and Norman described using the card file modcl. Each line of tcxt is

thought of as being typed onto a record card. Dcletion commands removc relevant

cards from the stack that makes up the entire document. Such difficulties are not the

only ones encountered when using text editors, as will be discussed in the next

section. The operational metaphors given by Rumelhart and Norman in their study, it

may be noted, impose on learners the need to recognise which metaphor is to be

62

employed to help describe the system and their current task where metaphors overlap

to describe the same aspect of the system.

4.3 Structural Approaches to Metaphor

Hall (1989: 43), from a survey of existing work, identifies the following components

of a process model of analogical reasoning:

1. Recognition of an analogical source.

2. Elaboration of an analogical mapping between source and target.

3. Evaluation of the elaborated analogy.

4. Consolidation of information generated while using an analogy.

The operational metaphors discussed in the previous section address the recognition

component of Hall's analysis where, given a target domain and a set of source

domains, the problem is to find a promising set of candidate sources. This set may be

then employed in a tutorial context or further refined to produce the most suitable

. candidate with which to solve problems (Carbonell, 1983). The elaboration and the

evaluation components address the problems of finding a mapping, the analogical

inferences, and mapping preferences between a source and target domain, and

evaluation of a mapping given a source and target domain and analogical inferences,

respectively. These components are the consideration of structural approaches to

metaphor and analogy.

Hall (1989) describes the elaboration component of analogical reasoning as the

problem of finding a mapping and a set of analogical inferences given the target and

source domains and mapping preferences. Existing accounts of finding mappings

between the metaphorical base, or source. domain and the previously unfamiliar

target domain mostly rely on knowing the structure of both domains.

63

A number of approaches to the representation of analogical source domains and a

destination target domain, the method of determining a mapping between source and

target, and the evaluation of the mapping have been proposed. Rumelhart and

Abrahamson (1973) model similarity between domains as a distance metric between

points (which denote concepts) in a multi-dimensional space. Such models cannot,

ho\vever, account for asymmetric similarities considered central to understanding

metaphors. An example of asymmetry cited by Tversky (1977: 328) is that people

say that "an ellipse is like a circle" not that "a circle is like an cllipse". In Tvcrsky's

model similarity matching is made according to the function:

s(A,B) = F(AnB, A - B, B - A)

meaning that the similarity of A to B is expressed as a function, Ft of three

arguments; AnB, the features that are common to both A and B; A - B, the features

that belong to A but not to B; and B - A, the features that belong to B but not to A.

Tversky's theory is extended to address non-similar domains, or metaphors, by

Ortony (1979), but Ortony's model is unable to make judgements as to the quality of

a metaphorical mapping.

Mac Cormac (1985) proposes a model of metaphor in which concepts arc members

of fuzzy sets. This model is employed in the study of linguistics in an attempt to

understand metaphors in natural language scntences. Scntences are thus regarded as

metaphorical; non-metaphorical (literally truthful); or epiphors, which "01. involvc

outreach and extension of meaning through comparison"!; and diaphors, where" ...

1 P. E. Wheelwright (1962) Aletaphor and Reality, Indiana University Press, Rloomin~ .. on, Indiana:

72. Quote reproduced from Indwthya (1992: 77).

64

similarity need not be obvious and comparison explicit"2. Mac Cormac's model

allows a once metaphorical utterance to become a 'dead' metaphor, and a part of

ordinary language over time by its membership of non-metaphorical fuzzy sets

increasing and its membership of the fuzzy sets which denote forms of metaphor

decreasing. Mac Cormac also provides a useful means by which analogy and

metaphor may be discriminated between and also reconciled with his model.

Metaphors, being statements which are not literally true, but which are stated as true,

create an emotional tension in the reader which forces him or her to search for

attributes of the metaphorical source which may be applied to the target domain.

Much of the study of analogy and metaphor has been concentrated in linguistics and

natural language communication. The study of analogy in reasoning, problem

solving and planning is a growing field and has given rise to a number of models and

representations of source and target domains, a number of these being developed

from work in artificial intelligence. The most often employed model of analogy in

human-computer interaction and the learning of computer-based domains is

Gentner's structure-mapping model (Gentner, 1983). In the structure-mapping

model, the source and target domains are both represented as a number of objects,

every object has a number of attributes associated with it, each denoted as a single

argument predicate taking the object's name as the argument. Relations are also said

to apply between objects, these are represented as predicates taking more than one

object as arguments. Second- and higher-order relations may also be defined which

take first- and higher-order relations as predicates. Domains described in terms of

objects, attributes and relations may also be represented graphically in a graph

structure. Figures 4.1 and 4.2 show the domain structures which the analogy "the

atom is like the solar system" can be made between.

2 P. E. Wheelwright (1962) Metaplwr and Reality. Indiana University Press. B1oomington. Indiana:

74. Quote reproduced from Indurkbya (1992: 77).

65

planet

Figure 4.1 Domain model of the solar system (Gentncr, 1983: 160).

electron

Figure 4.2 Domain model of the structure of the atom (Gentner, 1983: 160).

Provided with suitably represented source and target domains, the structure-mapping

model provides a method for mapping from the source to the target and evaluating

the mapping. The mapping is achieved by first discarding the attributes of objects in

the base and target domains, and by attempting to preserve and match the relations

bety-'een objects in both domains. Deciding which relations are preserved is achieved

66

by the systematicity principle, according to which a predicate that is part of a " ...

mappable system of mutually interconnecting relationships is more likely to be

imported into the target than is an isolated predicate" (Gentner, 1983: 163).

Interconnected predicates may be identified from higher-order relations in the

domain description. The types and numbers of predicates mapped from the base

(source) to the target give an indication of the success of the metaphor being

employed, and place the relationship between the base and target domains on a

continuum from literal similarities to analogies. Within the structure-mapping model

metaphors are treated in a similar way to the approach describeCl by Mac Cormac

(1985). Suitable attributes, objects (some of which may not be the initial domain

representation of the problem or utterance), and relations between objects, need to be

identified and considered in the mapping process. This process may be seen in

Winston (1980) where facts about a domain may be increased or generalised to aid

the analogical mapping process.

Where the structure-mapping model performs the mapping from source domain to

target domain based on syntactic structures, and exact similarity of higher-order

relations in the representation, in the ACME model (Holyoak and Thagard, 1989)

semantic components in the two domains are matched. In addition, mapping between

the two domains in ACME can be less precise than in the structure-mapping model.

A judgement as to the best mapping between domains is made by comparing the

level of an excitation function produced by each of a set of computational elements

which each evaluate a potential mapping. Several plausible mappings may be

generated, the best mapping is chosen according to the element that achieves the

highest excitation level. A similar approach is realised in the Copycat system

(Mitchell and Hofstadter, 1990). Keane's lAM model (Keane, Ledgeway, and Duff,

1994) also generates and evaluates potential mappings in parallel, but imposes

realistic constraints on time and memory limits so as to better emulate actual human

performance. lAM, like ACME or its predecessor ARCS (Thagard et al., 1990), also

67

relies heavily on background knowledge and semantics in making mappings between

domains. The MAC/FAC model (Forbus, Gentner, and Law, 1994), while retrie\'ing

possible analogues in parallel, still employs the Structure Mapping Engine to

perform mappings.

4.4 Structural Approaches to Metaphor and I.Jearning of Conlputer

Based Systems

Douglas and Moran (1983) studied a number of computer-naive people learning the

text editor EMACS. Learners were provided \vith the openltional metaphor of a

typewriter by the teacher, and in some cases were seen to employ this analogy

without prompting. Special attention was paid to the structure and semantics of

operations from the typewriter source domain, and the semantics of operations in the

EMACS target domain .. Rather than construct a mapping between the typewriter

domain and EMACS domain representations, Douglas and Moran instead

constructed a problem space (Card, Moran and Newell, 1983). This described both

the EMACS system and the effect of EMACS commands (operators) on the system

and the current document when attempting to perform tasks and achieve goals.

Operators applicable in the typewriter domain \vere then mapped into the EMACS

domain. This interpretation of the analogical reasoning process allowed Douglas and

Moran to build a taxonomy of errors which occur when the operators' sel1lafltics are

wrongly applied in the EMACS system. Douglas and Moran suggest that 62 out of

105 errors (59%) observed in protocols obtained from novice EMACS users are

explicable in terms of \vrongly applied operators from knowledge of typewriting.

The cursor keys give rise to particular errors, for example, the visible effect of the

<Cursor Right> key was mistaken for the visible effect of the space-bar, although the

result on the document was different. The destructive effect of the <Backspace> key

also caused learners problems. The insertion of an invisible character in the text at

68

the point where the <Return> key is pressed requires users to understand a more

complex model of the space into which text is typed than the simple sheet of paper

that would be used with a typewriter (Kohl er, 1987). The model of the space which

EMACS and other text editors employ is the saw-tooth sheet. Figure 4.3 shows part

of a text file that has been highlighted (or selected) by lassooing a number of lines of

text by pressing the mouse button down and dragging the pointer over the text.

Unlike a sheet of paper where we might expect the selected region of space to extend

to the right hand edge of the page, each line ends with the usually hidden end-of-line

or line break character (depicted as the' symbol in Microsoft Word) giving the saw

tooth shape to the selection. Rather than advance to the edge of a sheet of paper, the

effect of pressing the <Cursor right> key when the cursor is at the position of the

invisible Carriage Return character is to cause the cursor to advance to the first

character of the next line. Mistaking the effect of the space bar and the <Cursor

right> command, which is passive and has no effect on the actual text, at this point

would give rise to very different effects when navigating or altering a document

Figure 4.3 Highlighted text placed on a saw-tooth sheet

Allwood and Eliasson (1987) report that in a similar study to Douglas and Moran's in

which a database system was studied, only 6% of the learners' errors could be

accounted for in terms of misapplied analogical mappings. , Although they suggest

this figure may depend on the type of system being considered. Allwood and

Eliasson also re-consider Douglas and Moran's results in terms of a greater number

69

of categories in which learners' errors could be placed. Rather than place all errors

that could be accounted for in a category of errors caused by the use of a typewriter

analogy, other types of analogical error were accounted for in additional categories.

These additional categories included prilning analogy errors where a command was

initially used correctly, but misused later, and anticipatioll analogy errors, where a

command used matched a command that would be correctly used in a sub-task, but

not in the context of the current task. With these additional categories, only 14% of

learner's errors \\'ere said to be caused by use of a typewriter analogy, but errors

caused by all types of analogies accounted for 60% of errors noted. Aliwood and

Eliasson also suggest that 68% of all errors were due to analogies if inefficient uses

of commands caused by analogical reasoning in system use were classified as errors.

Examining the structure of the target domain of the desktop metaphor, Benyon et al.

(1990: 30) notice that:

" ... it is common practice to include an icon of a dustbin on the 'desk'.

Not only does this contravene our expectations as to where to find

dustbins (on the floor), but also the interface dustbin has other

functions apart from its conventional use as a container for discarded

objects. For instance, the dustbin is often the place where disk icons

are put in order to eject the disk from the disk drive. This implies that

one has to 'throwaway' a disk in order to retrieve it! Such an apparent

contradiction can cause conceptual problems to first-time users since

it is easy to think that the contents of the disk will be discarded when

the disk is placed in the dustbin. "

In addition to the inconsistent way in which objects such as the wasteba"ket behave ,

Carroll and Mazur (1986) report that rather than being able to employ the

DESKTOP metaphor to understand the computer system beneath, users often find it

70

difficult to understand the desktop itself. This is discussed further in Section 4.5

where the pragmatics of metaphors and system learning are considered.

Structural approaches to the analysis of metaphors used to teach computing

concepts, or in user interface design, are applied so that the worth of a particular

metaphor may be determined from the quality of the mapping between the source

and target domains (Carroll and Thomas, 1982). Carroll and Mack (1985: 39)

suggest that exploring the use of metaphor according to operational and structural

approaches ignores the "goal-directed learner-initiated learning process though

which metaphors become relevant and effective in learning." Carroll and Mack

propose an active learning process by which people learn unfamiliar systems in an

open-ended way using the metaphorical features of a system to generate initial

hypotheses and operations that are refined with increased exposure to the system,

and greater experience using it. Evidence is mixed as to whether structural

evaluation of analogies may be used to decide on the better analogy for use in a

particular domain, or whether an active learning approach should be assumed, and

that the choice of analogy for a domain matters little in eventually understanding the

domain.

Chee (1993) employed Genter's structure-mapping model of analogy to produce

instruction materials to teach BASIC programming with a good analogy, a weak

analogy, and in a control case, no analogy. According to the structure-mapping

model, best results should be obtained with a good analogy, less good results

obtained with no analogy, and worst results with the weak analogy. Chee found that

the most successful learning was achieved with the best analogy, as determined by

the evaluation mechanism in structure mapping. Contrary to expectations, the results

for the weak analogy and no analogy cases were not substantiated, although the

results were not significant, they were suggestive of the expected result. Chee

suggests that the weak analogy might not have been as weak as it could have been

71

made, the criteria by which an analogy is evaluated within structure mapping arc

linked and altering one criterion may affect another, which may improve the o\'crclll

usefulness of the analogy. Galloway (1993), however, supports the active learning

approach. Gallo\\'ay attempted to teach a number of computing concepts to groups

who were taught using either weak or strong analogies (as determined by a structure

mapping evaluation). Whether weak or strong analogics were employed had no

effect on the eventual learning outcomes demonstrated by subjects in the two groups.

Gallo\vay therefore suggests that both weak and strong analogies facilitate learning

the previously unfamiliar domains.

4.5 The Pragmatics of Metaphor

The final current approach to the consideration of metaphors in user interface design

is to consider the pragmatics of metaphors in use in real systems. Carroll, Mack, and

Kellogg (1988) observe that using metaphors inevitably involves dealing with

incompleteness, mismatches, and composite comparisons, yet they suggest that

metaphor mismatches can prove useful. The Alternate Reality Kit (discussed in

Section 2.4) is a useful tool, for example, because it allows the student to gain

greater understanding from confronting their naive physics with accurate physical

models encoded as ARK simulations. ARK is also of benefit by providing a safe

environment in which to experiment with the objects under study and their attributes.

In this section, some of the issues surrounding the pragmatics of learning and using

user interface designs are discussed. Pragmatic approaches to metaphor examine the

use of metaphor-based systems in plausible real-world situations in which the systenl

might be used. In this way, more information may be gathered about the success of

the metaphor than may be obtained from a structural analysis alone.

72

4.5.1 WIMP Systems

The Apple Lisa, a forerunner to the Macintosh, was one of the first commercially

available systems to employ the DESKTOP metaphor in its user interface. Carroll

and Mazur (1986) conducted a study of learners using the Lisa for the first time This

section briefly discusses the problems users encountered when attempting to learn

this system, and the problems caused by the adoption of the desktop metaphor.

Studies such as Carroll and Mazur's and the study described in Chapter 3

demonstrate that these systems are often more difficult to use and learn than

proponents of metaphor-based systems suggest.

4.5.2 Instruction

The Apple Lisa was supplied with an on-line tutorial entitled LisaGuide. LisaGuide

will not be discussed in detail as it is specific only to the Lisa computer, but the

methods it employs to provide instruction to novice users are worth describing. The

LisaGuide tutorial is made up of a number of on-line lessons, each consisting of a

number of exercises designed to make the user familiar with some aspect of the

system. These exercises are to be performed one after another, and are to be

performed by rote. Users are unable to structure the sequence of exercises, even

though, as one of Carroll and Mazur's subjects found, the exercises seem pointless

and simple to master in their given order. The LisaGuide teaches simple skills at

first, such as use of the mouse and mouse buttons, and goes on to teach more

complex skills that comprise, in part, the simpler skills taught earlier. The LisaGuide

system itself caused users problems, in addition to those caused by the training

strategy adopted by the system, these problems are detailed in Carroll and Mazur

(1986) and Carroll (1990), and will not be described further here.

73

4.5.3 Basic user interaction

Direct manipulation systems, of which the Lisa is an cxamplc, arc assunled to be

easier to learn than command-bascd uscr intcrfaccs, thc learning costs of

remembering commands and of understanding thc cffcCl~ of commands are

presumably reduced. Direct manipulation systems, howcvcr, do not rcmovc the nced

to learn the simple operations and commands that must be understood by the user.

Basic user operations involving the mouse must be learned before more complex

tasks may be attempted. Examples of the simplc opcrations that make up human

computer dialogues with direct manipulation systems arc termed clicking, pressing,

selecting, and dragging. Even this terminology provcd confusing to users,

explanations of these terms were not provided in the Lisa's documentation, yct morc

complex tasks were described in terms of these operations. Although these skills

were taught and practised using the LisaGuidc, they wcre not named, users were

forced to make the (hopefully correct) association between their action and the effect

on the system, and then to relate their action to a concept namcd in the

documentation. Carroll (1990) reports that this problem can trouble users cvcn after

over an hour of using the system.

Double clicking of a mouse button to perform operations was also a cause of users'

problems. Acceptable delays between the first and second click proved difficult to

judge, and some users were never able to open and run applications by methods

involving a double mouse click. One user was reported as hypothesising the effect of

a double mouse button click, but he attemptcd to confirm this hypothesis using a file

which did not respond to a double click and was confused by the resulting

unexpected system response. Where clicking was applied to on-screen objects, again

the lack of an explicit association between a skill and its name, or between the effect

of an action and its name, caused users problems. One user wa~ unable to perfonn

tasks that required a particular icon to be selected and become highlighted until he

74

deduced that when an icon darkened in response to a mouse click it was in fact

highlighted.

4.5.4 The Desktop

According to Carroll (1990: 62), with the Apple Lisa:

"The user is encouraged to think of the display as a desktop
-

containing objects that can be manipulated on analogy with physical

manipulation. This approach attempts to make learning a computer

easier by designing interface actions, procedures, and concepts to

exploit specific prior knowledge that users have of other domains.

Instead of making the interface simpler, this approach seeks to

increase the initial familiarity of actions, procedures and concepts that

are already known. "

Above, problems caused by the use of a typewriter analogy to explain text-editing

systems were described. These problems also arose in the Lisa system, space

characters were inserted into documents when the user expected these characters to

replace and overwrite unwanted characters in the document.

As with basic user interaction, the vocabulary used to describe objects on the

electronic desktop also caused users problems. Users seemed unable to associate the

terms "clipboard", ·stationery pad", "typing", "tear-off stationery" and "folders" with

the analogous on-screen objects presented, data structures or tasks. Where objects

were understood, when users attempted to apply skills from the real world in the

electronic domain, they discovered that these skills were not supported. "Tearing

off" a sheet of stationery from the on-screen pad of paper used to create short notes

and documents proved difficult to perform. One user was seen making sweeping

75

motions with the mouse. clicking the mouse button while the pointer was oyer a

corner of the pad mimicking the action performed in the real world. Objects in the

electronic domain were also found to not support the steps nlaking up more complex

tasks in the order in which the steps would be pcrfornled in the real world.

Some of the basic concepts underlying the desktop metaphor were criticised by

Carroll and Mazur. On-screen objects are divided into data files (which resemble

documents. pictures and folders). functions (for example file copying is denoted by a

photocopier), and application tools (such as word processors and spreadsheet

software). Carroll and Mazur (1986: 41-42) describe the notion of an application tool

as:

" ... a good example of an ancillary metaphor too general to imply

anything useful."

Data files are the product of application programs, but users preferred to perform

tasks directly using the data file, rather than open the application that produced it and

to view the data file as the data manipulated by the application. It also seems

difficult to reconcile application tools with the desktop metaphor, it may be asked

what meaning dragging an application onto the desktop means, applications having

no immediately obvious real-\\'orld analogue.

4.6 Discussion: Metaphor and System Learning and Use

Metaphors are often proposed as a design solution to the problem of creating usable

computer systems. This chapter discussed models of metaphorical and analogical

reasoning and understanding in the learning of previously unfamiliar computer

systems. Users can obtain the information needed to use an unfamiliar computer

system from a number of sources. One source is the documentation supplied \\'ith a

76

system, In the form of manuals, on-line tutorials, and instruction on audio- or

videocassette (for example Apple, 1983). It is well known that users resist using

manuals whenever possible (Carroll and Rosson, 1987), and even when manuals are

used they may not best support users. The Lisa study described above again shows

users' reluctance to use manuals, as does the Macintosh study described below. The

manual supplied with the Lisa system is an example of a manual that fails to support

users in their efforts to learn the system. The learning of a computer system has been

likened to being immersed in a foreign culture - a major requirement of learning

the new system is to learn the language used to describe it. CarroIi and Mazur (1986)

found that many simple skills required to use the system were described using terms

that were not described in the documentation. Users also often change the wording

of tasks into their own familiar vocabulary, as will be demonstrated in the study of

novice Macintosh users described in the next chapter. Mayer (1981) found that

allowing users to put instruction material in their own words increased the time

taken to learn a domain, but increased the quality of their learning. Manual authors

seem not to recognise this, and tasks become more difficult to learn and perform as a

result. This vocabulary problem (Furnas et al., 1987) is well-recognised by others.

Even when many aliases and synonyms for commands or objects in many task

domains, are provided, studies show that the probability of the system designer and

users using the same word when attempting to name the same action or concept

tends to be very low.

The learning mechanism assumed by the Lisa and Macintosh manuals seems to be

that described by Anderson (1982). In Anderson's model skills are acquired by the

compilation over time of a declarative representation of a problem, or task to be

performed, into productions which are used in the performance of routine cognitive

skills. the initial declarative representation eventually being lost. This model

accounts for how people are often able to perform tasks (knowing how) without

being able to articulate the process by which a task is performed (knowing what).

77

More complex skills and tasks are described in terms of being built up from simpler

existing skills. In this way, the Macintosh documentation teaches menu use by first

teaching the simpler skills of manipulating the on-screen pointer using the mouse

and clicking the mouse button at appropriate times. This model of skill acquisition is

realised in the ACT* and ACT-R models of cognition (Anderson, 1983, 1993).

Criticisms, however, of the ACT* model as applied in human-computer interaction

are presented in Lansdale and Ormerod (1994).

Waem (1990) suggests that two aspects of learning need to be considered "in human

computer interaction, \\-'hat the user already knows and what the user has to learn.

Accounts of learning assume that in order to acquire ne\v facts and skills, the learner

must already possess considerable knowledge. Another source of information that

can aid a user to learn a new computer system is transfer of existing skills and

knowledge to the new domain. If systems support or encourage the use and transfer

of existing knowledge, Waern (1985) proposes that this may not aid learning the ne\\'

system if negative transfer occurs and existing knowledge interferes with the actual

knowledge required to use the system. Singley and Anderson (1989) conclude from

their studies of learners using a different text-editing system from a familiar one that

transfer of existing skills can only take place at the level of individual productions,

the smallest unit of cognitive skill. Transfer from one direct manipulation interface

to another can be achieved if the interfaces are sufficiently similar. This can be seen

in (Young, 1981) and in the study of Macintosh users described above where users

could be seen trying to load data files into an application by typing MS-DOS

commands into a text entry field in dialogue boxes rather than selecting files fronl a

list shown.

As direct transfer of existing knowledge cannot account for all the knowledge

required to use an unfamiliar computing system, analogical processes become more

important in learning and using a computer system. Many of the problems of specific

78

user interfaces, systems, and computing domains have been described above. In

general, the process of analogical reasoning in humans presents difficulties for user

interface software designers and users. In the cases considered above, users are

provided with an analogical source domain, either in the form of the model world

represented on-screen, or in some form of instruction. Studies of humans provided

with a useful analogy before attempting a problem solving exercise shows that the

analogy may often not be applied to solve the problem (Gick and Holyoak, 1980,

1983). Some evidence of this is seen in the Macintosh study presented above where

some subjects seem incapable of applying knowledge about waste baskets (which are

depicted on-screen) in order to plan and execute methods of retrieving files from the

waste basket or trashcan.

Where direct transfer of knowledge cannot be achieved, Singley and Anderson

(1989) suggest that a more declarative representation of a domain or problem must

be retained in order to facilitate analogical processes in reasoning. Singley and

Anderson state, however, that if the target domain differs from what is expected

from the result of analogical mapping, the problem solver is unable to resolve and

explain mismatches. In the Copycat model of analogical reasoning, where no

mapping can be made due to there being no concept in the target domain that

satisfies an analogical mapping from the source concept, the problem server is faced

with the problem of conceptual slippage (Mitchell, 1993). If no mapping can be

made from a source concept, the set of possible sources must be relaxed, or must

slip, until a concept that can be mapped is found. Conceptual slippage is realised in

the Copycat model in a slipnet knowledge representation structure.

79

CLabclNod0
This link is called a

labelled link (or

Figure 4.4 Building blocks of sIipnets (French, 1995: 57).

• • • • • • •

Figure 4.5 Part of a slipnet representing the alphabet (French, 1995: 58).

In a slipnet (Figures 4.4 and 4.5), concepts are represented as nodes. Activation of

nodes can spread to concept nodes that map less well to suitable concepts in the

target domain. This multivalued model of concepts that may possibly be mapped

80

analogically explains why in Copycat there is no one single mapping made every

time the mapping is made. Instead" a number of different problem solvers will

choose different source concepts. The possible patterns of activation may result in a

plausible (according to the slipnet, and indeed the problem context) analogical

mapping being made, but which is unwanted, unhelpful, or unintended. If, as Smith

(1987) suggests, all user interfaces will present behaviour and features that cannot be

explained in terms of the metaphor represented, the means by which mismatches are

explained, and the mechanisms used to generate accounts of mismatches require

investigation. Mismatches between an analogical source and a target computing

system are considered by the active learning approach to systems.

An important issue raised by analogies being made by stochastic processes such as

in Copycat, and TableTop (French, 1995), is that there is no one "correct" analogical

mapping, there are only mappings that are more likely to be made. Some inferences

may have such a high probability of being chosen that their selection can be almost

assured, but the mechanisms underlying such models cannot rule out an unlikely

inference being chosen by surviving with a sufficiently high excitation level. Indeed,

some analogical inferences made can be described as "almost sick" (Hofstadter,

1985: 575). The nature of the conceptual models captured in slipnets means that the

knowledge possessed by the system making the analogy confuses and complicates

the process, and the making of analogies between domains will always be subjective

and imprecise.

Analogies are employed to ease the learning and use of a computing system by

encouraging the use of existing skills and knowledge in the new domain of the

computing system. It is possible, however, for a graphical user interface to adopt an

analogy, but one which gives users no suggestion as to the skills that may be applied.

The user interface shown in Figure 4.6 attempts to realise a graphical user interface

which adopts the analogy of, and which is intended to be as flexible in the uses to

81

which it can be put as, a sheet of paper. However, as Buxton (1993) has stated, no

suggestion as to how to use the intcrfacc is given to the novice user. Dialogue \\'ith

this system is initially very ullder-determined (Thimbleby, 19HO).

Figure 4.6 GEdit, a paper-like interface3•

4.7 Types and Theories of Metaphor

Mentioning the ideas of Douglas Hosftadter and his colleagues in the Auid

Analogies Research Group introduces the major division in the types of theories of

metaphors that have been previously presented. While metaphor has been a topic of

thought and debate since the time of Aristotle, theories of metaphor have yet to

achieve sufficient influence in the understanding of metaphor itself, let alone in the

understanding of cognition in general, for it to be possible either to undertake an

historical survey of theories from either Karl Popper's or Thomas Kuhn's \'iewpoinL~

of scientific progress. Instead, theories of metaphor can merely be said to fall into

one of two categories, comparison theories, or interactiolllheories.

3 Developed by Gonion Kurtenbach (Kurtenbach and Buxton. 1991). all interaction wilh the system is

by means of gestures communicated to the system via the mouse.

82

Comparison theories, which account for what Indurkhya (1992) terms similarity

based metaphors, rely on there being some underlying similarities between the

(familiar) source and the (unfamiliar) target domains to permit meaning to be

transferred. We can see that comparison theories are assumed by those, such as

Halasz and Moran (1982), who denounce the use of metaphor as a way of explaining

interactive devices and who state that metaphor plays little part in explanation and

that it can only serve as a rhetorical flourish. According to Ortony (1993) Aristotle

held similar views. The majority of theories of metaphor that have been applied to

date in HCI and user interface design are comparison theories- despite interaction

theories of metaphor predating the first user interface metaphors.

4.7.1 Interaction Theories

A number of interaction theories of metaphor have been proposed - Indurkhya

(1992) surveys those that were the most well-formulated at the time he was writing.

Below we shall describe and make use of the interaction theory due to George

Lakoff and his colleagues. We shall follow Indurkhya's (1992) claims that Lakoffs

theory is an interaction theory even though Lakoff himself, according to Indurkhya,

sides his theory more with comparison theories. The principles of an interaction

theory of metaphor were stated best by Max Black (1993: 27-28)4:

"1. A metaphorical statement has two distinct subjects, to be

identified as the 'primary' subject' and the 'secondary' one ...

2. The secondary subject is to be regarded as a system rather than an

individual thing.

" Black's paper was originally written for the fIrst edition of the volume in which it appears which

was published in 1979.

83

3. The metaphorical utterance works by 'projecting upon' the primary

subject a set of 'associated implication' comprised in the implicative

complex, that are predictable of the secondary subject. ..

4. The maker of a metaphorical statement selects, enlphasil.es,

supresses, and organises features of the primary subject by applying

to it statements isomorphic with the mem hers of the secondary

subject's implicative complex ...

5. In the context of a particular metaphorical statenlent, the two

subjects 'interact' in the following ways: (a) the presence of "the

primary subject incites the hearer to select some of the secondary

subject's properties; and (b) invites him to construct a parallel

implication-complex that can fit the primary subject; and (c)

reciprocally induces parallel changes in the secondary subject."

A possible explanation for why Lakoff chooses, according to Indurkhya (1992), to

speak of his theory of metaphor as a comparison theory is because he and his

colleagues (for example Lakoff and Johnson, 1980) often analyse metaphors that are

called "dead" by some authors (for example, Mac Cormac, 1985). These are

utterances that are metaphors but which no longer possess any power to shock or

surprise because they are such everyday aspects of speech. Where Lakofrs theory

can be terms an interaction theory is in regarding the things being metaphorically

compared as rich systems of relationships (the "implicational complex"), r~ther than

single objects. While structure-based approaches to domain representation are

systems of relationships, they have until recently lacked the complexity and richness

that Lakofrs theory has addressed from the beginning. Forbus (2001) signals a shift

by one group of structure-based analogy researchers to consider more complex

knowledge structures.

84

Interaction theories are important in HeI for two other reasons. The first, which will

considered as further work, is the way in which interaction between domains gives

rise not just to understanding of the unfamiliar domain, but it also causes changes to

the understanding of the familiar domain. Interaction theories do not just address

common-place, or dead, metaphors, but seek to explain novel metaphors, or what

Indurkhya (1992) terms similarity-creating metaphors. How our user interface

metaphors change our existing conceptual structures and perhaps subsequently

constrain the ways in which we can imagine interaction with computing devices is a

topic that remains for further work. The second reason why interaction theories are

important, which HCI has not considered in great depth to date, but which is central

to the Lakoff theory, are the issues arising in system use, cognition and

understanding from the fact that users are embodied. Indurkhya (1992: 402) makes

the following observations of the interaction theory he presents, which like the

systems developed by Hofstadter, French, Mitchell and other members of the FARO,

particularly considers physical actions performed by the 'user': "The model would

work by producing a conceptualization of the target sensorimotor data set in terms of

the source concepts. The resulting representation would be metaphorical, if it would

be something that the system would not have produced by itself when the source

were not explicitly given." Interaction theories stress that action and models of how

actions are performed must be considered as part of source domains if target

domains are to be metaphorically understood. The Lakoff theory of metaphor

described below is valuable for directly addressing this concern.

4.7.2 Metaphor and Analogy

In user interface design. as mentioned, the words "metaphor" and "analogy" appear

to others to be synonymous. It may be asked if this is simply another example of the

limited understanding of metaphor that HCI as a whole possesses, if the mental

processes that underlie these tropes are the same, or if these "tropes", as exhibited by

85

user interfaces, are the same. However, the use of terminology in the metaphor and

cognitive science literature makes these questions difficult to answer currently.

Donald Schon's (1983) analysis of professional's behaviour in terms of them being

reflective practitioners views discovery and hypothesis gener~tion as part of this

form of practice as new problems being framed in terms of descriptions that arc

perceived to be similar to previous experience. This framing is tenned seeing-as by

Schon. For Schon, analogy is synonymous to a form of metaphor termed generative

metaphor which is when seeing-as occurs when the domains of experience arc

different. Schon's key example of this, which is often cited elsewhere, is of a group

of designers \\'ho \\'ere trying to replicate the properties of paintbrushes with bristles

made of natural materials with bristles made of artificial materials. Copying

superficial properties of bristles did not give useful results, but when one of the

designers that Schon \\'as studying observed that" ... a paintbrush is a kind of pump!"

(Schon, 1983: 184) the designers were able to replicate the key aspects of brushes

and to consider new designs. For Schon, only generative metaphors create insight in

this way and allow people to not only understand the unfamiliar domain, but also to

develop a ne\v understanding of the familiar, presumed fully understood, donlain.

The nature of the similarity between domains may influence whether the process of

understanding one domain in terms of another is metaphorical or analogical. A

particular problem that affects some user interface designs, as will be discussed

further in the follo\ving chapter, is that the model world does not behave in a causal

way. Even if the software does not betray the user's notions of causality, as Spiro et

al. (1989: 507) note "Some analogies are vcry effectivc at characterising surface

features and relationships but gloss over underlying causal mechanisms. The result is

that learners tend either to fill in a convenient but incorrect causal account of their

own, or just leave the causal mechanism unexplained as a kind of 'black box.'" They

go on to suggest that "It might be said that a comparison based primarily on surface

86

descriptive aspects is more metaphorical than analogical. However, our point here is

that an underlying relational structure is indeed transferred - that is, people have a

tendency to interpret metaphors analogically." (op. cit.: 507).

Fraser (1993: 332) holds that this connection is even stronger than Spiro et al.

believe. He defines a metaphor as "an instance of the non-literal use of language in

which the intended propositional content must be determined by the construction of

an analogy." Fraser is clear to point out that he does not regard metaphor and

analogy as synonymous, but that analogy is a process that muse be involved in the

understanding of a metaphor. Gentner and leziorski (1993) view metaphor as a broad

category encompassing analogy, matches that map structure independently of object

descriptions, and other kinds of matches between domains. Gentner's work has been

primarily concerned with analogy understanding, in which the structure-mapping

process is the primary mechanism. Many of the figurative expressions studied by

Lakoff and 10hnson (1980) are claimed by Gentner and leziorski to be analogies

rather than metaphors. Gentner et al. (2001) attempt to unify metaphor with analogy,

more precisely to claim an equality between the set of metaphors and the set of

analogies, and hence to be able to account for metaphors by their structure-mapping

model of understanding analogies, but do not completely succeed. Some forms of

metaphor cannot be described in terms of their unified account, although, like Schon,

they state that novel metaphors can be accounted for by processes of analogical

understanding. In the more problematic case of what they term conventional

metaphors, where the base term refers both to a literal concept and a metaphoric

category, metaphors are said to have a career. The career of a metaphor can be

likened to the change in fuzzy category membership in Mac Cormac's model,

metaphors that are at first novel can, in Gentner's et al. view be handled in structural

terms. As the metaphor becomes more familiar, understanding it is more the task of

determining its category membership, no further change in understanding of either

source or target domain is possible, and it becomes what Mac Cormac would call

87

dead. It at this point requires no structure-mapping processes to understand when

encountered again.

In the Lakoff/lohnson theory, the relationship is reversed. Rather than (some, most.

or all) metaphors being comprehensible in tenns of processes and nlcchanisms of

analogical reasoning, analogies are forms of metaphor. Lakoff. from analyses

undertaken by Mark Turner, suggests that the general mcchanism of analogical

reasoning is the GENERIC IS SPECIAC metaphor. This metaphor maps schemata

onto their generic-level schemata. The following sections dcfine the tcrnl schemata

and present the details of the Lakoff/lohnson theory of nlctaphor. Among the

advantages provided by this theory as a tool for undcrstanding user interface

metaphors, is the provision, through the existence of generic-level schcnlata, of \\'ays

of addressing the fundamental questions of how novice users make a mapping

bet\veen a known domain (the metaphorical source) and a completely unkno\\'n

domain, and ho\\' they can fonnulate motor scquences to interact with this domain.

4.8 Is Metaphorical Understanding of User Interfaces

Possible?

Above, the problems of existing metaphor-based user interfaces have been

discussed, as \vell as the difficulties of attempting to develop new metaphors for

model world interfaces to computing systems from an understanding of previous

work in understanding metaphorical and analogical reasoning. In this section \\'e

consider a serious objection to the world view underlying much of the \\'ork

discussed above. This objection is one that, while it suggests that mctaphors and

analogies should have no place in the design of graphical user interfaces, we \\'ill

take as the starting point to employ a particular recent interaction theory of metaphor

understanding as another tool to use to criticise existing metaphor-balied User

88

interfaces and to employ in the analysis and design of two new interface designs that

will be presented later in the thesis.

The work that has had the greatest influcnce on current work on metaphor and

analogy in user interface design adopts the Objectivist world view. This model of

reality, meaning and reference, long-standing in Western science and philosphy,

adopts the following assumptions:

"- Thought is the mechanical manipulation of abstract symbols.

- The mind is an abstract machine, manipulating symbols essentially

in the way a computer does, that it, by algebraic computation.

- Symbols (e.g. words and mental representations) get their meaning

via correspondences with things in the external world. All meaning

is of this character.

- Symbols that correspond to the external world are internal

representations of external reality.

- Abstract symbols may stand in correspondence to things in the

world independent of the peculiar properties of any organisms.

- Since the human mind makes use of internal representations of

. external reality, the mind is a mirror of nature, and correct reason

mirrors the logic of the external world.

- It is thus incidental to the nature of meaningful concepts and reason

that human beings have the bodies they have and function in their

environment in the way they do. Human bodies may play a role in

choosing which concepts and which modes of transcendental

reason human beings actually employ, but they play no essential

role in characteriSing what constitutes a concept and what

consi tutes reason.

89

- Thought is abstract and disembodied, since it is independent of any

limitations of the human body, the human perceptual system, and

the human nervous system.

- Machines that do no more than mechanically manipulate symbols

that correspond to things in the world are capable of meaningful

thought and reason.

- Thought is atomistic, In that it can broken down into simple

'building blocks' - the symbols used in thought - which are

combined into complexes and manipulated by rule.

- Thought is logical in the narro\v technical sense used by

philosophical logicians; that is, it can be modelled accurately by

systems of the sort used in mathematical logic. These are abstract

symbol systems defined by general principles of _ symbol

manipulation and mechanisms for interpreting such symbols in

terms of 'models of the world'." (Lakoff, 1987: xii-xiii)

This model of the \vorld is one that has become subject to recent severe cri ticisms,

these criticisms will need to be taken into account as further \\-'ork in role of

metaphor and analogy in human-computer interaction is undertaken. The severest

criticism of the Objectivist \vorld view has been provided by Hilary Putnam (1981)

who haS provided a well-known theorem that refutes many of the assumptions of

Objectivism listed above. Putnam's Theorem is stated as follows (Putnam, 1981:

Appendix):

"Let L be a language \vith predicates FI, F2, ... , Fk (not necessarily

monadic). Let I be an interpretation in the sense of assigning an

intension to every predicate of L. Then if I is non-trivial in the sense

that at least one predicate has an extension which is neither empty nor

universal in that at least one possible world, there exists a second

90

interpretation J which disagrees with I but which makes the same

sentences true in every possible world as I does."

Putnam uses this theorem to show that a sentence such as "a cat is on a mat" can be

transformed so that "cat" refers to "cherry" and "mat" refers to "tree" without

changing the truth value of the sentence in any possible world. Predicates of this

form make up the models of the target and source domains between which an

analogical mapping is made in the structure mapping and ACME models. Putnam

continues by stating that "a more complicated reinterpretation ... can be carried out for

all sentences of a whole language. It follows that there are always infinitely many

different interpretations of the predicates of a language which assign the 'correct'

truth-values to the sentences in all possible worlds, no matter how these 'correct'

truth-values are singled out." (Putnam, 1981: 35, original italics).

The effect of Putnam's Theorem is to render meaningless the notion of reference, the

connection between symbols in the mind and distinct objects in the external world

that can be categorized. While the impact of Putnam's Theorem has been felt most

fully in the fields of cognitive science, philosophy and linguistics, its results also

apply in the prospects for theories of metaphorical understanding. Lakoff (1987:

172) states that:

"The Objectivist paradigm also induces what is known as the literal

figurative distinction. A literal meaning is one that is capable of

fitting reality, that is, of being objectively true or false. Figurative

expressions are defined as those that do not have meanings that can

directly fit the world in this way. If metaphors and metonyms have

any meaning at all. they must have some other, related literal

meaning. Thus, metaphor and metonymy are not subjects for

objectivist semantics at all. The only viable alternative is to view

91

them as part of pragmatics - the study of a speaker's meaning.

Moreover, it follows from the objectivist definitions of definitio1l

itself that metaphor and metonymy cannot be part of definitions. They

cannot evcn be a part of conccpts, since concepts must involvc a

direct correspondence to entities and categories in thc rcal \\'orld (or a

possible world)."

Putnam (1981: 72-74), in addition, says that:

"Even if the notion of a 'similarity' between our conccpts and what

they refer to doesn't work, couldn't there be some kind of abstract

isomorphism, or, if not literally an isomorphism, some kind of

abstract lnapping of concepts onto things in the (mind-indcpendcnt)

world? Couldn't truth be defined in terms of such an isomorphism or

mapping?

The trouble \\'ith this suggestion is not that correspondences betwcen

words or concepts and other entities don't exist, but that too Inany

correspondences exist. To pick out just one correspondence bct\\'ecn

words or mental signs and mind-independent things we would have

already to have referential access to the mind-independent

things ... This simply states ... the intuitive fact that to single out a

correspondence between two domains one needs some independent

access to both domains. "

This independent access to domains between which a mapping is to be drawn, this

God's eye view of the world as Putnam terms it, is what Putnam's Theorem states

can never be available. Therefore much of the work on metaphorical comprehension

and analogical reasoning, assumed to a considerable extent in human-computer

92

interaction, becomes subject to Mitchell and Hofstadter's (1995: 290) criticisms of

these systems. They claim that there is nothing in the existing models of analogy

making that makes "symbols stand for anything in a recognisable way. Only the

person who used them to encode 'pieces of knowledge' sees them as standing for

anything." The conclusion drawn, therefore, is that metaphor will never allow users

to understand the systems they use, if concepts and models of the system are to be

formed to a large part by metaphorical mappings between domains modelled in a set

theoretic, Objectivist, way. It might be concluded, as a result, that users should be

provided only with literal accounts of the system they are to learn and use. In doing

so, however, devising training material would prove difficult and we would reject

the advantages that some forms of mental models give to users. We would also be

rejecting the pervasive nature of metaphor and analogy in understanding the world

(Lakoff & Johnson, 1980). Before presenting the design of the Medusa system,

therefore, we are required to explore to some extent the role that metaphor will play

in its design and the theory of metaphor that is assumed in its model world, in doing

so, we continue a programme begun by Rohrer (1995)5.

4.9 Cognitive Semantics of User Interface Metaphors

Below, the motivations behind a new interface design named Medusa are discussed.

The design of this user interface, while trying to avoid the problems posed by

existing systems based on metaphors and analogies discussed above, appreciates that

analogy and metaphor are an inescapable part of learning and understanding. In

recent years, the Objectivist world view underlying the understanding of

metaphorical and analogical reasoning assumed in the theories of metaphor

5 Very recently. use of the LakofflJohnson theory of metaphor understanding in HeI has also been

adopted by others. fa- example BenyOll and Imaz (1999). but these authors have yet to consider the

number of interface designs and task domains considered in this thesis.

93

described earlier in this chapter has come under criticism. These criticisms have led

to the development of a contemporary theory of metaphor by George Lakoff and his

colleagues (Lakoff, 1993). Below, an attempt to formulate this theory of metaphor in

terms of user interface design is presented. This fOImulation of the theory is

employed to underlie one version of the Medusa user interface design that will be

presented in Chapter 6.

4.9.1 Image Schemata and Metaphorical Projection for

Understanding

Putnam's Theorem gives rise to the conclusion that metaphor can play no part in our

understanding of concepts \vithin an Objectivist world vie\v. Mappings bct\\'een

domains, as assumed in existing work on metaphorical understanding of user

interface model worlds, teach us little about the quality of a user interface metaphor

according to Putnam's Theorem as the concepts and representations of the external

world modelled have no connection to mind-independent things. We must therefore

confront how meaning is obtained and what role metaphor can play in the world. The

conclusion drawn by Lakoff (1987) and Johnson (1987) is that meaning is grounded

in terms of image schemata, and that the world can be understood in terms of these

schemata and metaphorical mappings from these schemata to describe a situation or

statement. Johnson (1987: 28-29) provides the following definition of the tcnn

" image schemata":

"On the one hand, they are not Objectivist propositions that specify

abstract relations between symbols and objective reality. There might

be conditions of satisfaction for schemata of a special sort (for which

we would need a new account), but not in the sense required for

traditional treatments of propositions. On the other hand, they do not

have the specificity of rich images or mental pictures. They operate at

94

one level of generality and abstraction above concrete rich images. A

schema consists of a small number of parts, images, and events. In

sum, image schemata operate at a level of mental organisation that

falls between abstract propositional structures, on the one side, and

particular concrete images, on the other.

The view I am proposing is this: in order for us to have meaningful,

connected experiences that we can comprehend and reason about,

there must be pattern and order to our actions, perceptions, and

conceptions. A schema is a recurrent pattern, shape, and regularity

in, or of, these ongoing ordering activities. These patterns emerge as

meaningful structures for us chiefly at the level of our bodily

movements through space, our manipulation of objects, and our

perceptual interactions." (Original italics)

We shall give one example of understanding based on image schemata before

considering a number of case studies applying the Lakoffllohnson model of

metaphor comprehension to aspects of existing user interface designs. 10hnson

(1987: 32) presents examples of how a small number of image schemata based on

experience of IN-Our relationships can account for many uses of the word "out" in

English. Figures 4.7, 4.8, and 4.9 show these uses with depictions of the schema6

being relied upon for understanding.

, These schemata were devised for Qaudia Brugman's 1981 University of California at Berkeley MA

thesis The Slory of Over.

95

John went out of the room.

Pump out the air.

Let out your anger.

Pick out the best theory.

Drown out the music.

Harry weasled out of the contract.

Pour out the beans.

Roll out the red. carpet.

Send out the troops.

Hand out the information.

Write out your ideas.

Figure 4.7 The OUT I schema

Figure 4.8 The OUT 2 schema

I..M TR
The train started out for Chicago. ...

Figure 4.9 The OUT 3 schema

It should be noted that these depictions of image schemata are only depictiolls, but

they seIVe to illustrate the bodily experiences captured in, and described by, the

schemata. In the schemata shown LM is the "landmark" in relation to which TR the

"trajector" moves. Considering the schema OUT 1 and the sentence "John went out of

the room", the circle (LM) represents the room as a container, and John moves along

the arrow (as TR) out of the room. The diagram does not represent information, such

as the shape of the room (which may not be circular), or the vector along which John

moves, but it instead "gives only one idealised image of the actual schema .. .lt is,

rather, a continuous, active, dynamic recurring structure of experiences of similar

spatial movements of a certain kind." (Johnson, 1987: 36).

96

The intention behind the Lakoff/Johnson theory of metaphor is to be able to account

for human understanding of concepts and language. In order to do so it must be able

to describe the non-physical as well as the physical. To this end. all understanding is

achieved by metaphorical extensions from image schemata. An example given by

Johnson (1987: 35) is the sentence "I don't want to leave any relevant data out of my

argument." This relies upon the our schema in order to be understood. but also

relies upon the ARGUMENT IS A CONTAINER metaphor. claimed to be a very

common metaphor in Western culture (Lakoff and Johnson. 1980).

There are, obviously, more schemata in addition to IN-Our used to ground our

comprehension of the world. Johnson (1987: 126) presents a partial list of schemata

(shown in Figure 4.10), which he claims are" ... pervasive, well-defined, and full of

sufficient internal structure to constrain our understanding and reasoning." (original

italics). Some of these schemata will be used below in case studies. and in the

following chapter where the details of a revised design of the Medusa system are

presented, to be useful in attempts to provide meanings of and to discuss interaction

with aspects of graphical user interfaces.

97

CONTAINER BALANCE COMPULSION

BLOCKAGE COUNTERFORCE RESTRAINT REMOVAL

ENABLEMENT ATTRACTION MASS-COUNT

PATH LINK CENTER-PERIPHERY

CYCLE NEAR-FAR SCALE

PART-WHOLE MERGING SPLITTING

FULL-EMPTY MATCHING SUPERIMPOSITION

ITERATION CONTACT PROCESS

SURFACE OBJECT COLLECTION

Figure 4.10 Some pervasive image schemata

4.9.2 The Lakoff/Johnson Theory in HCI

A criticism that can be made of the use of metaphor in HCI is that few authors who

apply a particular theory of metaphor comprehension, or who apply particular

theories of metaphor comprehension in their interface designs, state which theory

they are adopting. The Lakoff/Johnson theory is different in that most authors that

employ it explicitly state that they are adopting, or testing, this theory. However the

entire body of literature on use of the Lakoff/Johnson theory in HCI prior to

(Treglown 1999; 2(00) comprised (Rohrer, 1995). The use of the Lakoff/Johnson

theory in later parts of this thesis was begun independently of Rohrcr's work, and \vc

have considered a larger number of case studies (reported in Chapter 6) than he did.

This should not be taken as a criticism of Rohrer's efforts, he mcrely rcturncd to his

work in cognitive science and linguistics after providing his contribution to HC!.

Rohrer's (1995) contribution is to show that some aspects of the Apple Macintosh

user interface can be analysed and reasoned about in terms of the Lakoff/Johnson

theory of metaphor. Much of (Rohrer, 1995) addresses the trash can which \\'as

98

found in the emprical study reported on in Chapter 3, and in work reviewed in this

chapter, to be particularly problematic. We shall return to this user interface feature,

and Rohrer's examination of it, in one of the case studies undertaken in Section 5.x.

Rohrer's interest in metaphor comes from his claiming to " ... see not only a tension

between literal and magical qualities of metaphor, but a tension between the users'

feeling that the computer is an extension of their bodies and believing that it is an

'other' - a sentient being wi tha consciousness of its own." We shall return in Section

5.4.3 to the teaching strategies employed by Rohrer to explain the trash can, and

other features of the Macintosh user interface, including explaining it in terms of

another agent with which to communicate. It is in terms of Rohrer's interest in ideas

of embodiment and their impact on theories of cognition and interaction, and his idea

that "The magical features of the DESKTOP metaphor are inextricably bound up

with the users [sic] aesthetic feel of the system" that the Lakoffllohnson theory

deserves to be considered as a candidate theory of metaphor in HCI and provides

explanatory power that other theories of metaphor do not yet offer to HCI in the

level of detail at which they are currently described.

An example that Rohrer gives where embodiment plays a key role in understanding,

or appreciating, an interface design feature is the use of "zooming" of windows as

they open. A closed window can take many forms, in early WIMP systems, as was

mentioned above, they were denoted as an icon on the root window. In the Microsoft

Windows 95 user interface, a closed window is denoted by a rectangular region, or

button, on the task bar along the bottom of the screen. Clicking on a button on the

task bar will open or close the associated window depending on its current state. In

most systems (including the Macintosh, when an icon is double-clicked on) the

window opens by expanding, or zooming, from a small region of the screen to

occupy a far larger region. Rohrer describes this enlargement as "zooming",

mimicking the enlargement of a document as ones head moves toward it, or as it is

brought closer to the viewer. To Rohrer "Zooming is more than just a nice touch ... it

99

is one of the best examples of how user interface design can draw on common

patterns of feelings. Zooming is a pattern of feelings that takes place ill and through

tbne; the realisation that all feeling takes place in and through time is the most

important step in thinking about users' bodies. Part of being en1bodied is being a

creature in time, and being in time is part of what the Cartesian theory of mind and

ideas as objective entities hides from our attention." The closest to an account of

zooming provided in the cognitivist tradition in HCI is Barnard and May's (1995)

configuration of Bamard's ICS (Interacting Cognitive Subsystems) cognitive

architecture to comprehend transitions between displays and depictions of system

and program states that are borrowed from the grammar of film-making, and

accounted for by theories of film. Instead of borrowing methods from the visual arts,

and trying to explain how the mind can comprehend them in order to answer the

questions "Why make windows zoom? Why make an event that could happen

instantaneously on the computer screen take longer than necessary simply for the

sake of metaphorical consistency?" For Rohrer "Making users fcel at home in their

user interface is important to the development of users [sic] abilities to imagine and

intuit ho,v the user interface will ,vork." Zooming, to Rohrer, is an example of an

image schema that captures a familiar pattern of experience with the physical world,

one that Kosslyn (1994) claims can be rehearsed and visualised by the human

capacity for mental imagery. Beyond mere explanation of how ccrtain computer

animations can be accounted for, Rohrer argues that " ... the aesthetics of User

interface design requires thinking about subjective, preverbal bodily patterns of

feeling... The development of good user interfaces depends on careful

phenomonological and psychological research on subjective bodily experiences."

These are what HCI has typically, so far, ignored. These aspects of interface \\'ill be

returned to at the end of the next chapter, and at other later points in the thesis.

100

4.10 Conclusions

This chapter has considered the use of analogies and metaphors in user interface

design. Although analogies are suggested as a solution to the problem of designing

usable software. as the review above discusses:

• Analogies are often the source of difficulties for learners;

• Human ability to make use of analogies provided to aid problem solving is

limited;

• Where mismatches occur between the source and the target computer system the

mechanisms by which mismatches are explained are poorly understood;

• Analogy-based user interfaces may not suggest ways in which they may be used.

and existing analogy-based systems can prove difficult to learn and use when

performing realistic tasks in realistic setting.

Within HeI metaphor has typically been seen as only one mechanism for. or

description of. understanding of computing systems. The following chapter surveys

some of these other mechanisms and places metaphor in a wider context of these

models and mechanisms.

101

Chapter 5

Users' Models of Interactive Systems

"The situation gets quite confused. with people turning different knobs, the effects of

which they have no way of knowing. "

- John Cage.

5.1 Introduction

In Chapter 4 the drawbacks of adopting the use of analogies and metaphors in the

design of interactive user interfaces were examined. In particular, the recognition

phase (finding a suitable source domain) and the elaboration (mapping between

domains) phase of the analogical reasoning process identified by Hall (1989) were

considered. Where the mapping gives rise to mismatches, and elements of the source

domain cannot be applied in the target domain, the model of the target domain

employed must be evaluated and debugged. The final phase of analogical reasoning

identified by Hall is to consolidate repairs of the target domain model in order to

improve future perfonnance.

The debugging of target domains has been addressed in models presented by

Burstein (1986) and Adelson (1989). Both of these models rely on understanding

causal mechanisms in the source and target domains in order to remove inferences

from the target model that cannot be applied and used, and to add mechanisms

within the target model in order to account for the behaviour of the target model.

This process depends on the target domain being capable of being described in

causal terms, some interface designs, however, have been implemented which do not

display causal behaviour. In an attempt to examine direct manipulation user

interfaces based on analogies and metaphors, efforts were made to formalise

knowledge of the physical world and to examine user interfaces based on physical

world analogies. Considering an earlier version of the Macintosh Finder, it was

noted that the behaviour captured in the action-effect rule (Monk and Dix, 1987)

shown in Table 5.1 is exhibited. In Treglown (1994) it was shown possible to model

moving files around the Macintosh file system and deleting files from the file system

using the notation of Qualitative Process Theory (Forbus, 1984). It, however, proves

impossible to describe the behaviour in Table 5.1 in terms of the objects visible on

screen and physically realistic changes to attributes of the objects (such as spatial

position) alone. Norman (1983) notes that some users' behaviour when using

interactive systems involves superstitious beliefs. In this case, without generating an

account of the system behaviour in terms of mechanisms in the underlying software,

the system cannot be described in terms of any understanding of physics, either

existing or conjectured (Sheldrake, 1994).

RI: <Drag file icon over the disk icon and release mouse button>:: File icon appears

in window associated with disk if window is open and file is copied across. The

trashcan empties if 'full' and the trashcan icon shows 'empty'.

Table S.l An action-effect rule describing partial behaviour

of the Macintosh Finder interface.

The conclusion derived and assumed in the remainder of this thesis is that the use of

analogies and metaphors in user interface design as currently assumed does not

provide an ideal solution to the problem of designing user interfaces. This conclusion

is not original, it is one arrived at by Halasz and Moran (1982), among others. They

103

argue that metaphor should be used as they claim it is used in literature, in passing,

and to convey meaning at a particular point in the development of understanding, not

in an attempt to describe the entire system. Even where a number of analogies are

used to describe different aspects of the system, users may apply the incorrect

analogy to describe the part of the system currently of interest (Rumelhart and

Norman, 1981). In order to relate a number of less all-enconlpassing, more specific

metaphors, Halasz and Moran (1982: 384) conclude and suggest that systems be

explained in terms of a conceptual model:

" ... to present the underlying conceptual structures directly to the user,

providing him \vith an appropriate basis for reasoning about the

system."

Norman (1998: 180-181) also discourages the use of metaphors, saying:

"Basically, those who espouse the use of metaphors arc giving

human-centered development a bad name, almost as bad as those who

believe in 'user-friendly' systems ... Designers of the world: Forget the

term 'metaphor.' Go right to the heart of the problem. Make a clean,

clear, understandable conceptual model."

A similar conclusion is reached by Laurel (1993). She suggests that what have been

termed user interface metaphors, an assumption employed in the previous three

chapters, are in fact user interface silniles, which assert that one concept is like

another. Metaphor-based systems are intended to resemble the metaphorical source,

but may differ. Smith (1987) suggests they will always differ. Differences between

the source and target domains and the problems they pose for users were the subject

of the previous chapter. User interface similes act as a mediator between three

concepts, the real-\\'orld object, the representation of the object, and the functionality

104

and data structures implemented by the computing system denoted by the

representation. The user is forced to fonn "mental models of what is going on inside

the computer that incorporate an understanding of all three parts" (Laurel, 1993:

130).

In the remainder of this chapter, the models of computing systems formed and

employed by users in order to understand metaphor-based systems and perform tasks

using such systems, are discussed. This discussion will form the basis for presenting

user interface designs for supporting tasks supported by the sorts -of metaphor-based

systems discussed in Chapter 2. These new designs attempt to overcome some of the

drawbacks found with metaphor-based systems and to present a useful conceptual

model to users.

5.2 Types of Users' Models of Systems

Users are said to have knowledge of two aspects of the systems they use, task

knowledge ('how to do it' knowledge), and device knowledge ('how it works'

knowledge). Carroll and Olson (1988) list three types of model to account for these

two aspects:

• knowledge of simple sequences of commands and key-presses, learned by rote and

memorised with little or no understanding,

• methods (more complex task knowledge), and

• mental models.

Task knowledge is often described in terms of Card, Moran, and Newell's (1983)

GOMS (Goals, Operators, Methods, and Selection Rules) model, extensions of

GOMS and alternative models and notations that express similar knowledge.

Problems arising from use of GOMS in human-computer interaction are well known.

105

GOMS addresses only routine cognitive behaviour of the sort eventually realised by

the ACf* model of learning and supported by traditional documentation design, and

it addresses errors in human performance only if knowledge used to overcome errors

can also be described in terms of GOMS. For novice users of a new system any

routine skills that might be applied in the new system are those that can be

transferred from their knowledge of existing systems.

Users' device knowledge is thought to be represented in the form of their mental

models. The term mental model has given rise to much confusion, being applied to a

number of different entities, so much so that the term mental lnuddles has been used

in some discussions. Norman (1983) offers some additional terminology in order to

resolve misunderstandings, he suggests that four notions need to be identified in this

discussion, the target systeln, the conceptual model of the target system, the user's

mental model of the target system, and the scientist's conceptllalisatioll of the mental

model. The conceptual model is the creation of a system designer or teacher, it is

intended to provide "an appropriate representation of the target system, appropriate

in the sense of being accurate, consistent, and complete" (Norman, 1983: 7).

Through interaction with the system, people are said to construct mental models

(although the psychological support and evidence for mental models is still the

subject of debate). Mental models are structures that evolve with time and with use

of the system and are formed to represent the conceptual model as represented by the

system image, the view of the conceptual model represented on-screen and in system

documentation. These notions do not identify all the models that may be held by the

agents identified by Norman. The designer's model of the system is the conceptual

model, the user's model of the system is their mental model, the researcher will

possess the scientist's conceptualisation of the mental model (a model of a model). It

is also possible, as seen in adaptive systems and intelligent tutoring systems, for the

system to possess a model of the user. The conceptual model and the scientist's

conceptualisation of the mental model will be focused on below.

106

Norman (1983: 8) makes the following observations on the nature of mental models

which need to be considered if system design taking into account mental models is to

be undertaken:

" 1. Mental models are incomplete.

2. People's abilities to 'run' their models are severely limited.

3. Mental models are unstable: People forget the details of the system

they are using, especially when those details (for lhe whole

system) have not been used for some period.

4. Mental models do not have firm boundaries: similar devices and

operations get confused with one another.

5. Mental models are 'unscientific': People maintain 'superstitious'

behaviour patterns even when they know they are unneeded

because they cost little in physical effort and save mental effort.

6. Mental models are parsimonious: Often people do extra physical

operations rather than the mental planning that would allow them

to avoid those actions; they are willing to trade-off extra physical

action for reduced mental complexity. This is especially true

where the extra actions allow one simplified rule to apply to a

variety of devices, thus minimizing the chances for confusions. "

Carroll and Olson (1988) discuss four types of mental models: metaphors, networks,

glass box models and surrogates. The notion of surrogate models is due to Young

(1983) who also introduces a number of device models: strong analogies, mappings

(or task/action mappings), coherence, vocabulary, problem spaces, psychological

grammars and commonality. Metaphors, and hence strong analogies, have been

discussed in detail above, the remaining models mentioned by Young (1983) which

are not discussed in detail here, have received little further attention. The exception

107

is the use of problem space models (Card, Moran, and Ncwcll, 1983) which Young

(1983) initially ignored since problem spaces arc mostly used to model of routine

cognitive skill of the sort described by GOMS, whcre problcm solving when using

devices is ignored. Young's views have since altcrcd (Young and Simon, 1987;

Simon and Young, 1988) to where problem spaccs are thought to fornl the basis of

an approach to interaction in which planning and routine cognitive skill are opposite

ends of the same continuum. Where skills to perform tasks and subtasks do not exist~

plans that make use of what appropriate skills the agent does havc can be constructed

using well-known backwards-chaining methods into which existing skills can be

interleaved. This work also gives rise to an important claim that only a limited

amount of planning \\'ill be undertaken in HC! tasks. Where planning is necded, it is

closely tied to execution of planned actions, and can only be partial as much

planning is often a matter of the user revising their intentions in response to system

feedback follo\\'ing previously performed actions.

5.2.1 Networks

Generalised transition networks (GTN's) have been proposed as a nlodel of

interactive systems (Keiras and PoIson, 1983). GTN's comprise nodes representing

states, and arcs that represent transitions from one state to anothcr and thc actions

performed on registers in response to user input. The complexity of graphiCal

notations for finite state machine models of systems is partially ovcrcome in the

GTN by pennitting sub-networks to be described separately and called recursively

from nodes in other networks. GTN's are employed as device models in Keiras and

Poison's Cognitive Complexity Theory (Keiras and PoIson, 1985), in which task

knowledge is represented in a form of a GOMS model. GTN's are also proposed as a

means of determining how easy the system is to learn and rcmcmber. This is

achieved by comparing a user's GTN model of the system with the actual, ideal~

GTN. Missing nodes and arcs in the user's model denote missing or faulty

108

knowledge. The types of systems that may be described easily by GTN's are limited,

however. GTN's are a difficult model in which to model interleaving (Cockton,

1992), which must be supported in order to realise systems such as Rooms and task

switching in other systems such as the desktop. GTN's, as described by Keiras and

PoIson (1983), adopt a stimulus-response view of systems, the systems described

produce feedback and change state in response to obvious commands, such as

control characters and typed commands. In the direct manipulation systems

described in Chapter 2, commands may consist of hundreds of discrete events that

are interpreted as a high-level user intention. Although a GTN may be used to

realise such systems in user interface management systems, it seems unlikely that the

user's model of the device includes awareness of, or makes use of, the events

generated by devices such as a mouse. The sense of engagement with the mouse that

users are intended to develop with accurate tracking of the on-screen pointer as the

mouse is moved precludes such detail being made available to the user. GTN's, as

described by Keiras and Poison (1983), describe systems that consist of a single state

altered in response to user input. In the design and implementation of object-based

systems, such as the desktop and the Alternate Reality Kit, the system's state is

distributed over a number of on-screen or software objects. This is another

manifestation of the problem of interleaving which is not, as discussed above,

addressed well by the GTN either in terms of system implementation or users'

models of the system.

5.2.2 Glass Box Models

Glass box models (Du Boulay, Q'Shea, and Monk, 1981) are said to combine

elements of both metaphors and surrogate models (which are described below).

Glass box models are intended to provide a perfect mimic of the target system, but

provide some semantic interpretation, in the form of metaphors, of relevant

components. Glass boxes are based on an analogy of cut-away windows in physical

109

devices to reveal some of the workings inside. This notion fomls part of the idea

underlying a glass box model, that interaction with components should be achieved

with simple input and simple forms of output, and that hidden actions and states

should be illulninated. Glass box models are more prescriptive than descriptive,

concepts are introduced in order to describe the notional machine in order to perform

some task. CarroIl and Olson (1988) relate glass box nHxJcIs to operational

metaphors; rather than attempt to provide novices with an account of existing

programming languages, however, the gla~s box. concept has been employed in the

design of novel programming languages and simplified interfaces to ex.isting

programming languages. Being prescriptive models, however, the glass box. offers

little in the \\'ay of description of the sorts of models of systenlS that users may

generate and use.

5.2.3 Surrogates

A surrogate model is based on the notion of a "working model", an account of a

system intended to explain ho\v a system works. A surrogate should perfectly mimic

the target system's input and output, but the process by which the system's output is

produced need not be the same as realised by the target systenl, and the internal

workings of the surrogate need not be isomorphic to thc target systcnl. Young (1981,

1983) attempts to construct surrogate models of some simple computing dcvices,

namely three types of pocket calculator:

• a simple four arithmetic operation calculator,

• a calculator supporting more complex algebraic expressions, and

• a calculator based on the reverse polish notation which relics on a stack as a store

of numbers input and postfix use of ari thmetic operators.

110

While Young was able to provide surrogate models of the four function calculator

and the reverse polish notation calculator, the other calculator, which accepts more

complex algebraic expressions, was shown to be more difficult to construct a

surrogate model of. This is because no account could be provided of how the system

responds to 'ungrammatical' sequences of key presses.

In addi tion to the difficulty of providing an account of some aspects of the

calculators in tenns of registers, stacks, and how data is placed in - and moved

between - registers and the display, Young (1983) doubts "the psychological

validity of surrogates. He claims that they are of little use for describing routine

behaviour (although they have a greater role in problem solving and predicting the

outcome of novel calculations), and that the cognitive workload of employing a

surrogate model may be too large for users. The calculators studied, even if they

could produce results to ill-structured sequences of key presses, rely on well-fonned

sequences of key presses in order to produce meaningful results. The structure of

commands, key presses and other user input actions accepted by devices and

required in order to perfonn tasks is the concern of another fonn of knowledge about

systems, lask/action mappings. These are multi-levelled models developed from

Moran's (1981) Command Language Grammar which describe the interface between

the user and an interactive system, and the transformation of a user's task to the

sequence of actions needed to perform the task on the system. The models of the

calculators that Young describes are referred to as 'implied register models' (Young,

1981), they introduce registers, internal state and other data structures sufficient to

describe the outputs produced by the calculators. In general, however, Carroll and

Olson (1988: 51) observe that:

" ... while the surrogate always provides the right answer (the one the

target system would have generated) it offers no means of

illuminating the real underlying causal basis for the answer. It is a

111

good, complete analogy that may allo\\! the user to construct

appropriate behaviour in a novel situation, but does not help the user

why the system behaves the way it does."

System Learnin& usin& Surrogate l\;lodels

Young (1981, 1983) presented surrogate models of a number of pocket calculators,

but did not explore how providing learners \vith these surrogates might affect

learning and use of the calculators. Halasz and Moran (1983) considered learners'

use of a reverse polish notation calculator when groups of learners were provided

either \\'ith no surrogate, or a surrogate model of the calculator. The surrogate nlodel

taught was intended to provide a problem space in which learners could invent

operator sequences and carry out problem solving. This problem space consisted of

the calculator's stack and rules describing the changes in the stack's contents as the

user pressed keys. Halasz and Moran (1983) found that the learners who were not

provided with the model performed routine tasks up to 40% faster than the learners

who were provided \vith the model. Young (1983) suggests that surrogates play no

role in routine behaviour, the results of Halasz and Moran suggest that surrogates

impose an extra load on the user when performing routine tasks. When performing

invention tasks where operator sequences must be planned in order to perform novel

calculations, learners provided with the model were able to perform tasks 15% fa~ter

than the group of learners who were not provided with a model.

Keiras and Bovair (1984) employed a novel device in their examination of the role

of surrogates in learning. They also adopted the method of comparing users Who

were taught only rote procedures for using the device with those users who were

taught an explanatory model of the system in addition to the rote instructions. This

explanatory model was in the form of a "cover story" and a diagram describing the

topology of the internal components of the device. Providing a model to the learners

112

meant that the model group learned the procedures needed to use the device faster,

and learned more efficient procedures. The model group also retained knowledge of

procedures needed to use the device better than the group taught only the rote

procedures, and remembered more efficient procedures. In a second experiment,

Keiras and Bovair (1984) examined the effect of the device model provided on

learners' inference of procedures performed when using the device. They found that

learners provided with the model took fewer actions to infer procedures than the

other group, and, once they had learned a first procedure, took fewer actions to infer

a second procedure to perform the same task. A third experiment examined which of

the "cover story" and the description of the topology of the device's components is

the important factor in learning.

The third experiment performed by Keiras and Bovair (1984) suggested that the

topology of the device's components is the important factor in a device model

presented to learners. Keiras (1992) presents further experiments that confirm this

suggestion. The topology of the device components is an aid to learning even in

systems where the internal state of device components is made apparent to the user.

Kieras (1992) is able to derive a set of guidelines for the design of device models,

especially for diagrammatic displays presented on-screen. These guidelines are listed

as follows (Keiras, 1992: 893-894):

Topological structure

Show the topological and causal structure of the system, such as the

pathways between components, controls and indicators using

conventions that are visually clear. Structural relationships involved

in understanding system states must appear on the diagram.

113

Control and indicator states

Echo the topological effects of external controls, and show indicator

states at the corresponding topological points on the system diagram.

Internal states

If information on the states of internal components is reliable and

available, show the states that are significant to the user, so that there

are no hidden states and no inferences are required to deduce

significant component states. Provide the state information at (he

corresponding topological point in the display.

Causal relationships

Show the pathway of causality through the topological structure, such

as the colour-coding of energized connections. Distinguish

component states from other state information that may be on the

displays (for example, by using different colour-codes).

Malfunctions

Show failures of causal flow, such as malfunctions, in a perceptually

salient way (for example, bright yellow for a component that fails to

produce output \vhen it should).

If one considers Carroll and Olson's (1988) comment about the surrogate model's

lack of ability to describe causality and possible reasons for some system behaviour

and if one also considers Keiras and PoIson's design suggestions, it is clear that

further attention should be paid to the roles that device component topology and

causal relationships bet\veen components play in mental models ..

114

5.2.4 Task-action Mappings

Above an action-effect rule for the Apple Macintosh user interface was given. Such

rules capture the ways that the display and relevant aspects of the system state

change in response to actions performed by the user. Task-action mappings are also

rules, but instead capture the user's tasks and the actions that they must perform in

order to achieve these tasks. The following generic rules (taken from Schiele and

Green, 1990: 60) show the deletion of a character of text in a number of Macintosh

based application packages in the notation of the Task-Action Grammar:

R2 "Delete a single character"

T [Unit=char, extent=l, Effect = remove, Clipboard=no]:=

MOUSE-point(%location) + MOUSE-click +

edit [Unit=char, Effect=rernove, Clipboard=no]

R9 edit [Unit=char/word/cell-entry/object,

Effect=remove, Clipboard=no] := "BKSP"

Task-action mapping models, while proving useful in judging the consistency and

learnability of commands (Lee et al., 1994~ Howes and Young, 1991), and while

having strong claims to being psychologically meaningful (Schiele and Green,

1990), suffer from considerable drawbacks as a means of modelling interactive

systems in their basic forms. Basic task-action mapping models ignore the role of the

display in system use, it is assumed that a sequence of actions will perform the task

irrespective of display contents. The D-TAG and E-T AG versions of the Task

Action Grammar were developed to overcome this limitation. Another drawback of

task-action mappings lies in their application to metaphor in interface use. The

model presented by Rieman et al. (1994) implements in the ACT-R and SOAR

cognitive architectures task-action mapping rules for a direct manipulation user

interface and also implements a process model of metaphorical system use similar to

115

Hall's (1989). The resulting systems transform the knowledge of running an

application by double clicking on its icon by an analogical process to derive the task

to run another application. While valuable in concentrating on a task and ho\\' task

knowledge may be metaphorically extended, the model that Rieman et al. (1994)

present is very limited and, for example, provides no account of how nlctaphorical

understanding might have led to the initial method for running an application being

acquired.

5.2.5 Qualitative Models as Mental Models

Keiras's (1992) design suggestions present an account of dcvice models that matches

Olson's (1992) definition of a mental model:

"Mental models are knowledge that the user has about how something

\vorks, its component parts, the processes, their interrelations, and

ho\v one componentinfluences another."

A similar definition is provided in Halasz and Moran (1983). Given this definition of

mental models, a potentially productive method of modelling and exploring mental

models, supported by existing notations and software tools, might be to employ

qualitative reasoning (Bobrow, 1985). The use of artificial intelligence methods in

the study of mental models has been previously suggested (Decortis et al., 1991),

and the use of qualitative reasoning in an HeI domain is observed by Payne (1991a).

Qualitative models have to date been employed in the modelling of physical systems

(Gentner and Stevens, 1983; Hayes, 1985) and of simple devices or simple

components within complex systems (Bobrow, 1985). Owen (1986) suggests that the

study of human-computer interaction would benefit from invcstigating qualitativc (or

"naive") models of computing systems, but he does not provide any such accounts

himself. Payne (1991a), however, does explore users' understanding and models of a

116

computer-based system derived from their existing knowledge and inferred from the

system's behaviour.

The qualitative notations and algebras that have been devised and employed to date

to model systems and devices other than computer-based systems are of interest as

they may be used to confront the fact that computing hardware is not infinitely fast

(Dix, 1987). On-screen objects may be subject to uncertain delays in rendering and

screen updates, and functionality provided by the underlying software may engage in

lengthy computations, or may make remote procedure calls where network delays

become noticeable. Qualitative notations which are able to model change over time

and rates of change may prove of increasing interest in the description of mental

models. In (Treglown, 1994), an attempt was made to use Forbus's (1984)

Qualitative Process Theory (QPT) notation to model device knowledge to account

for mismatches between a metaphor-based graphical user interface and the actual

behaviour of on-screen objects. This work is summarised below by discussing

models of the behaviour of on-screen objects in the Alternate Reality Kit system, the

mismatch between describing the task/action mapping and user feedback of moving

files around a desk top metaphor system's file space, and the underlying

functionality.

In the QPT notation, systems are described in terms of objects, which have a number

of attributes, and processes that act on objects to alter their attributes. It was shown

possible in (Treglown, 1994) to describe the attributes of on-screen objects in user

interfaces based on a physical world metaphor using QPT. A number of attributes,

denoted by the Quantity-type predicate, that may be associated with data files, and

the attributes associated with a text file are shown in Figure 5.1. Processes can act on

objects to change attributes of objects when a number of pre-conditions hold. These

pre-conditions depend upon factors that lie outside the QPT model, the amount of

water in a bath cannot increase until someone turns on a tap, for example. Conditions

117

that can be described by the QPf model, termed Quantity-conditions. also detennine

whether a process is active or not, and whether it is able to affect those attributes of

the object that the process acts upon. While processes are active. influellces (other

values relevant to the model) may alter values of attributes directly, or may have an

effect of qualitative proportionality where the relationship and innuence are less well

defined.

Quantity-Type (size)

Quantity-Type (creator-application)

Quantity-Type(size-if-run)

Quantity-Type (printable-object)

doc a document

Has-Quantity(doc, size)

Has-Quantity (doc, creator-application)

Has-Quantity(doc, printable-object)

video a video-fragment

Has-Quantity (video, size)

Has-Quantity (video, creator-application)

Figure 5.1 QPT notation attributes and on-screen objects

This approach to modelling systems, in terms of objects, attributes, and processes is

termed object-centred. This approach was adopted in (Treglown. 1994) over device

centred approaches to qualitative modelling (de Kleer & Brown, 1984; Kuipers.

1985) as the process-centered models make minimal reference to hidden values and

mechanism within the system which detennine the system's beha\'iour. Methods to

determine and elicit mental models are still early in their history as topics of research

118

(Payne, 1991; Rutherford and Wilson, 1992; Carroll and Olson, 1988; Rogers,

1992). Attempts such as Payne's (1991) exploration of the mental models formed of

simpler computing devices have not yet been undertaken with more complex

systems such as those described in Chapter 2. Therefore, it is uncertain how much of

the system's mechanism is apparent to users, and can be modelled in a device-

centered notation. The User Virtual Machine notation (Tauber, 1988) has been

employed to describe the mental model of a software application. It can model the

state of hidden components of which users are aware and which they employ when

performing certain tasks, but it does not model components which may be perceived

or inferred by users. The notation also makes no reference to the temporal behaviour

of changes of state of the components modelled.

Smith (1987) observes that his Alternate Reality Kit displays behaviour that cannot

be termed either literal to the metaphor or magical, this behaviour cannot be

described in terms of the physical world metaphor on which the system is based. An

example he gives is the increasing delays in updating the disglay as the number of

on-screen objects in an ARK simulation, and hence the system load required to

compute and render the display increases. This causes moving on-screen objects to

move in an increasingly ~erky' and unrealistic way. Figure 5.2 shows a proposed

model for a freely moving object in an ARK simulation where objects are not subject

to friction or any gravitational or frictional forces. This model is able to describe the

behaviour of such an object, but must include the influence on the speed of the

object of the computational load on the system.

119

Process Motion(B, dir)

Individuals:
B an object, Mobile(B)
dir a direction

Preconditions:
Free-Direction(B,dir)
Direction-Of (dir, velocity(B»

QuantityConditions:
Am[velocity(B)] > ZERO

Relations:
A[velocity(B)] ~Q_ system-load

Influences:
I+(position(B), A[velocity(B)])

Figure 5.2 A QPT model of a moving object in an ARK simulation

In desktop interfaces, the task of moving a file is often performed by the user

pressing the mouse button while the pointer is over the icon denoting the file, by

dragging the icon until it is over a particular folder, and by finally releasing the

mouse button. If one assumes that a metaphor·based system suppons direct

engagement, and that users perceive the on·screen object to actually be the data file

of interest to them (Hutchins, Hollan, and Norman, 1986), it should be possible to

model the movement of an on-screen object, and hence of the file it denotes within

the file space, in a process such as that shown in Figure 5.3. This process is more

complex than one needed to model on-screen objects in many metaphor-based

systems, objects tend not to have a perceivable mass, although computer·based

simulations that employ input devices with force-feedback can communicate a sense

of an object's mass to the user. The Aristotelian idea of motion described in this

model, where objects require that a constant force be applied to them in order for

them to move at a constant rate reflects dragging an on·scrcen object.

120

Process motion

Individuals:
B an object, Mobile(B)
dir a direction

Preconditions:
Free-Direction(B, dir)
Direction-Of (dir, net-force(B»

QuantityConditions:
Am[net-force(B)] > ZERO

Relations:
let velocity be a quantity
velocity ocQ+ net-force(B)
velocity ocQ_ mass(B)

Influences:
I+(position(B), A[velocity])

Figure 5.3 A QPT model of motion (Forbus, 1984: 134).

The feedback in the display should be immediate and appropriate as the on-screen

pointer and file icon being dragged track the user's movement of the mouse. The

computation performed when moving the data making up a file from one directory in

the file space to another directory, however, has a temporal duration. It is possible to

model this computation in QPT as shown in Figure 5.4.

121

Process move-file

Individuals:
source-file an object,

Has-Quantity(source-file,
destination-file an object
src a folder
dest a folder,

size)

Has-Quantity(dest, free-space)
path a data-path,

Connection(data-path,src,dest)

preconditions:
(T task-is-move-file)
Aligned(path)

QuantityConditions:
A[free-space(dest)] > A[size(source-file)]
A[size(source-file)] > ZERO

Relations:
Let move-rate be a quantity
A[move-rate] > ZERO
move-rate cxQ+ device-speed (dest)
move-rate cxQ_ system-load

Influences:
1- (size(source-file), A[move-rate)
1+ (size(destination-file), A[move-rate])

-

Figure 5.4 A QPT model of moving a file \vithin the underlying system functionality

Despite the action perfonned in the on-screen model world being intended to be

analogical to the computation performed by the underlying application, these 1\"0

proposed mental models represent different physical processes. These modelsare

difficult to map between using the structure-mapping model of analogy and the

framework of learning physical domains provided by Forbus and Gentner (1986).

The temporal duration of the process performed by the functionality of the

application implies that direct engagement with the file in the file space breaks do\\'n

for this task and metaphor.

122

5.3 The Role of the Display as Source of Information in

System Learning and Use

Another aspect of design that needs to be considered is the role that the display plays

as a source and store of information about the system state, both when learning a

system and in routine use of a system. Lansdale and Ormerod (1994) class the

knowledge and skills needed to learn and use human-computer interface software

into three types:

1. skills as procedures,

2. skills as understanding, and

3. skills as exploration.

Skills in procedural form are explored and described in models such as GOMS and

ACf* which tend to rely on what is termed the traditional "systems" approach to

manual design and instruction. The problems with the systems approach to

instruction have long been documented, as have the resulting problems in developing

the routine cognitive skills modelled using GOMS and its variants.

Viewing skills as understanding explores the forms of mental models of systems and

their role in learning and system use. As have been examined above, some forms of

mental models make skills in the form of understanding difficult to attain. While

some forms of mental models have a useful role in system use, others, like

metaphors, which attempt to aid initial steps in system learning and use have been

shown to often create more problems for users than they may solve. Some models,

like transition networks and metaphors, also prove incapable of representing every

aspect of the model world and underlying functionality of the system they are

intended to provide a useful representation of.

123

Understanding user skills as exploration requires examining the \vay in which users

extract information from the interface and the way user interfaces may be designed

to minimise the amount of features of the interface that users are required to learn.

Such skills are examined by the study of display-based reasoning. Mayes et al.

(1988) observed that experts' recall of command names on the pull-down menus of a

screen-based \\'ord processor did not differ from that of novice users of the system.

This result contrasts with many results in cognitive psychology where experts are

found to have greater recall of meaningful patterns in the task domain than novices

and people with intermediate levels of expertise. Mayes' et al. observation suggests

that the interface itself is being employed as a form of externalised memoty.

Operators may be observed in, and inferred from, the display, and the effect of

operators on the system state tend to be observed rather than learned (Payne, 1991b).

Hence, rather than learn the system, users simply use it. This view of user interface

design and use requires some consideration be paid to the use of metaphor, analogy

and prior knowledge and issues in problem solving, affordances and planning in

learning to use a previously unfamiliar computing system.

There are difficulties with reliance on users to use the interface itself as a store of

information and a form of externalised memory. Users may not explore the system

fully and potentially useful functionality may not be discovered. Users may not even

explore the system sufficiently to discover the functionality that supports their tasks

(Lansdale and Ormerod, 1994). Another problem caused by reliance on display

based reasoning is that users may be forced to perform repetitive low-level actions to

achieve some tasks. Frolich (1993) notes an increase in the importance of the

converstation notion in human-computer interaction over the model-world notion in

the mixed mode systems of which most metaphor-based systems are examples.

Repetitive tasks and tasks which would require a reasonable length of time to

perform may be delegated to a virtual partner or agent (Cypher, 1990). Such agents

124

can be hard to reconcile with the metaphors chosen for many user interface designs,

such as those explored in Chapter 2.

5.4 Using the Lakoff/Johnson Model for Analysis and

Design of User Interfaces

We have introduced the Lakoff/lohnson model of metaphor, in which experience

and sentences in a natural language either appeal directly to image schemata, or can

be understood by a metaphorical mapping to image schemata. It is our claim that the

Lakoffllohnson theory of metaphor allows us to analyse and critique existing user

interface designs, and provides a method for judging the success of new user

interface designs. Below, the Lakoff/lohnson theory is applied to novel or

problematic aspects of existing user interface designs in order to demonstrate its

explanatory ability. In using the Lakoffllohnson theory in this way a claim stronger

than the suggestion that metaphor is part of a way of understanding on interactive

system (or mental model) is being made. While we do not claim (as Lakoff and

10hnson do not) that all understanding is metaphorical, Indurkhya (1992) surveys the

theories of a number of authors that do make this claim, the Lakoffllohnson theory is

a theory of semantics. It should therefore be complete and sufficient to account for

users' understanding of a device, or to give reasons why a problematic device has

poor usability. In order to test that the Lakoffllohnson theory can explain user

interfaces that are problematic, or which are hard for other HCI models to explain, a

number of case studies are presented below. As mentioned in the previous chapter,

Rohrer's (1995) work is described in more detail in Section 5.4.3 while the notorious

trash can is examined. This follows two more case studies that consider systems that

Rohrer (1995) did not address.

125

5.4.1 Case Study 1: An mmersive nvironment

The artist Char Davies' virtual reality in tallation work "0 m

Wertheim , 1999), shown in Figure 5.5, pre ents the challenge of und r tanding h w

u ers obtain enough meaning from it in order to ucce fully interact with it. The

Osmose model world consists of a number of level, depi tcd in igurc 5 .•

containing a forest of semi-transparent styli ed trees, free floating w rd taken fr m

texts by post-modernist author and the 0 mo e ource c de. U r h

representation of the hand, or other cursor, they can only m v within th m c

world and between levels, but they are passive in being able to e bjcct , but n t

handle them.

Figure 5.5 A view inside 0 mose (Wertheim, 19 9: 39)

126

Figure 5.6 The Structure of the Osmose model world

Input to the computing machinery that runs Osmose comes from 3D position

trackers on a headset and vest worn by the user, and from a strap placed around the

user's chest which measures respiration, in the same way that polygraph or lie

detector machines do. In fact the strap is taken from just such a device. In order to

move in the horizontal plane, users must lean in the direction that they wish to travel,

they then drift in that direction within Osmose until they return to an upright

standing position. In order to move between layers, the user must adjust their

breathing and fill their lungs to float up, or empty their lungs to sink. Such a novel

environment. with its use of novel input devices, is difficult to model, but it cannot

be impossible for users to devise and attempt suitable actions and movements of the

body in order to move within the world, otherwise the Osmose world would go

unused.

Considering the user's motion between layers of the Osmose world, interaction

would appear to rely on the COUNTERFORCE image schema. depicted in Figure

5.7.

127

Fl F2
--------4 .. ~ ~~---------

Figure 5.7 The COUNTERFORCE schema

Motion up or down depends on the amount of air in the user's lungs, as is motion

when diving, the experience that inspired the Osmose system's development. The

'upward' force on the user derives from Archimedes' principle and is proportional to

the 'buoyancy' of the user. The 'downward' force on the user derives from the user's

'weight'. By controlling their breathing, the user is able to adjust the balance of

forces and can float up or sink down through the medium in which the· user is

suspended. This aspect of interaction requires very little metaphorical extension to

the COUNTERFORCE schema, all that is required is a mapping from the air that

surrounds the user to the medium that gives the user buoyancy in the Osmose world,

a mapping such as the metaphor AIR IS A A....UID. By its use of an additional novel

input device, Osmose is able to provide functionality to support "flying" in an

immersive environment that is as natural to the user's physical experience as

possible. Other virtual realities (Weimer and Ganapathy, 1989; Fisher et al., 1986)

provide far less satisfactory approaches. In these systems in order to request a menu

that appears before them as a free-floating panel (from which they must select an

option) the user must make a special grasping gesture. Subsequently the hand-shaped

cursor acts not as a grasping facility, but as a positioning facility for the user's point

of view. By adopting this approach, direct manipulation is replaced in this mode by

the conversation paradigm of user interaction, an unseen agent (the computing

hardware) must be informed as to the way in which subsequent user input from a

dataglove is to be interpreted.

While interaction with the Osmose system based on the "floating" experience can be

accounted for by the Lakoff/Johnson theory, movement in the horizontal plane must

also be explained. The BALANCE schema; "consisting of force vectors (which can

represent weight as a special case) and some point or axis or plane in relation to

128

which those forces are distributed. In every case, balance involves a symmetrical (or

proportional) arrangement around a point or axis" (Johnson, 1987: 85); suggests a

common experience which may form users' understanding of this aspect of

interaction with the system. In leaning in the intended direction of travel, equilibrium

is disturbed and a net force is created in that direction1
• The user will then move,

Osmose having Newtonian physical laws in its model world, until an arresting force

is created as the user regains an upright position. It seems, therefore, that the

BALANCE schema can be appealed to almost directly in order to understand this

aspect of interaction with Osmose.

5.4.2 Case Study 2: Snap-Dragging

Drawing and computer-aided design application software is often required to support

the precise placement of line segments and other shapes. Various facilities can be

provided for this, including the displaying of grid points within the drawing area of

the application's window onto which objects may be accurately placed, and the use

of constraint systems. These mechanisms are limited, however, as some drawing

tasks can be difficult to perform, and that some relationships between drawn objects

and line segments may be difficult to maintain if one object is moved. Bier and

Stone (1986) present snap-dragging as a better alternative to grids and constraints.

Presentation of Bier and Stone's system can be found in their article, our task is only

to consider how it can be understood and used by the system's user, and to explore

the possible role of the Lakoffllohnson theory of metaphor in the process of

understanding snap-dragging.

I We see this interaction style implemented in the Segway personal urban transportation device

which has two wheels, one either side of the rider, unlike other "scooters" where wheels are aligned

one in front of the rider, one behind Computers in Segway cause it to steer and accelerate depending

on the way in which the rider leans their body.

129

The snap-dragging system differs from other drawing packages in that the cursor

does not hold and move the drawing implement or tool directly, but is used to pick

up a "caret" which is subject to attractive forces generated by the cursor and othcr

objects such as line segments. As the cursor moves, the caret movcs with it unless it

becomes attracted to an artifact, such as a circle of particular radius or line extending

from an existing line segment, that \vas defined by the user beforehand using simple

commands on a pop-up menu. The artefact appears for a short time as the caret

approaches it. Unless the user moves the caret away from the artefact, it will snap

drag 10 the point or line. Other shapes may then be drawn precisely from a point of

intersection or tangent. The principle schema which can appealed to for

understanding in Bier and Stone's system is ATTRACTION, depicted in Figure 5.8.

Once again, this schema represents a pervasive physical experience, and the snap

dragging system, in its use of animation when tracking the cursor position requires

little metaphorical extension in order to be understood. Johnson (1987: 38), though,

allows attracting vectors to be either actual or potential and allows for the existence

of additional objects in order to describe a situation. In a computer-aided design

drawing in which there are a number of snap-drag artefacts, users might observe

chaotic behaviour in the movement of the caret.

Figure 5.8 The ATTRACTION schema

In Bier and Stone's snap-drag system, the ATTRACTION schema may be appealed

to directly for understanding as the source of the attractive force is visible. Other

systems, however, exhibit snap-dragging, or snap-to-a-grid behaviour, but are more

complex to understand. Some implementations of the DESKTOP metaphor, for

example, do not allow icons on the desktop or workbench, or within open folders, to

130

be placed at just any position. While icons may be placed on top of another,

obscuring or hiding the one below, the number of locations in which it may be

placed is limited. If an icon is "dropped" in a position other than the set managed, it

will snap to a different position upon landing. This behaviour cannot be simply

explained in terms of the ATTRACTION schema. Within the desktop environment,

the grid of points to which icons snap is invisible, the attracting object within the

schema is therefore missing and must be inferred by the user for the system

behaviour to be understood in terms of the ATTRACTION schema. Even if such an

inference is made, the behaviour of an environment intended to De understood in

terms of the behaviour of physical world objects wiII always be unpredictable.

There are some ontological issues raised by snap-dragging, however, that the image

schema theory exposes. While the caret is attracted to the cursor and to other

attracting objects, its course is deflected by being attracted the stationary artefacts.

Attraction is only one-way, however, the caret cannot deflect the path of the cursor,

nor can the attractive forces of the CAD objects deflect the path of the cursor. This

behaviour would be difficult to find a physical world analogy for - say in terms of

magnets of various strengths and objects made of lead or soft iron - recourse to the

uni-directional ATTRACTION schema allows a more realistic account of the snap

dragging system to be developed by users.

5.4.3 Case Study 3: The Apple Macintosh Trashcan

The file deletion mechanism employed within the implementation of the DESKTOP

metaphor on the Apple Macintosh, the trashcan, is notorious for the problems it

causes users. as was discussed in Chapter 3. The difficulty it creates for users that is

discussed here is its second use as the means of ejecting floppy diskettes from the

disk drive by the user dragging the icon of the disk into the trashcan. This action

sequence has been found to cause users distress when they first perform it. many

131

anecdotes tell of users' feelings that the contents of the disk will be deleted when the

icon is placed inside that trashcan. The study of first-time users of the Apple

Macintosh reported in Chapter 3 also found that the action sequence does not occur

to users, it is not suggested by the metaphor as a means of achieving the task.

Rohrer (1995) describes his attempts to teach the use of the Macintosh to novice

users, and reports difficulties arising from a number of different teaching strategies.

Rohrer argues that the DESKTOP metaphor is part of a larger PHYSICAL WORLD

metaphor from which the notion of removing an object from view can be inherited to

explain the use of the trashcan. By indicating differences between the actual system

behaviour and the behaviour suggested by the metaphor, Rohrer's students

mistrusted the DESKTOP metaphor entirely, and Rohrer claims that they would not

generalise from specific cases of system behaviour to the general. This in contrast to

claims by CarroU, Mack, and Kellogg (1988) that mismatches can be productive in

forcing a greater understanding of the system. Rohrer's second teaching strategy \\'as

to provide technical explanations of why the particular action sequence to be

performed to achieve the task might have been programmed in the way it was.

Instead of users adopting a "design stance" towards the system (Dcnnctt, 1978),

however, users were seen to adopt an "intentional stance", and to try to guess the

motives of the Macintosh's designer, and adopting a conversational interaction style

with a perceived agent \\'ithin the machine.

Rohrer, in an effort to understand the failure of the trashcan, adopts Smith's (1987)

distinction between literal and magical features in user interface metaphors. He

suggests that "The magic of a trash can has to do with its being a portal to the

beyond in the PHYSICAL WORLD metaphor - the beyond of the landfill, the

beyond of the electronic bit bucket, and the beyond of the world outside of the

computer." This statement hints at an explanation as to why the trashcan fails, there

is a confusion as to which domains the mapping is made between, and the image

132

schemas underlying understanding of the system. Dragging a disk icon into the

trashcan appeals directly to the IN schema. an object is placed within a container and

according to the schema should remain within the container. Within the domain of

the computing functionality and hardware. however. which following Laurel (1993)

and Treglown (1994) should be the target domain considered, the floppy disk is

ejected from the disk drive. which can be understood directly by the OUT 1 schema.

The Macintosh trashcan requires the user to construct a mapping between two

opposite actions. the schema that explains the disk being ejected has no metaphorical

mapping in the desktop model world. and is unlikely to occur to· users. as found

during empirical studies. By requiring an OUT schema to be realised by performing

actions that make up an IN schema. the meaning of the operation is the opposite of

the way in which it is articulated. it is possible to claim that the task and the trashcan

are being ironic. Irony being:

" ... traditionally seen as referring to situations that postulate a double

audience. one of which is 'in the know' and aware of the actor's

intension. whereas the other is naive enough to take the situation or

utterance at its face value." (Gibbs. 1993: 262)

The trashcan is an example of an aspect of a user interface metaphor that can also be

said to break the "Invariance Principle" (Lakoff, 1993: 215) which states that:

"Metaphorical mappings preserve the cognitive topology (that is, the

image-schema structure) of the source domain, in a way consistent

with the inherent structure of the target domain. "

133

5.5 Conclusions

In the previous chapter, the use of analogies and metaphors in user interface design

was examined. Work in this field has demonstrated that analogies often cannot

account for all of the functionality and behaviour of a target computer-based system.

Where the analogy cannot account for the system image users must either employ

inappropriate, possibly superstitious, knowledge or must develop a more realistic

model of the system. A supposed alternative to employing analogies is to provide a

more realistic model of the system as part of the system image, rather than rely on

users to form a more useful and realistic mental model after breakdowns in the

analogy and analogical mapping. In this chapter a number of approaches to

describing and thinking of mental models were reviewed. Some of these, it was

suggested, are inappropriate for describing the knowledge needed to model aspects

of the systems described in Chapter 2. Other approaches are found to be those which

still also rely on metaphors for understanding of the device. The concept of mental

models cannot be ignored, however, the important account of cognition provided by

Holland et al. (1986), for example, defines analogies and metaphors as mappings

between mental models, or as higher-order mental models in their Q-morphism

descriptions of kno\vledge.

Studies have demonstrated that providing users with a model of the system in terms

of the internal components, their topology, and causal relationships between devices

has usability advantages. If an attempt is made to model the knowledge that such

information is intended to encourage the development of, it is found that breakdowns

in the analogy employed in an existing system can be accounted for. These

breakdowns, however, can only be accounted for if aspects of the state of the

underlying computer system are referred to. This approach also suggests that

because computation has a temporal duration, different models are needed to account

134

for the behaviour shown by the system in the model world in response to user

actions, and for the computation that the user actions and system behaviour are

intended to be analogues of. That different models are needed to account for the

same phenomenon suggests that direct engagement cannot be assumed with on

screen objects when certain performing tasks in a metaphor-based system.

In the following chapter, we present a new user interface design. This system is

intended to support tasks that are supported by the metaphor-based systems

described in Chapter 2, and it attempts to provide the user with a realistic and useful

model of itself. This system is also used to.:.explore the limits and requirements of

systems where direct manipulation and engagement are to be supported.

135

Chapter 6

The Medusa User Experience

"The solid cannot be swept away as trivial and nor can trash be established as solid.

[tjust does not happen."

- Cornelius Cardew, words from paragraph 7 of "The Great Learning" (1968-

1971).

6.1 Introduction

The previous chapters have shown that while employing metaphor in user interface

design is a powerful technique in attempting to produce usable interactive systems,

interface metaphors can also be a source of users' difficulties. The previous chapter

showed, though, that metaphor cannot be ignored as a source of understanding. This

is the case whether one adopts the idea that understanding of interactive systems

comes from mental models, or the idea in the Lakoff/lohnson theory of metaphor

that understanding comes either directly in terms of patterns of interaction with the

physical ,world or by metaphorical extension from these patterns. The remainder of

this thesis will address the design of a number of new user interfaces collectively

termed Medusa. The first Medusa system is described in this and the following

chapters. The first Medusa system adopts the conclusions of traditional, comparison,

theories of metaphor and the qualitative process theory (QPT) analyses of tasks in

direct manipulation tasks. The second Medusa system assumes the LakofflJohnson

theory of metaphor understanding in its design. This chapter sketches the intended

user experience of the first Medusa system, Chapter 7 discusses the design rationale

of the first Medusa system, and Chapter 8 presents the results of usability evaluation

of the first Medusa system design. A revised Medusa system design, that assumes

the LakofflJohnson theory of metaphor understanding, is discussed in Chapter 9.

6.2 Basic Criteria that the Medusa System Should Satisfy

The Medusa system is a user interface design that takes into account the criteria

listed below:

• Simple basic tasks, involving the functionality of a computer's operating system

and file management system, which will be performed at some time by every user

of the system, should be supported.

• A conceptual model of the system should be glven to the user which can

consistently support data file types which are not naturally supported by existing

metaphors (for example, sound and video fragments).

• A conceptual model of the system should be provided to the user which presents a

low overhead when learning the system, yet provides the advantages of possessing

mental models when performing novel tasks and understanding unfamiliar system

behaviour,.

137

• It should be ensured that mental models of the system formed by users are

consistent and that attention is paid to the consistency of the behaviour of on

screen objects and the actions that may be performed on them.

• It should be ensured that state feedback is timely and appropriate following an

awareness of design solutions suggested by work on formal models of interactive

systems.

• It should be noted that metaphor and analogy play a major part in learning,

understanding and interaction with the world and cannot be ignored. A design

should take into account the role of metaphor and analogy in learning and using

user interface software. A design should, however, be aware of the problems that

metaphors and analogies in the model world cause the user as well as those that

they solve.

The details of the design rationale underlying the first Medusa system are provided

in the following chapter. In this chapter a sketch of the intended user experience

when using Medusa is provided.

6.3 General Layout of the Medusa Display

When starting the first Medusa system, its user interface is unlikely to present any

initial surprises to a user familiar with common implementations of the DESKTOP

metaphor, or WIMP interface style. The user will see a 2D windo\v that occupies the

entire area of the display(s) connected to the central processing unit's graphics

hardware. This window, the root window as it is termed in the X window system, or

the desktop in the DESKTOP metaphor, is always the rear-most window, the user

cannot place any windows behind it in the stack of windows that occlude others. As

can be seen in Figure 6.1, though, the root window itself is much the same as other

138

WIMP systems, it serves as an area on which file icons may be placed by the user as

reminders, or to be used in their immediate tasks.

The major difference between Medusa and other WIMP interfaces that users will

notice is the on-screen graphic which can be seen in the top-right hand corner of

Figure 6.1. This graphic provides information about the status of the underlying

computing system, of data structures relevant to the performance of the current and

subsequent user tasks, and of additional devices to which the processing unit is

connected. This graphic is also the source of " meta-obj ects " , meta-Ievel

representations of on-screen objects that the user employs directly when performing

tasks but which themselves lack any means of having their attributes and behaviour

modified by the user. These meta-objects acknowledge what Dourish (2001) calls

the inflexible obtrusiveness of most graphical user interfaces that makes invisibility

an unobtainable goal of many interface designs. Instead Medusa adopts a design

approach discussed by Thimbleby (1990: 229) which Karl Popper termed Berke/ey's

Razorl
• Berkeley's razor is the notion that" All entities are ruled out except those that

are perceived." Any information, or mechanism, that is required to perform tasks in

Medusa, or that becomes apparent at a point of breakdown of its usual behaviour is

made apparent to the user. The meta-objects shown in Figure 6.1 and their behaviour

are an attempt in the first version of Medusa to realise this notion.

6.4 Performing Basic Tasks in Medusa

The major source of input to Medusa generated by the user is via a pointing device

capable of generating selection information. With existing common computing

technologies, and with the technology assumed when considering prototypes of the

Medusa system, this pointing device is likely to be a mouse. However what is

1 Popper means this to be a "sharper" version of Occam's razor ("plurality is never to be posited

without need "). Berkeley's razor is named after the philosopher Bishop George Berkeley (1685-1753).

139

important to Medusa is the design space of the device (the range of data that it is

capable of generating and how this maps into the underlying software's data

structures) not the family of devices from which a particular device is chosen. Most

tasks, as will be explained in further detail in the following chapter, are selection

tasks. The data required from the user via an input device therefore need not include

paths of points on the display, such as would be generated by polling, sampling, or

logging events generated as a mouse, say, moves. This allows us to consider in the

final chapter possible implementations of Medusa on small screen devices and

personal digital assistants (PDAs).

J~
7'~----------------.J

Figure 6.1 General layout of the Medusa display

6.4.1 Using the Toolbar

The first version of the Medusa system uses an object-message syntax for

interaction. All but a very few on-screen objects respond to messages that affect the
""-

attributes of objects. On-screen objects, however, will be members of very different

categories (or classes) and will respond to different sets of operations that bring

about changes in their states. A well-known problem that HeI addressed early in the

design of graphical user interfaces was the problem of interaction modes, where

systems respond in different ways to the same user input depending on the current

state of the device. Alan Kay, as was mentioned in Chapter 2, is said to have devised

140

overlapping on-screen windows in part to resolve the problem of modes (Bardini,

2(00). The difficulty of having to account for modes using (possibly overlapping or

mixed) metaphors was discussed in Chapter 4. Thimbleby (1990) states that it is

inaccurate to speak of mode less systems, for user input to be interpreted at all by the

system it must possess at least one mode. Instead designers, Thimbleby argues, can

strive for low-mode systems. This striving reflects what Bardini (2000) characterises

as the Xerox PARC tradition in user interface design. By contrast, Engelbart's NLS

system, according to Bardini (2000: 118), " ... multiplied ... discrete states or modes

into so many exclusive conditions of the user's activity. To tap into the functionality

of a given command, the user needed to establish a certain configuration of

preliminary commands to put the system into a specific mode in which the needed

command was available. In such a system, the user had to memorize where he or she

was in the hierarchy of commands and modes. The interface was a kind of maze,

often requiring backtracking to access new functions and commands." Douglas

Engelbart intended that his NLS would be used by experts and knowledge workers.

The chord keyboard required to navigate between modes proved, however, less

usable by more casual and infrequent users (termed "human beings" in David

Canfield Smith's somewhat mocking description1 of the comparative usability of the

chord keypad and the use of the mouse in the Xerox Star).

If different categories of on-screen object respond differently to similar user input, as

they do in Medusa, then Medusa is modal. What Medusa does, however, is to make

interaction with all on-screen objects simple and consistent so that the modes are not

apparent, or are regarded as no more complex than menu-based interaction. A

toolbar presents the options available in the current state that can be applied to an on

screen object indicated by the user. The appearance of a toolbar in response to the

2 Commentary to a video recording of the final demonstration of the Xerox Star held at Xerox PARCo

July 1998.

141

user invoking it is shown in Figure 6.2. This illustration uses the storyboarding

conventions of Katz (1991). When the toolbar is visible, the option that the user

subsequently clicks on \vill be the option or command that is applied to the object.

When the tool bar appears, it partially occludes the icon for which it was invoked.

This is meant to reinforce association of the toolbar with the icon, and to indicate (as

\vith the Magic Lens user interaction technique described in the next chapter) that the

message passes through the tool bar to the icon behind it.

Figure 6.2 Invoking the toolbar for an on-screen object

6.4.2 Collections of Objects

Computing systems of the sort surveyed in Chapter 2, and of which Medusa is

intended to be one, usually provide facilities for organising data files produced by

142

application software into spaces from where they can be retrieved by users. Users

often need to create collections of data files that share properties or which are

required by users to perform their immediate tasks. In Chapter 9 some of the

arguments over the need to archive and organise information are surveyed, and

alternative user interface designs for file organisation are compared using the

Lakoff/Johnson theory. In the first version of the Medusa system, however, a

comparatively simple interface design is adopted which follows from the QPT

analyses presented in the previous chapter.

In the first version of Medusa, collections are of two possible types, long-lived, or

short-lived. A long-lived collection, which would be formed from files and

directories in command-based system file spaces, or from files and folders in the

DESKTOP metaphor, is denoted in Medusa by a container. A container (shown in

Figure 6.3) has a simple icon that shows relevant properties of the underlying

implementation in the operating system's file system. Containers can be empty, or

they can currently contain files and other containers. Users' notions of containment

are particularly important for understanding user interfaces. The simple icon design

makes the reliance on ideas of containment (which can be seen in the QPT models in

the previous chapter) apparent. The file and folder method of organising data in the

DESKTOP metaphor also relies upon ideas of containment, as will be discussed

further below, but the metaphor is a weaker one than the "container is a container"

idea employed in the first version of Medusa.

Figure 6.3 Collections of objects - containers

143

Most collections of objects are long-lived, and are stored within the hierarchy that

file systems usually allo\v the user to construct. Occasionally users, though, wish to

construct short-lived collections. These collections usually comprise files that reside

within the same windo\v, or that are all on the desktop. In most DESKTOP metaphor

systems, two methods are supported by the interface to allow these collections to be

constructed. One method is to allo\v the user to lasso a number of icons by pressing

the mouse button while the pointer is in an empty region of window in which the

icons lie and by dragging the pointer to another empty point in the window. While

the pointer is moving, a rectangular bounding box (the lasso) is drawn and redrawn

so that one corner of the box lies on the point at which the mouse button was

pressed, and the corner opposite lies on the current location of the hotspot of the

pointer. The second method is to select the first file by clicking on it, and then

selecting subsequent choices by modifying the mouse button click, by using a

different mouse button or by holding down the shift key on the keyboard while

clicking on the additional files.

These methods both follo\v from the idea the notion of the currently selected object.

Medusa, for reasons explained in the following chapter, does not adopt this notion in

its interaction style. Medusa instead allows short-lived collections to be constructed

via the tool bar options Rdd to Group and Remoue from Group. This is

shown in Figure 6.4. If the tool bar is invoked for a file when that file is currently

member of a group then the tool bar's contents will be different. Rather than contain

the operations that can be applied to the object itself, as would be the case for an

individual object, the tool bar will instead contain the operations that are meaningful

when the file is considered as a member of a group. The difficulty lies, as the

following chapter explores, in ambiguity of reference and of deitic reference,

determining which object the user meant when indicating an icon as the recipient of

a message. Because the same region of on-screen space (the icon) can be interpreted

144

as either an individual or as a metonym for the group of which it is a part. the tool bar

must display options that take into account both of these cases. The tool bar must

allow the user to resolve the ambiguity. An example of the sort of tool bar that might

appear when an icon is part of a group is shown in Figure 6.4. Chapter 8 considers

more fully the alternative low-level sequences of user-generated events that might be

adopted to support the basic Medusa interaction tasks. While the low-level tasks for

interacting with groups described above are consistent with the Medusa interaction

style. the lasso method can also be supported. as a synonym for repeatedly adding

files to a group. This can only occur in implementations where the input device used

can differentiate between PRESS and RELEASE events in deciding if an event is the

beginning of a lasso task, or should be interpreted as invocation of the tool bar.

I,.S

Figure 6.4 A Toolbar for a Group

145

6.4.3 Moving Files between Containers

The QPT models developed in the prevIous chapter revealed a considerable

mismatch between the behaviour of objects in the model world and the behaviour of

the corresponding objects in the underlying software. This mismatch cannot be

explained easily by mapping metaphorically between the domains, and it also reveals

a breakdown in direct manipulation in the model world (Chapter 9 discusses

Lakofrs definition of this term which is adopted instead of Shneiderman's definition

in later thinking about the design of Medusa). Far from acting on the actual objects

of interest, the implementation of the drag-and-drop interaction method for this task

ends up with the interface, not in a state in which the underlying system is actually

in, but a state in which the system is expected to catch up to - what you see is ,vhat

you may eventually get. This interaction task can also give rise to semantic errors,

the user can drag a file to a container into which it cannot actually be placed, perhaps

because the disk volume it denotes is full or locked and read only. The Medusa

action sequence for moving files between containers borrows more from the

pragmatic implementation of the Xerox Star than the DESKTOP metaphor, and is

storyboarded in Figure 6.5.

146

Ic:r ==

Figure 6.5 Placing a data file into a container

6.4.4 Deleting Files

The study of first-time users of the Macintosh described in Chapter 3 showed,

confirming other reports, that the TRASHCAN metaphor is problematic. This was

found to be the case even for the trashcan's first use as a mechanism for deleting

files. The comments made by the subjects in the study reported in Chapter 3 are

echoed in users' comments quoted other reports, for example: "See the recycle bin?

Does someone come round and empty it?"3 The trashcan is not a file deletion

mechanism in itself, it is instead a directory in which files can be stored while the

user decides whether to delete its contents, or retrieve them. The file deletion task is

made simpler by having an Empty Trash, or Empty Recycle Bin, command

147

available on the task bar at the top or bottom of the screen. The location from which

the files are deleted is intended to be obvious, the trashcan. A failing of the

TRASHCAN metaphor is that even when a real trashcan is emptied, its contents

exist until incinerated or irretrievably lost to a land fill site or refuse tip. The

TRASHCAN metaphor as implemented in existing computing systems offers no way

of attempting to retrieve a deleted file. Rather than attempt to provide a retrieval

mechanism within Medusa, instead, as with existing systems, a specialist application

will be required to recover deleted files. As was shown in Chapter 5, though, some

implementations of the trashcan might have far more complex behaviour than being

a store of files, the store being simply the recipient of the Empty Trash message.

As was seen in Chapter 3, the TRASHCAN metaphor does not seem to suggest,

though, how files can be retrieved from the trashcan. Other metaphors for file

deletion, such as the "black hole" in ARK are more complex than the trashcan \vhile

being weaker metaphors for the actual deletion mechanism. The solution to allow

files to be deleted from the Medusa file space is simply to have a Delete option

appear on the tool bar associated with a file. Undeleting a deleted file is a task that

can only be performed for a short period of time until the data blocks on the disk that

it occupies are recycled by the operating system to store new files. There is nothing

within the Medusa design to prevent a suitable recovery application to be used to

retrieve data from the disk, but the design of such an application will not be

considered further. While the data blocks making up the file have not been

corrupted, it may be possible to undo the deletion operation. The issue of undo

within Medusa is discussed further in Chapters 7, 9 and 10.

3 Telephone call to a technical support help line, reported in The Editor, supplement to The Guardian

newspaper (l3th April 2(02).

148

6.4.5 Interacting with the Root Window

Many user interfaces employ a menu bar to allow commands to be performed. A

menu bar is usually laid out across the top of the screen and contains a hierarchy of

commands on pull- or drop-down menus. A menu bar is a permanent fixture on

screen while the windowing system is running. Menu bars, though, enforce the idea

of the currently selected object, and require the user to move the· mouse perhaps a

considerable way to reach the command needed on its menu in the menu bar.

Task bars are simpler menus that are located at the bottom of the screen (in the case

of the Macintosh command strip, the Microsoft Windows 95 task bar, and the strip

of large icons denoting commonly used applications placed along the bottom of the

Macintosh OS X display). Task bars usually contain functions or links to

applications that can be applied in any context without first selecting a file to apply

them to. The user may still need to move the mouse some distance to reach the task

bar. In Medusa the root window is not a desktop, it is just another active object and

so a toolbar can be invoked which can send messages to the root window itself. The

root window's toolbar can, for example, contain commands to end the user's

interaction session, or shut down the workstation (exploiting the sorts of SPACE for

TIME metaphors discussed in Chapter 9) and can also be used to invoke commonly

used applications. A similar device can be seen on some WIMP systems which do

not implement a strong version of the DESKTOP metaphor, but this is an additional

interaction style that users must learn, and often do not predict or imagine, to the

149

traditional use of pull-down menus. In Medusa, having a toolbar apply to the root

window is entirely consistent with the key interaction style.

6.5 Breakdowns

Where user interfaces, particularly those that are based upon interface metaphors,

cause users considerable difficulties is at points of breakdown - where their

behaviour suddenly differs from their normal, usual, or expected behaviour.

6.5.1 Hardware Breakdowns

Most hardware failures make a computing system inoperable. There are other

failures, though, particularly of networked devices, that make tasks impossible to

complete, or which give rise to unexpected system behaviour that the user must

attempt to interpret and remedy. This can be difficult because networked devices

may not be directly visible to the user. Even if a device is in the same room as the

user, it may not be able to understand the source of the breakdown from a change in

its outward appearance. The on-screen graphic shown in Figure 6.1 allows a number

of breakdo\vns to be easily observed via colour coding and other feedback of the sort

proposed by PoIson which were described in the previous chapter. Network failures

between the central processing unit and devices such as printers or file servers can be

indicated easily. Depicting the devices as icons on the root window makes it possible

for the user to examine their state. For example, the user can easily determine if a

printer is out of paper, or to judge how many other printing tasks must be completed

before the user's document will be ready to be collected. There is nothing to prevent

ISO

background or ambient audio, such as the sort employed in ARKola, to also

communicate this information, and the on-screen graphic shown in Figure 6.1

provides a handle to indicate to the user the source of the sonic information.

6.5.2 Buffers

Breakdown from the expected, usual, system behaviour to unusual system behaviour

can arise from the use of buffers. Buffers are data structures that store data for a

short time until it can be processed by the application for which it is destined.

Usually buffers are unnoticed by the user. The data that the user generates, such as

characters typed at the keyboard, are processed seemingly instantaneously by the

application in focus. If the system load increases, though, there may be a perceivable

lag between the typing of characters and it appearing inside a text editor window,

say. The user thus becomes aware of the existence of the buffer. The first version of

the Medusa system deliberately sets out to make the user aware of the existence of

buffers. Following a design proposed by Dix (1991) when characters remain in the

buffer for a perceivably lengthy delay without being consumed by the application, a

visualisation of the buffer, shown in Figure 6.6 appears. As the user types further

characters, these appear appended to the end of the buffer's contents. Figure 6.6

makes this appending of characters apparent even when the user presses the

backspace key to delete a key pressed in error. The application will interpret the

delete key in the way that the user expects, the buffer cannot. When the application

processes characters, they are removed from the buffer. The common use of the

work "consume" to describe an application processing a character removed from the

buffer leads Dix to refer to this design as the munchman (aka Pac Man) buffer. The

151

Pac Man metaphor, however, possesses considerable conceptual baggage and is not

fully adopted by the Medusa system.

Figure 6.6 Visualising the Medusa keyboard buffer

6.5.3 Predicting Breakdown

The munchman buffer and the use of colour coding on the computer-computer

schematic indicate points of breakdown, moments when the look and feel of the

model world deviate from their usual behaviour. At such a moment the user is

thrown into a state where they must consciously diagnose the system in order to

predict the outcomes of further actions. In a literal user interface metaphor, the

breakdown cannot be explained in terms of the metaphor, and the possibility that a

breakdown is forthcoming cannot be made apparent to the user. In the previous

chapter, the idea of the load on the processor as a source of breakdowns in the

normal behaviour of on-screen objects was discussed. Early graphical user interfaces

to Unix such as Sun Microsystems' OpenWindows provided a small utility program

that could represent the current processor load as a dial display, or could plot the

152

recent history of this measure as a graph. A number of windows systems developed

since have included this infonnation on-screen or have had similar utilities

developed for them. Medusa too can display this infonnation, perhaps overlaid on

the processor box image in the computer-computer schematic, or in a separate

display elsewhere on-screen. A simple measure of the processor load, however, does

not allow the user to predict all breakdowns, or to excuse them when they occur.

The user's sense of spatiomimesis is that the on-screen pointer is an extension of

themselves in the model world that exactly tracks the user's movement of the mouse.

Breakdowns in spatiomimesis can be highly disruptive, the feedback process that

underlies Fitts' law and allows users to move the on-screen pointer accurately to hit

the (sometimes small) on-screen buttons is disrupted and users may inadvertently

click on a target they did not mean to. Mouse-ahead facilities can also cease to

behave as expected, it being unclear where on-screen the windows system records

the pointer as being when a mouse button click event is generated. Most windows

systems operate on a repeated "read next event from event queue - process event"

cycle. If the processing of a mouse movement event, say, takes too long, then the

next mouse movement event in the queue will not be processed until after the

deadline of 50 milliseconds by which the display should have been updated in order

to maintain the illusion of animation. The design of a revised version of Medusa

called Medusa-"t, discussed in Chapter 10, is intended to overcome this problem by

application of real-time programming methods following detailed specification of

the temporal behaviour of the user interface. This approach is intended to remove,

where possible, the problem. In Medusa, the intention. where possible is to explain

the problem in order to account for breakdowns and to allow the user to plan

153

subsequent action in light of the system's deviation from its normal behaviour.

Rather than use the approach of changing the pointer icon to a symbol that is a poor

metaphor for its underlying simulated state of understanding (Pcrez-Quinones and

Sibert, 1996) - the rationale for rejecting this common approach is presented in

Section 7.2.9 - colour coding is used to indicate, via the pointer itself, the time

taken to process the last event on the queue. For a single lengthy event, the problem

of distracting the user should not be a considerable problem. Where the pointer icon

changes to indicate a breakdo\vn in normal event processing, often designers choose

to not change the pointer's shape when it would switch back and forth- bet\\'een

different shapes too rapidly. A change in pointer shape at all other times indicates a

change in mode, changing from a traditional pointer (~) to a double-headed arro\v

(~), for example, indicates a point on the vertical edge of a window which can be

used as a drag point to adjust the width of the window. Changing the pointer's shape

in response to delays in event processing suggests that the mouse has changed mode.

In fact the mechanism of the mouse event processing system is the same, but with

different temporal behavior. Medusa should make relevant aspects of the mechanism

and the conditions under which it is operating visible, not suggest that a different

mechanism is at work.

6.6 Conclusions

This chapter has sketched the intended user experience that Medusa should offer.

The details of the design rationale underlying the user experience are given in the

following chapter. No \vorking prototype of Medusa exists but this does not prevent

usability analysis from being undertaken. Usability evaluation of the first Medusa

system using a low-cost usability inspection method is reported in Chapter 8.

154

Chapter 7

The Medusa System Design Rationale

"It's like the mozzarella cheese on a good slice of pizza. No matter how far you pull

the slice away from your mouth it just gets thinner and longer but never snaps. Of

course you could always just eat your pizza with a knife and fork, but I think this is

clearly what's known as 'pushing the cheese analogy"'.

- Jerry Seinfeld (1995) SeinLanguage, Bantam Books.

7.1 Introduction

In this chapter, the motivations behind the Medusa user interface design are

discussed. It is judged that systems are needed that provide access for novices to the

functionality provided by operating systems to support a range of tasks that

overcome the difficulties with existing metaphorical model worlds, while allowing

the user to develop a useful mental model of the system. It is hoped that the Medusa

system will not be subject to breakdowns, erratic behaviour of on-screen objects, and

users' misunderstandings, to the extent that existing metaphor-based user interface

designs are. Details of the Medusa system design and the intended user experience

were presented in the previous chapter.

7.2 The Medusa System - Version One

Having stated the criteria that the Medusa system is intended to satisfy, having

introduced the means of modelling the system, having detailed some of the models

that the system image should evoke, and having sketched the intended user

experience, \ve no\v describe the Medusa system design rationale in some detail.

7.2.1 The Workbench

In the desktop metaphor, there exists a root window (as it is termed in the X \vindo\v

system), a window that occupies the full area of the display(s) connected to the

workstation, which cannot be resized or moved, and which always lies behind all

other windows. This window is what is termed the DESKTOP in the desktop

metaphor. The desktop is meant to be the analogue of its real-world counter point, an

area upon which tools and documents may be placed while the office-worker carries

out their tasks. The electronic desktop, as has been previously mentioned, differs in

some important respects from its real-world counterpart. The trashcan, for example,

sits on top of the desk rather than beside it, as do file storage containers such as filing

cabinets.

Donald A. Norman, for one, prefers to think of the root window as a workbench

rather than an electronic desktop. The workbench is an area provided for planning

and the storage of icons while sub-goals are suspended in favour of more immediate

tasks that alter the state of the file system. In the DESKTOP metaphor, the root

window creates difficulties that cannot be accounted for in terms of the metaphor. It

156

has been asked l • for example. what it means for an application program to be moved

onto the desktop. In the first version of Medusa, as shall be discussed below, on

screen objects are links to files, the workbench is treated in the same way as a

directory or folder, links may be placed on the root window and moved within the

window to suit the needs of the user. Medusa treats the root window as another

rendering of a directory listing file, but one of fixed size that cannot be scrolled. It is

hoped that this interaction style is clear from the discussion in the previous and

following chapters.

7.2.2 Objects in the Model World

The first version of the Medusa system adopts the critique of existing metaphor

based systems and models of systems arising from QPT modelling of the physical

world as applied to user interfaces, as discussed in Chapter 5. Thus it is envisioned

that the behaviour of the model world should be explicable in terms of simple

processes acting on the on-screen objects and that these processes should also be

applicable to the underlying software objects by a simple analogy. Medusa should

therefore be unlike the situation in existing systems where often no mapping can be

found between processes acting on on-screen objects and those acting on underlying

software objects. This model of system design, the product-oriented view in the

terminology of Andersen (1997), requires that analogies that follow from the

underlying software be sought in the real world to describe the model world. The

structure of a metaphor is therefore that of Laurel's (1993)description above, where

the metaphor mediates between the model world and the underlying software. In

such an approach - where the model world employs an existing work language, or

1 lbis question was brought to my attention in a discussion with Professor AIan J. Dix in the winter

of 1991.

157

resembles some aspect of the real world - , \ve acknowledge that the work language

risks being imposed upon the user (Brock, 1996).

Objects in the Medusa model world are members of classical categories. That is,

membership of categories is detennined by the necessary and sufficient attributes

possessed by objects to be a member of a particular category. Category membership

determines the operations that may be performed upon on-screen objects. As the

Medusa user interface is object-based, the categories of Medusa on-screen objects

can be said to fonn a class hierarchy as some objects have more attributes than

others yet are similar to members of other categories. This class hierarchy is depicted

in Figure 7.1.

Word-processed
object

Text file

~

Still graphical
image I)~:re~e

"Static" object

I
Object

I

. /1'Dynamic.\.ec~ument with

Sound file '\ embedded video

Application program Video fragment

Figure 7.1 The categories of Medusa system version one on-screen objects

The principle distinction between categories defined in Medusa is between static

objects and dynamic objects. Static objects are those that can change as the result of

software tools being applied to them but which produce a file whose presentation

does not change, such objects would include documents, text files, and still pictures.

Dynamic objects are those whose presentation changes with time, such objects

158

would include video fragments. sound and music files. and multimedia documents

with embedded sound and graphics. This distinction between dynamic and static

objects is made so that the processes that alter or act on the different categories of

objects are made apparent. I t makes no sense to try to print a dynamic object such as

a video fragment for example. but by using a suitable software tool a static object. a

still image consisting of one video frame. for example. can be produced which can

be printed. This distinction was also made subsequently by Fitzmaurice. Ishii, and

Buxton (1995).

In many systems, icons are assigned to objects in a computer's file space according

to the suffix placed at the end of the files' names. All files with a ".c" suffix, for

example, can be depicted with the icon denoting a C programming language source

code file or be assigned an icon denoting the application used to create the file. This

approach has a number of drawbacks. Firstly. it may be misleading. For example

some files saved in the GIF graphics interchange format may not be still images. but

may be simple animations comprising a sequence of frames that are displayed in a

loop. Some word processors. in addition, permit the creation of documents with

video and sound fragments as elements of the page. Hence one might assume that a

file might be printed by extension of one's previous experience of using files of that

type, whereas it cannot actually be printed. The common depiction of files of a

certain type presents additional problems including the perception of a limit to the

uses of a file or to the number of software tools that may be applied to read and alter

files. Opening a file will cause an application to run and load the file opened. the

application run will typically be denoted by the file's icon although many other

programs may also be capable of using and modifying the data contained in the file.

The same can be said for icons within a typed file system. such as the Macintosh

Finder, where an ontology of objects exists with associated (but possibly modifiable)

icons, rather than where rules employing a filename's suffix are used to determine

what icon design should denote a file.

159

The approach adopted in the design of icons that denote objects in the Medusa model

world is one tenned self-representing (Treglown and O'Shea, 1993), a notion that

mirrors, but which was developed without knowledge of, the notion of self

identifying objects2 employed by Putnam (1981). A self-identifying object is one

that evokes only a single concept or thought token when perceived. Self-representing

objects are those that use, so far as practicable, the final form of the file in the

generation of a suitable icon to denote the file. While not simply adopting icons

denoting files of a particular category, it is hoped that category membership can be

detennined from the icon's design. The notion of self-representing icons also adopts

the product-oriented approach to metaphor (Andersen, 1997), in keeping with the

Medusa system design where objects in the model world are designed according to

some metaphor to account for features within the underlying computer system.

Text Files

The Medusa system is intended to make apparent to the user relevant aspects of the

computing system The device topology and the nature and state of data structures

will be visualised where such infonnation is required to provide a full account of the

behaviour of the computing system. All files in a computer's file space consist of a

sequence of bytes represented in the physical medium of the disk drives connected to

the processor. The ways in which the bytes of infonnation are interpreted by the

application tools used by the user are seemingly contrary to the idea of visibility.

What is stressed in the on-screen depiction of files is the final form of the data and

the ways in which the data may be manipulated rather than the structure of the data

that make up the files.

2 Putnam cites David Wiggins (1980) Sameness and Substance. Blackwell, Oxford, as the origin of

the idea of the self-identifying object.

160

A simple text file is deemed to be a text file as the result of the file being interpreted

by a suitable application program. The application program interprets each byte or

word in the file, using an encoding standard such as ASCII, as an alphanumeric or a

special control character. A depiction of a text file should ideally depict the final

form of the data in a way that means most to the user. It, should also aid in the tasks

of locating the file among the icons visible on-screen and of identifying a particular

instance of a type or class of file among a number of files of a similar type. Where

files created by an application are depicted by the same icon, or -where the icon is

assigned by the window system according to the suffix on the file's name, one finds

icons such as those shown in Figure 7.2.

~

~
Note Pad file

g
o

Sea n ne r Setti ngs

Figure 7.2 Typical text file icons

Such icons only depict category membership and additional information such as the

file's name, yet perhaps its version history and additional comments (supplied

possibly by another user) stored with the file, may be required by the user in order to

uniquely identify the file. The design of icons may be improved in order to ease

performance of location and identification tasks. Experimental studies (Ark, Dryer,

Selker, and Zhai, 1998) show that ecological icons, those that closely resemble

objects in the real world, can assist with location tasks. Ecological icons, however,

by resembling real world objects, are more appropriate to systems based exactly on

the metaphors adopted and on the use of metaphor questioned earlier that we shall

eventually reject below. Instead icons less realistic than those termed ecological, but

richer than the typical icons shown in Figure 7.2 are adopted. Instead of a still image,

which denotes only a single page, or the presence of a number of pages in the text

161

file, motion icons, or InicOIlS, may be employed to provide a richer icon. In a micon

(Br0ndmo and Davenport, 1989; Baecker, Small, and Mander, 1991) a sequence of

small pictographic symbols is cycled through frame by frame, when the last frame is

reached, the first frame is displayed again. Each frame of the micon is an icon.

Br0ndmo and Davenport (1989) use micons to denote video fragments, a subset of

frames from a piece of digital video where each frame is shrunk in to icon size, these

fragments being links in a hypermedia network to other nodes containing relevant

full-size video sequences with accompanying soundtrack. Baecker, Small, and

Mander (1991) use micons to represent simple actions within application programs

that denote how to bring about a simple change in state in another artefact produced

using, or maintained by, the application.

A micon depiction of a text file may therefore consist of a sequence of icon frames,

where each frame is a page of the document shrunk to icon size. While unique

identification of the text file is unlikely to be possible from the micon itself, clues

may be obtained from the superficial structure of the document as to the document's

identity and may distinguish it from other text files or previous versions of the file.

Such a strategy for icon design is not without problems, however, and does pose

questions that require investigation and answering from appropriate theory and

experimental work. The size of a page, for example, meaning the number of lines of

text that appear on the page in a simple text editor application can be a fixed integer.,

More often it is a function of the physical size of the paper currently selected in the

printer and of the fonts and number of lines making up the text file. If the preferred

configuration of the printer is changed, then the final appearance of the text file will

change. , If changes to text file micons are propagated throughout the file space, then

recognition of a file being sought will be confused as its appearance will have

changed since the user last altered the file's contents. A solution to this problem, one

often adopted, is for the preferred printer configuration to be an attribute of the

document and not the printer. This contrasts with the photocopy metaphor employed

162

in the Xerox Star system, where one expects the size of the paper that the copy will

appear on to be part of the photocopier's state.

Documents

Documents are seemingly similar to text files, but typically make greater use of more

complex formatting facilities. The same principle of creating icons to represent text

files can be applied to represent documents. Documents, however, may not solely be

"static" objects in the Medusa on-screen object ontology depicted in Figure 7.1.

Word processing applications often allow pages to contain, in addition to still

graphical images, sound clips, video fragments, inclusive links to data created by

other classes of application such as databases and spreadsheets. They can also

include links to data in other documents where changes to the linked data will

propagate to every document that includes it Where part of a page is a "dynamic"

object, then what it means to print the document must be considered.

The approach to generating icons denoting a document can be borrowed from that of

the approach for depicting text files, where each page of the document is used to

generate a frame of a micon. Where a page contains a video fragment, a micon will

appear within the frames depicting these pages. Such micons within micons will

only decrease the possibility of uniquely identifying a file from its icon, such will be

the loss of information in further reducing the information contained in the video

fragment Such micons will, though, aid the user in telling a micon from others of

the same class of file. Again, other information is required in addition to an iconic

depiction to uniquely identify a file, the form of this information will be considered

further below.

163

Programming Language Source Files

Computer program source files are often are depicted by icons similar to those that

denote text files. While source files are text files, a sequence of alphanumeric

characters, a question exists as to the most useful final form of the file's contents

when it comes to choosing a suitable icon. When printed, similar results will be

produced to that of performing the task of printing a typical text file. To the

programmer however, splitting the file into pages, each page forming a frame of a

micon, is less meaningful a level of granularity for abstracting the file's contents than

others that could be suggested. When programming, moving between pages is a less

frequent task than scrolling the text of the source file until the class, method, rule,

variable declaration or procedure sought is found. Rather than cycle through pages of

the file, a scrolling micon would be a better representation. The loss of information

that occurs when a legible full-sized page is reduced to the size of a typical icon

remains a problem. Considering Brooks' (1983) "beacons", indicators for the

meaning of a computer program, it can be seen that prologue comments, variable

structure and label names, interline comments, indentation or pretty-printing, and

subroutine structure contribute greatly to interpreting an unknown program source

file and deciding upon its functionality. Many of these beacons are likely to survive

when fonning an icon, even though the size of the program text is reduced until the

text itself becomes illegible.

Picture Files

It is already common for graphics application programs to allow a preview file to be

created, which is an icon of the image created using the application. Seemingly a

picture file, or still graphics image, this presents few problems. In the Medusa

ontology it is a "static" object which can be easily printed and which is subject to

tasks that alter its location within a file space in the same way as all on-screen

164

objects. The approach of assummg that all graphics files, irrespective of the

encoding method used to interpret the bytes in the file space as an image, can be

simply printed if a suitable printer is available to the system is however, false. A

particular form of GIF file, employed by sites on the world-wide web, allows a GIF

file to consist of a number of frames which tend to be interpreted by world-wide web

browsers as micons, frames are cycled through in sequence while the image is

visible through the browser's window. Such files would therefore be termed

"dynamic" and single frames would have to be isolated from them before printing

would be a task allowed by the system.

Video Fragments

Following Bn~ndmo and Davenport (1989), it is suggested that video fragments be

depicted by micons within the Medusa system's model world. In Bnzmdmo and

Davenport's Elastic Charles hypermedia system, the history and geography of the

Charles river that separates Boston, Massachusetts from Cambridge, where the the

MIT campus is located, can be explored. Micons are used to depict links to relevant

video fragments within the overall hypermedia structure that provide additional

information relevant to the concepts presented on the current page of information,

image or video. Within Medusa micons are used in the same way to denote a digital

video fragment, and to acts as handles to the data files that contain the encoded video

data. A frame of the micon is a shrunken version of a frame of the video. The micon

as a whole is made up of is made up of a number of frames of the video fragment

reduced to icon size. The frames of the micon are then shown in a loop on the root

window, after the last micon frame is shown, the animation returns to the first.

165

Sound files

The notion of the final form of a data structure forming its on-screen iconic

representation causes greater problems of distraction when considering sound files,

than may arise from the movement of a micon at the edge of the user's visual field. If

a sound file is looped and made audible whenever the attached visual icon is visible

on-screen, as the number of audible sound files increases it will become harder for

the user to distinguish the file sought from the background noise. The confusion of

sound generated \vill also tend to annoy other users nearby. While users are able to

distinguish the sound sought from a small number of simultaneous background

sounds, an ability relied upon in the auditory browser system of Fernstrom and

Bannon (1997), and while simultaneous sounds can be used to dra\v the user's

attention to malfunctioning devices that are not visible, but which are audible

(Gaver, Smith, and O'Shea, 1991), determining which icon acts as the handle for the

sound recognised or wanted poses a considerable problem. A number of solutions to

this problem can be found. An example is Kobayashi and Schmandt's (1997)

Dynamic Soundscape which maps sound into a loop in an auditory field around the

user's head, a speaker is heard moving around the loop wi th the speaker's topics

being positioned in certain arc segments of the loop. The user may then, via a touch

pad, indicate a particular topic to be replayed, or may jump around the loop, by

indicating the position of the audio segment they wish replayed. This system,

however, only allows a single audio file, albeit many segments of \vhich, to be

replayed and accessed. Other systems which have multiple, different, sound sources

playing from fixed positions in the audio space (for example, Schmandt and Mullins,

1995) are limited in the number of sounds that can be located and differentiated.

Alternatively they only play structured sounds which allow attention to be shifted to,

or attention to be drawn to, a different sound source. Rather than have multiple

sound sources playing at the same time (which would be the approach for sound files

166

following the notion of self-representation), with its obvious difficulties, a better

solution is to easily pennit self-representation to be brought about, rather than make

it the default behaviour of the model world. The viewing cone, introduced by

Mander et al. (1992), pennits selected emphasis display of files. When activated over

a file icon, a cone expands to reveal more of a file's contents and to provide

sufficient additional views to further aid unique identification of the file, not just

detennination of the file's category. By selecting the particular emphasis to show

sound within the cone, as the cursor passes over sound files, the cone appears and

the sound, the data making up which is stored in the file, is heard: To be consistent

with the interaction style of Medusa, the tool bar, which is discussed further below,

associated with categories of sound files includes the methods Play and stop

playing.

Hypertexts

The application program Hypercard uses the icon shown in Figure 7.3 to denote a

Hypercard stack. This clearly reflects the metaphor adopted in a number of hypertext

systems, that each node in the graph is a card with a piece of text written on it. There

are claims, though, that the Hypercard system is a compromise forced on its

designers following legal action taken by the inventor of a system tenned Zoomracks

which is based on a "card and rack" metaphor (Heckel, 1996). The Hypercard icon,

and metaphor, provides no notion of the links that connect buttons, be they icons on

a card or short strings of text, to other cards in the stack. Hypertext systems will

often provide an overview of the entire hypertext which renders the entire graph to

ease navigation and detennination of the user's current location, such an overview

could fonn the icon generated to depict a particular hypertext. Again, such icons are

unlikely to be sufficient to uniquely identify the hypertext, and if the graph is too

large and the connections are too numerous to render without intolerable aliasing, a

167

standard icon denoting the category of on-screen object to which the file belongs

might need to be employed.

Figure 7.3 A Hypercard stack

HTML source files

HTML files, are an interesting exception to the class of hypertext files. Unlike many

hypertexts, all the information and media fragments in the graph are unlikely to

reside in the same filespace. A rendering of the entire graph is therefore impossible

to construct in a \vay that would form a meaningful icon, again a compromise \vould

be to adopt an icon denoting category membership. HTML files present a problem

when interpreting the Open ••• command selected typically from a menu bar, or

double clicking on the icon. Usually, as mentioned above, the application denoted by

the icon, or an application associated with the icon using a soft\vare tool is run and

the file loaded for the application to process or display. HTML files present the

difficulty that while they are usually employed as documents to be displayed by a

world-wide web browser, they are also computer programs which are interpreted by

the browser to produce a rendering of a particular node in a hypermedia graph.

Depending on the user's current tasks, they may wish to edit the HTML program

using a text editor tool, or display it using a browser. Different action sequences, or

methods, must therefore be familiar to the user, whereas a single interface

mechanism which makes the membership of different categories of the file apparent

to the user could be employed to overcome this difficulty. We shall discuss such a

mechanism further below.

168

Discussion: Self-Representing Icons Versus Other Icon Designs

Traditionally icons have been static representations of data structures, whether or not

the underlying data structure is static or dynamic, in our distinction. Where

appropriate, some self-representing icons use animation. According to Baecker,

Small and Mander (1991: 1) animation in the user interface helps the user to answer

the questions "what is this?", "where have I come from and gone to?", "where am

I?", "what can 1 do now?", "what can I do with this?", "how do I do this?", "what is

happening?", "what have 1 done?", "why did that happen?", and ,iwhat should I do

now?" Icons that denote files typically help answer the question "What is this?" Self

representing icons are intended to be richer (Houde and Salomon, 1993) than the

simple class membership denotations criticised above, but are also intended not to

invoke the unwanted concepts that ecological icons will, despite their ability to ease

location tasks (Ark et al., 1998). Also, while self-representing icons may not prove

to be the simplest icon form, the lengthened search time for more complex icon

designs demonstrated in Byme's (1993) study only becomes pronounced in sets

where the icon wanted is one of 12 or more displayed. Byme himself admits that

visual search is not the only task performed on icon sets, and it is these other tasks

that must also be supported by an interface.

Animation in the user interface may also help answer the question "what can I do

with this?" An interesting method of addressing this question is Henry and Hudson's

(1990) multidimensional icon. In a multidimensional icon, shown in Figure 7.4,

icons depicting different views of a file are texture-mapped to the faces of a cube.

Combinations of mouse movements and mouse button clicks allow the cube to be

rotated so that a different icon lies parallel to the plane of the screen. This icon then

may be selected. The drawback of a multidimensional icon is that rather than just

referring to the affordances of the file, it also refers to other distinct objects. The

execution view of a C language file, shown in Figure 7.4(0, is a reference to a call to

169

execute a compiled object. This compiled object is a file distinct from the source file,

and should compilation of the source file fail the execution will fail, hence semantic

errors are still permitted by this approach. The means by which file affordanccs are

treated in the Medusa system are described below.

(a)

~. . .
• •

(d)

(a) The multidimensional icon.

xkernl.c

(b)

(e)

(b) - (f) Faces of the multidimensional icon cube shown in (a).

(c)

811611
U0e19
801901

8.0Ut

({)

Figure 7.4 A multidimensional icon denoting a C language file

(Henry and Hudson, 1990: 134).

7.2.3 What Are Files?

We have sketched above how the contents of files may be depicted employing a

method termed "self-representation" to give an on-screen depiction intended to aid

location and identification of files. An issue that must be addressed by a product

oriented view of metaphor is the problem of finding real-world counterparts to all

types of notions employed in filing systems. Within the DESKTOP metaphor, some

icons denote files and folders denote directories, but this is an example of a metaphor

that breaks down. In the Unix filing system, to which a number of graphical user

interfaces based on the DESKTOP metaphor have previously been developed,

170

directories are merely files that contain a list of data structures associating a text

string, the file's name, to an inode. Inodes are special data types that index a number

of blocks of data in the physical file space. Within a particular directory, what is

listed as a file is just an instance of a text name being associated with an inode, files

are not listed, instead these links are listed. This has consequences for the semantics

of tasks performed in the model world. For example, while a user may think they are

deleting a file, if another user entitled to use the system has a link (alias) to the file in

one of their directories, the file itself will not be deleted, it will just be invisible to

the user that deleted it In the Apple Macintosh system and in Microsoft Windows

95, by contrast, aliases may be created inside folders which are links to files in other

folders, opening an alias will have the same effect as opening the original file. The

alias may be deleted without causing the original file to be deleted, but if the original

file is deleted, opening an alias will cause an error message to be displayed, as the

file that the alias links to no longer being present A physical metaphor simplifies the

notion of deleting a file, but as files may be aliases and not files, other tasks, such as

opening files, cannot be accounted for as easily in a physical metaphor.

Vahalia (1996: 220) suggests that "the file abstraction acts as a container for data,

and the file system allows user to organise, manipulate, and access different files."

The notion of files as a container is subject, however, to problems in addition to the

notion of a file as a single physical object. When copying a file into a folder, for

example, on a volume on which there is insufficient physical space, one method to

perform this task might be to employ an application package which can split the file

into a number of pieces which are each small enough to be stored on small volumes

such as floppy disks .. Another method might be to employ an application that can

encode and compress the data in the file. Such tasks are more readily suggested by

notions other than files being thought of as containers. The traditional Unix notion of

files being a sequence of bytes suggests these tasks more readily, for example.

Copying a file, if files are containers, will require duplicating the container, or

171

having a container for the duplicated data to be placed into. The container metaphor

for files is again an example of a metaphor that breaks down quickly.

7.2.4 An Ontology of Invisible Objects?

Another issue that creates problems for the use of metaphors in supporting tasks that

alter the state of file systems is the use in some operating systems of hidden files.

These are links, files, or directory entries that exist within a file space bOut \vhich

remain hidden from the user unless a special task is performed to make their iconic

representations visible, or to reveal their name in a directory listing. Until an object

becomes visible, or can be named, it cannot be acted upon. Therefore in Smith's

(1987) terms, a magical feature is required of the user interface in order to make the

hidden visible. In a system that attempts to implement a physical world metaphor to

account for a file system that supports hidden objects, the metaphor must fail, and

systems prototypically described as implementing the desktop metaphor are notable

for not supporting hidden files in the file system. In systems \\'here hidden files are

allowed, such systems are usually those where a graphical user interface is imposed

upon a file system and existing disk operating system, interaction with which has

previously been conducted using a command language. The need to support the

magical feature needed to make hidden objects visible has consequences, as will be

discussed below, for how groups of files are depicted, and on how directories are

represented.

7.2.5 Numbers of Objects - Directories and Containers

As discussed above, file systems are made up of files and directories, which are

stored on physical volumes (fixed or removable disks). In the DESKTOP metaphor,

directories are depicted by folders, which may contain a number of files or

172

documents. Unlike physical folders, however, they may also contain folders, and so

forth until the limit on regression determined by the maximum size of file names

(normally a hard system-imposed limit) is reached. Again, the folder metaphor is an

example of a metaphor that breaks down quickly. The view adopted in the QPf

models presented in Chapter 5 is to claim that directories and disks, but not files, are

containers. The container has advantages as a metaphor for directories in filing

systems (though, as seen above they are less successful as an account of files),

containers may be placed inside containers without the metaphor breaking.

Containers have a capacity, so the user can know whether an attempt to move a file

into a container will be successful. Unfortunately the capacity of a container can be

hard to determine, or may not be fixed. Volumes, such as floppy and hard disks,

have a capacity, namely the number of bytes available for the storage of data blocks.

The capacity of a directory is not fixed, however, instead it is the result of the

constraint equation shown in Figure 7.5.

t

potential free capacity of a directory = capacity of volume - ~ size_DJ _file(i)

i .. l

where t = the total number of files in the file system on the volume

Figure 7.5 The potential capacity of a directory

In many graphical user interfaces, if the user attempts to copy a file into a container

which has insufficient capacity the system might allow the user to perform the

actions that activate the copying process (clicking on the icon, moving the mouse

until the pointer is over the destination folder's icon, then releasing the mouse

button) but it will display an error message. Again, the physical world metaphor

breaks down and the layers of description separating the model world from its

underlying implementation, and the different processes at work in the model world

and in the underlying implementation, as described in Chapter 5, become apparent to

173

the user. It is such system behaviour that underlies the claim that in direct

manipulation interfaces, the user cannot make syntax errors in their dialogue

structures, but they can make semantic errors.

We are required to provide a means of interacting with the file system of a

computing system to \vhich Medusa is intended to be a graphical user interface. T\vo

options exist that fit the aims of the Medusa system and the notion of making visible

those aspects of the underlying system necessary for understanding the system. One

is the existing, popular, desktop, user interface, where opening a folder icon "reveals a

window containing icons depicting the files contained in the directory that the folder

denotes. Such a system supports the magical features needed to list potentially useful

inf oImation about the files, their size, creation date, to list file names in al phabetical

order so as to aid location of a file sought, and to make hidden files visible. The

difficulties remain of accounting for such a solution within a basic physical \vorld

metaphor, accounting for the mismatch between the representation and the

underlying data structures, and deciding how the issue of positioning icons within

the window should be managed, however. Such functionality reminds us of the

original meaning of an icon as depicting a closed windo\v, and suggests that far from

being physical objects in the electronic world, the folder is a window onto an

application for managing files.

As icons in some filing systems depict links, (entries in a data structure aSSOCiating

text names with the actual file's location on the disk), opening a folder to reveal its

contents is simply to read the file and list the entries in this data structure. Reading a

file, the contents of which are links to files stored elsewhere in the file space, some

of these files also contain a sequence of entries in a directory, is a task performed by

a browser application such as Netscape Navigator. Thus attempts by some operating

systems manufacturers to integrate browser applications more closely with the file

management system are thus justified by the need to support file management tasks,

174

legal arguments not withstanding. One can see that as the directory file (that contains

links to files in the file space) becomes more sophisticated in the way that links are

rendered (using graphics and video fragments), and as the layout of the directory

file's contents when rendered within a browser window becomes more flexible

(perhaps user layout of links in the browser is allowed), a browser becomes

indistinguishable from the folder graphical interface. Except that, in the case of the

browser metaphor, fewer breakdowns between the user interface and the underlying

data structures occur.

Our first attempt at providing a user interface to a file management system then is a

browser application run by opening a directory file. The design of suitable icons for

these files remains to be determined, but these too can be accounted for using the

notion of self-representation. The problem of file movement around the file space

must also be addressed, the problems caused by the use of a physical world

metaphor have been documented above, we postpone presentation of a solution to

this problem until Section 7.2.7.

7.2.6 The Computer-Computer Metaphor

The use of a metaphor in the design of the first Medusa system that is wide in scope

is made according to the idea of the computer being a metaphor for computing

systems (Treglown and O'Shea, 1993). The notion of making the user aware of

relevant aspects of the system necessary for understanding applies not only to file

representations. Where information about the status of processor and memory usage,

data structures common to applications such as input buffers, and devices connected

to the workstation, is also required, it is provided on-screen. In (Treglown and

O'Shea, 1993) it is proposed that a graphic such as that shown in Figure 7.6 appear

on the root window. This may be examined using common interaction tasks to reveal

the state of the device to explain its behaviour (for example, processor load and a list

175

of runnable processes), and the state of some parts of the system may be altered

(current active process, destination printer, and so on). As this graphic does not

allow the user to examine all the relevant parts of the system, as in Myer's (1988)

Peridot visual programming system where it is necessary to be able to interrogate

and alter the state of devices such as the mouse and pointer (attempting to taste one

own's tongue is an analogy3 of the task to be performed in the model world), the

decision to place the graphic in Figure 7.7 on the root \vindo\v is now adopted .

... ,""'" . . , .. ,""'" ., ." .. ,""'" .,'
" .. ,""'" .v , .. ~~~~~~~~ ,"

Room 123
Room 456

Figure 7.6 The first design of device description in Medusa

3 Attributed to the playwright and actor Ken Campbell in the Channel 4 television series

"Brainspotting" .

176

.. ~I cl

~I cl ~
..

DDDDDDDD DD D DDD
aaaaDDDaaD D DDD
DDDDaaaa DD D DaD

Figure 7.7 The second design of device description in Medusa

The graphic shown in Figure 7.7 allows the user to modify the presentation and

behaviour of the Medusa system. Normally knowledge of preferences or control

panel applications is required to modify the sorts of values that the Medusa system

allows access to via the same interaction style as the rest of the system.

7.2.7 Performing Tasks in Medusa

While metaphor-based graphical user interfaces are termed direct manipulation, the

conversation metaphor, whereby users are said to have a conversation with some

unseen agent about a (normally unseen) task domain, also plays a part in interaction.

While some variables can be directly manipulated, the issuing of commands to on

screen objects by selecting commands from a menu bar common to many systems is

based on an subject-object-verb syntax. The object of interest is made current, and

the action to be performed on it is selected from a tool icon or menu bar. The idea of

a current object introduces additional concepts that the user must be aware of if they

177

are to be able to conduct even basic interaction with a systenl. Phillips and Apperley

(1991: 14) say that:

"The Macintosh interface is based upon the desktop metaphor. The

Finder manages objects hierarchically in the form of applications,

documents, folders and disks on the desktop. 'Closed' objects, which

are represented by icons can be selected (made current), and once

current can be opened, moved, discarded, etc. The contents of 'open'

objects are displayed in windows, which can be selected (made

active), and moved, sized, scrolled, etc ... The interface is based on a

single object-action model - that is, at any time there is a single

current object or group of objects on which a specified action is

carried out. "

The study reported by Carroll and Mazur (1986), discussed in Chapter 4, found that

even a task as basic as highlighting (making objects current) proved difficult for

users. Analysis of the failings of many user interfaces that derive from the desktop

metaphor has apparently found that the notion of the current application causes user

problems. Where a number of overlapping open windows appear on-screen, each

being employed by a separate application program, windows being obscured when a

single window is made current reportedly causes users some confusion (Halfhilt

1997). The problem of user input (from the mouse and keyboard) being directed by

the window manager to application windows other than the one expected, the issue

of focus, is already a well-known problem.

Basic interaction tasks are sometimes described in terms of the input devices that can

be used to support them, or in terms of virtual input devices, those that generate the

types of input required. Phillips and Apperley (1991: 11) summarise basic

interaction tasks, as shown in Table 7.1.

178

Equivalent

Task User Action Virtual Device

Position Indicate a position on the display Locator

Orient Orient an entity in 2D or 3D space Locator

Quantify Specify a value to quantify a measure Valuator

Select Select from a set of alternatives Button, Pick

Text Input text Keyboard

Path Generate a path (series of positions) over time

Table 7.1 Basic interaction tasks and virtual devices

In their analysis of the Macintosh system, in particular the Finder, Phillips and

Apperley find that all interaction tasks, including the complex dragging tasks that the

user must understand and perform in order to create groups of icons, can be reduced

to selection tasks. The generic get value task is an example that reduces to selection

tasks, as shown in Figure 7.8.

Direct * Repeated (Kleene star)

Select value

Get value

Specify string"

Indirect "Select value*

Figure 7.8 Get-value sub-task (Phillips and Apperley, 1991; Page 15).

Following Phillips and Apperley's analysis of interaction tasks. and following users'

difficulties with the basic notion of current objects and windows, the approach to

179

interaction adopted in the first version of Medusa is an object-nlessage style of

interaction. Instead of making the object on which an action should be performed

current, termed existential reference by Lakoff (1987), deitic reference is preferred,

\vhere reference is made to an object and commands are selected from a toolbar that

appears alongside the object once it is clicked on. This tool bar is described in more

detail below.

A number of solutions to the problem of selecting commands to be applied to an on

screen object exist. As described in Chapter 2, in ARK named buttons, tliat denote

operations, are dropped onto the object to which the operation should be applied.

This solution however still permits semantic errors to be made, where operations are

applied, or messages sent, to objects that cannot respond in any meaningful way (the

method is not part of the object's interface). In such a case the button faIls through

the object, an action that is very magical and hard to account for. An interesting

alternative is Muller's (1988) multi functional cursor. In the multifunctional cursor

operations are loaded into slots in the cursor and applied to objects by traditional

mouse button clicks, an unloaded cursor is shown in Figure 6.9. The muItifunctional

cursor has drawbacks, however. For example, the number of operations that can be

loaded into the cursor slots is limited to twice the number of physical mouse buttons

available, neither are semantic errors prevented. In addition, while some appeal to

stimUlus-response compatibility can be made in mapping cursor slots to actions, the

icons in the slots must be interpreted in order to determine which actions will be

performed. This task is made more difficult for the users of Muller's design by them

having to employ the typical homonyms, abstract symbols, and puns found in UNIX

icon sets, such icons being among the poorest scoring in icon recognition tests (for

example, Rogers, 1986). Also of interest is the tool tray from which operations are

loaded into slots in the multi functional cursor, this is a rectangular array of icons

denoting the operations that can be loaded into the cursor. MuIler, however, does not

address how the tool tray may be retained close to hand in multi-screen or

180

collaborative systems as the cursor migrates around a model world that may be

larger than a single screen in size.

Left-most mouse

single click

Left-most mouse button,

single click

Middle mouse button,

double click

Middle mouse button,

Right-most mouse

button, single click

Right-most mouse

button, double click

Figure 7.9 An unloaded multifunction cursor for a 3-button mouse

Most desktop metaphor systems, though not the Xerox Star, place a menu bar either

at the top, bottom, or the side of the screen. The menu bar is not adopted in Medusa,

it being required in systems that employ the active or current object notion, which

Medusa does not All options are thus selected from the tool bar, shown in Figure

7.10, a design that allows two-handed input (Bier et al., 1994) to be supported, if the

user so wishes. Clicking on an object of interest causes a toolbar listing the

operations that may be applied to the object to appear, from which an option may be

selected. The list that appears in the toolbar depends on the affordances of the object

and the operations that may be performed on instances of the class or category that

the object belongs to. The list also depends on the application programs installed in

the system that might be able to run using the object as data; and on the object's

current state. In this way, semantic errors cannot arise as operations that are not

181

meaningful in the current system state are not offered to the user. The toolbar also

overcomes the problem of having operations close at hand. The tool bar combined

with the computer-computer metaphor, achieves much of the clustering of operations

with their associated underlying computing functionality reported by Tullis (1985),

but in a model world direct manipulation interface. The use of the object-message

interaction style, and the use of micons and continual state feedback, combined \vith

the use of the computer-computer metaphor for making the underlying system

visible has similarities to, but was developed independently of, Maloney and Smith's

(1995) Morphic system.

run

dele~~

" move to

- duplicate

about this oblect

Figure 7.10 A sample toolbar

7.2.8 Groups of Objects

In order to reduce the time taken to perform simple tasks, a number of desktop-based

user interfaces allow files to be grouped so that a single command may be issued to

all files in the group at the same time. Making a number of icons current requires

that the user performs a repeated <shift>+click action sequence, or drags a bounding

box around the icons to be made current (lassos them). Phillips and Apperley (1991)

show that the mouse-dragging action required to lasso icons also reduces to a

selection task. To allo\v groups to be built, the Medusa toolbar provides Rdd to

group and Remoue from group commands among others. Groups will be

treated differently from individual files, and the toolbar will list only those

182

operations that can be applied to the group as a whole if the object clicked on is

currently a member of a group.

7.2.9 System Feedback

After the user issues a command to any interactive system, according to Norman's

(1984) model, they must first evaluate the system response in terms of their goals

and then either issue commands that correct unexpected system responses, or they

must issue further commands that take the user closer toward completion of their

goals. Much of the motivation for the Medusa system is concerned with the need to

address the fact that system feedback is often not immediate, and that the

computation performed to complete a user-initiated action has an often perceivable

temporal duration. As interactive systems are not implemented on infinitely fast

hardware (Dix, 1987), the need to manage the flow of interaction in a system subject

to delays, lags, and seemingly lengthy computation must be addressed.

Buffers

Where computation is lengthy, appropriate progress indication is required (Myers,

1985). Like providing UNDO facilities, as will be discussed below, providing

progress indication requires depicting seemingly intangible properties of the system

such as the amount of computation performed, or the current state of an event queue.

These attributes of the system have no corresponding concepts in the task domains

that the systems described in Chapter 2 provide interfaces to. In the case of buffers,

Dix (1991) provides a design solution in keeping with the ideas underlying Medusa.

Dix's "munchman" buffer depicts keystrokes placed onto the event queue as a result

of the user typing while the target application is too busy to process them. When the

target application processes an event, the corresponding character is removed from

the depiction of the buffer's contents. This on-screen object is not equal opportunity

183

(Runciman and Thimbleby, 1986) the user may only place items onto the buffer

(including the delete character), the application is the only party that may remove

items from the buffer.

Progress Indication

While user interfaces are event-driven systems, and the interface programmer must

be concerned with giving semantics to events in terms of ho\v the display and

underlying soft\vare changes, user interfaces and interaction with systems, -according

to Dix and Abowd (1995) are also concerned with status. Unlike events, which for

conceptual and mathematical convenience are assumed to be instantaneous, status

describes aspects of an interface that have a constantly available value. Some events

do not, or need not, change mappings between the status of the user interface and the

status of the underlying software, some events, however, do and feedback is required

as a status-status mapping is restored.

In Medusa, such restorations of status-status mappings, and progress indication, are

required if the user initiates file moving and copying operations. Copying, for

example, implements semantics similar to the following (taken from Stevens, 1992:

56):

int main(void){
int n;

}

char buf[BUFSIZE]i
while ((n=read(STDIN_FILENO, buf, BUFFSIZE» > 0)

if (write (STDOUT_FILENO, buf, n) 1= n)
err sys ("write error");

if (n < 0)
err_sys("read error");

exit(O)i

A metaphor for the copying operation, based on the notion of visibility of relevant

(otherwise hidden) system components, will therefore depict the buffer filling and

184

emptying. The effects on the file copied and the copy produced depend on depictions

of the semantics of the read and write operating system calls that have yet to be fully

resolved. The Medusa system's depiction of this semantics, it should be noted,

differs from Dourish and Button's (1998) reflective account of the same operation.

Reflection is described in more detail in Chapter 9.

Mouse-ahead

Typed characters may be placed in a buffer until the target application is able to

process them, this being termed type-ahead. It is also possible for events generated

by use of the mouse to be queued until they can be processed, this being termed

mouse-ahead. Some treatments of mouse-ahead, for example by Dix (1991), limit

the number of mouse events, in particular mouse clicks, to that required to complete

a semantically meaningful subtask. If a larger event queue is maintained it is

possible for semantic errors to occur once the queue is processed, events meaningful

in a busy, frozen, model world are unlikely to be meaningful as objects are altered

and move when events are eventually processed. Perez-Quinones and Sibert (1996)

assume that direct manipulation interfaces must include a conversational component

in dialogue, direct manipulation being a collaborative process between the user and

the event processing system. If events cannot be processed in the current state then

the user must be informed, so as to allow them to alter their behaviour if required.

Perez-Quinones and Sibert's model has five "simulated states of understanding"

(SSOU): ready, processing, reporting, busy-no-response, and busy-delayed

response. These states are intended to reflect conversational behaviours in dialogues

between people and in speech recognition systems. These states and transitions

between them are shown in the Statechart-like system in Figure 7.11. In the internal

loop, feedback denoting that the system is in the processing state can be omitted if

processing can be completed in a short enough time that breakdowns in the system

185

behaviour do not occur. Transitions to busy states occur if processing will take, or is

taking, some time. In the internal loop states are normally depicted by the

conventional icon shape (pointer or hand), to denote busy states an alternative icon is

required, Perez-Quinones and Sibert use a stop sign icon to denote busy-no-response

and an hour glass icon to denote busy-delayed-response. In the Medusa system,

because of the system architecture adopted, which is discussed below, we do not

regard the system as a whole as being in a particular state, only that certain classes of

object in the model world may be in a particular state. Thus a version of Perez

Quinones and Sibert's SSOU model will be built into interaction with each ·on-screen

object. Further \vork will examine alternative icon designs to denote busy states,

while the hour glass is a reasonable metaphor for a busy-delayed-response state

(although we can interrupt the task of boiling an egg, for example), the stop sign is a

poorer metaphor for the state it denotes.

7.2.10 Help

Internal Loop

Ready

Processing

Reporting

Busy States

Busy-no
response

Busy-delayed
response

Figure 7.11 SSOU feedback states

(Perez-Quinones and Sibert, 1996: 318).

The study of first-time users of the Macintosh, reported in Chapter 3, found that

while on-line help facilities were used, the help they provided was limited and

context-independent. It was proposed that help should, nevertheless, be provided and

186

should be object-based. When help about an on-screen object is requested,

infonnation about the object, its current state, and the states it may enter by issuing

of one of the currently applicable operations is provided. Help is an option available

on the toolbar, its purpose is to give the user a semantics for commands applied to

on-screen objects. Object-based help addresses the dialogue detennination problem,

where options available to the user are detailed; but choice is simplified (Kirsh,

1996). Help facilities are also used to detail the history of an object in order to

provide infonnation which allows the user to uniquely identify the object pointed to

by the icon link. Help assists the user where the icon's design alone does not meet

this requirement, and it pennits the user to add whatever comments prove useful in

aiding them and other users to detennine the data contained in the file. Filenames, as

a result of the process by which they are developed, tend to be meaningful only to

the user who named the object Medusa will also allow how the help system behaves

to be modified, it being self-representing, the user should have access to, and the

ability to modify, the help system.

7.2.11 The File Manager

Interaction with the underlying file system using the Medusa user interface has been

partly detailed above. The depiction of directory listings was discussed, but the issue
,

of how files are moved around the file system was not detennined. The QPT-based

analysis described in Chapter 5 showed that the processes that affect objects in the

on-screen model world differ from those conjectured to affect objects in the

underlying software. It was shown that tasks as seemingly simple as moving files by

dragging them are subject to a considerable mismatch, the physical world metaphor

cannot account for the behaviour of the system image. To make the process affecting

the data structures apparent, and following the task analysis conducted by Phillips

and Apperley (1991), moving a file around the file system requires that the user

point to a file or group of files and select the Moue command from the tool bar.

187

The user must then specify a destination by pointing to a directory listings file, or

\vithin its open \vindow. Following the structure of the QPT processes given in

Chapter 5 and Appendix A, a path must exist between the volume on \vhich the

source files are stored and the destination volume. The on-screen graphic shown in

Figure 7.7 pennits the user to establish this path, or to check that a path is still in

place.

File deletion, at least in UNIX, is the process of removing a link from a directory

entry listing file and freeing the list of blocks that the file uses for use by other, new,

files. The data is not destroyed until the data blocks are reused. The Medusa system

does not employ complex physical world metaphors such as the trashcan, or the

black hole employed in some ARK simulations. Instead, deletion is just another

option available on the tool bar of messages that can ,be sent to an object, in a way

similar to dropping a physical delete button onto an ARK on-screen object removes

the object from the model world. As directory entries are only links to files, the

actual file persists until no more links to it exist. We address the possibility of

undeleting files in Chapter 10.

7.3 Implementing Medusa

The first Medusa system has been described in some detail above, and while a

usability analysis of the design is undertaken in the following chapter, a full

appreciation of the pragmatics of interaction with a Medusa system \vould only be

gained from a full implementation of the system. A secondary aim of the research

programme begun and reported in this thesis is to understand more fully the nature

and limitations of direct manipulation. We also seek to apply formal methods and

models during the development of user interface features so that the intended

behaviour of these features is known, verifiable and hopefully guaranteed. An

implementation of version one of the Medusa system was begun, as was ongoing

188

work in the specification and refinement of interactive systems based on an object

oriented formal notation. In this section, we describe below the work undertaken in

this area as applied to the design and implementation of a Medusa system.

7.3.1 Use of the Agent Notation and Language

A trend in current user interface design views the system as being made up of a

number of small, possibly interacting, modules. Approaches that follow this trend

include PAC (Program, Abstraction, and Control) agents (Coutaz., 1987), and the

MVC (Model, View, Control) paradigm of the Smalltalk-80 programming

environment. The model adopted in the design of the Medusa systems is the agent

model and notation (Abowd. 1990). The agent model views systems and their user

interfaces as being composed of a number of inter-connected, communicating

components. These components, termed agents, in turn, consist of three parts

(depicted in Figure 7.12). These parts are a persistent internal state which changes as

the internal operations are invoked as the agent receives event messages from other

agents; a communication part that lists the one-way communication channels that

connect agents together and names the event messages that may be sent or received

along each channel~ and an external behaviour part that defines the sequences of

event messages that the agent is prepared to engage in. This last part supports the

interaction design, the interleaving of user input and system output so that tasks are

supported by the system and the behaviour of the system is reasonable and

comprehensible to the user. The external behaviour component also distinguishes the

agent model from pure object-oriented models in which sequences of method calls

are defined by the arrangement of objects into interconnected layers corresponding

to the lexical, syntactical and semantic layers of a linguistic approach to user

interface management (for example, Sibert, Hurley, and Bleser, 1986).

189

events

Figure 7.12 An agent

7.3.2 System Architecture

The first version of the Medusa system, the one that has received most design effort,

adopts the UMA architecture introduced by Took (1990a, 1990b) which is shown in

Figure 7.13. Took (1990a), in addition to providing the architecture adopted,

provides arguments as to why a user interface architecture should be adopted at all in

preference to existing user interface services such as toolkits and user interface

management systems. The most compelling arguments for adopting a user interface

architecture, in terms of implementations of Medusa, are the drawbacks, paraphrased

from (Took, 1990a) , listed in Table 7.2. In the UMA architecture, an interactive

system is composed of three parts, the Application cOlnpOnent contains the

functionality of the system and receives commands from the User cOlnpOnent and

may send commands to the display Medium. The User component receives events

generated by the user via input devices such as the mouse and keyboard and either

forwards them to the Application or interprets them as commands to be issued

directly to the display Medium. The display Medium, is a passive component, it

serves only to maintain a display model, or implement a display operating system,

which is altered by the component acting on commands received from the User and

Application components, and rendering the display model to produce the screen

contents. Adoption of a Medium also does not rule out future consideration of a

collaborative version of the Medusa system, various present functions allow support

for multiple displays, the implementation details, and appropriate screen sharing

approaches (for example switchable workspaces, rooms, or Kansas-like

190

environments) have yet to be fully explored, however. The UMA architecture is

depicted in Figure 7.13.

Reasons for rejecting window managers

• They only provide an incomplete data abstraction,

• Applications are given no abstraction for the contents of windows.

• All that is provided by a window manager is a set of low-level graphics

primitives, or possibly also a confusing hierarchy of panes, panels and sub

windows.

Reasons for rejecting user interface management systems

• The need to support interleaved dialogues, spatially-multiplexed tasks over

different windows and applications, which are hard to model syntactically.

• Semantic feedback, where engagement between on-screen objects and

underlying semantic objects is expected, is hard to support if dialogue

management is separated into a distinct component.

• Dialogue abstraction is more suited to procedural applications, but not where

the user has freedom of action.

Reasons for rejecting user interface toolkits

• Design by modification, new classes of object are hard to create, it is easier to

modify an existing class. Designs are limited by the quality of the set of basic

components.

• Poor separation and high semantic seepage, no clear dividing line between

application code and interface code.

• Objects handle their own interaction, optimal updates and screen

synchronisations require additional global superstructures.

Table 7.2 Drawbacks of user interface services and reasons for adopting a user

interface architecture.

191

human u~:.~:Jer input diS~ay
present ~

- - ~- - -SURFACE _ .. -i -.. -.
SURFACE
INTERACTION

DEEP
INTERACTION

Figure 7.13 The UMA user interface architecture

The UMA architecture introduces the notion of surface interaction. Where events

do not need to involve the Application they are handled by the surface, and so the

display contents can be altered without semantic seepage, and without the typical

program structure where code for the user interface is merged with code for

managing the Application functionality. At the same time, the UMA architecture can

support semantic feedback where the application semantics may need to directly

alter the display contents without having to consult or inform intennediate dialogue

manager components as is often found in user interface architectures that adopt a

linguistic approach to dialogue management. The UMA architecture is captured by

the following three process expressions given in the notation of Communicating

Sequential Processes (CSP) which is employed in Abowd's (1990) agent model to

define the external behaviour component of each agent.

U = i:I -+ user!pick(i) -+ o:REPLY --. (user!c:COM -+ r:REPLY --. U 0

report!(i,o) -+ (i', 0') -+ user!c:COM -+ r:REPLY -+ U)

M = user?c:COM -+ r:REPLY -+ M I app?c:COM -+ r:REPLY -+ M

192

A = report?(i,o) - J!X· (app!c:COM - r:REPLY - X 0 (i',o') - A)

I app!c:COM - r:REPLY - A

Theo·concepts of surface interaction, and of distinguishing surface interaction from

deep interaction, where events do require processing by the application, provide a

separation of software components that allows clearer discussion of the components

and their behaviour that make up some of the domains that our interface metaphors

map between. The notions of surface and deep interaction also provide an alternative

view to that adopted in (Dourish and Button, 1998) in identifying points of

breakdown and failures of scope in metaphorical mappings in direct manipulation

tasks, this shall be discussed further in Chapter 9.

7.3.3 The Application

The application component of the system described in this thesis, and in many of the

systems described in Chapter 2, is a simple file manager. The file manager provides

mechanisms for simple file maintenance, and provides functions for deleting and

moving files and creating new directories within the file space. The file manager can

be described by a single agent. The persistent state maintained and altered by the

agent describes the graph structure of files and directories within the file store. This

agent is based on a completion of the partial description of a file store agent given in

Abowd (1991). This agent is, in turn, based on the formal specification of the UNIX

filing system given by Morgan and Sufrin (1984) and the object~oriented UNIX

filing system specification provided by Meira et al. (1994). The Medusa system is

not, however, meant to be a direct manipulation interface to the UNIX file system,

the usability failings of which have long been documented (Nonnan, 1981), and to

which direct manipulation interfaces have already been constructed, for example by

Borg (1990) and by Lundell and Anderson (1995). The functionality of the Common

Desktop Environment front panel in Lundell and Anderson's design is subsumed by

193

the computer-computer metaphor. Medusa prototypes were, though, planned to run

with the UNIX operating system and hence the UNIX filing system must be assumed

in a specification at the level of detail captured by the Agent notation. The file

manager agent, as implemented, merely provides an interface between the file

maintenance functions invoked by user actions and the UNIX system, and is, as a

result, a very small part of the whole system. The temporal behaviour of the file

system agent is considered to be beyond the control of the Medusa system, as a

result no temporal information is provided in the definition of the external behaviour

component of the agent. Any user interface to the file manager is responsible for

representing in a way meaningful to the user and overcoming these delays, where

possible.

7.3.4 A Partial Implementation

An implementation of the Medusa system version one was begun, but remains

incomplete. Source code is implemented in C and c++ written for the SunOS

version 51Solaris 2.3 dialect of the UNIX operating system running on a Sun

SPARCStation. To speed the implementation, the WIMP user intenace component

of the system was to be implemented using the XView version 2.3 widget set built

upon the X windows system release number 5.

The file manager application component of the system has been implemented as a

single class, which, \vith its associated methods, comprises approximately 200 lines

of c++. The class methods reflect the operations penormed to alter an agent's state

in response to receiving a message from agents that make up the user interface

component. The application component makes up such a small percentage of the

system code by making considerable use of high-level UNIX system calls.

Implementation in a single class reflects that only a single agent is sufficient to

specify the Application component. Much of the agent's state-changing operations

194

were derived from the specifications given by Morgan and Sufrin (1984), therefore

the Application component is said to be a design specification, as it was known

beforehand that a UNIX platform would be the target for a prototype

implementation.

In developing the graphical user interface, a far harder task was confronted. Bass and

Coutaz (1991) discover, while attempting to refine a system specified using PAC

agents (Coutaz, 1987) to the C language library interface (Xt) to the X window

system, that refinement can only be progressed a certain numbe(of steps before the

interaction style and code structure imposed by the window toolkit employed

restricts the subsequent design choices that can be made. This problem was

encountered in the partial development of a Medusa system, and in other

applications of Abowd's agents in system design and development (Treglown, 1998).

Principled and eventually, it is planned, automated methods for converting an agent

based specification into code are still being developed, and were in a greater state of

infancy when an implementation of Medusa was begun.

Approximately 9,000 lines of code of an implementation of the Medusa version one

user interface have been developed. This code serves a number of purposes, firstly to

provide C++ with an object class which the language, unlike truly object-oriented

languages such as Smalltalk-80 and Java, lacks. The object class is the most abstract

and highest class in the hierarchy onto which the Medusa on-screen object ontology

shown in Figure 7.1 is built. The code also begins to implement the UMA

architecture on the target system. The code, however, was developed mostly to

develop heuristics that would guide the development of semi-formal refinement

rules, and eventually type-checking and compilation tools, to be used to help

automate the process of generating code from an agent-based specification of the

Medusa system. The code developed was also used to make clear the difficulties of

attempting to implement on-screen objects that are required to exhibit behaviour that

195

is not already captured by the widgets provided by existing programming languages

and user interface management systems. In addition, we seek to develop heuristics

for converting specified agent behaviour into the interaction structure imposed by

widgets provided by existing window systems. Simplifying the process of

programming the external (observable) behaviour of on-screen objects and \vidgets,

and making it possible to easily modify this external behaviour is a problem that has

yet to be solved sufficiently for a satisfactory and complete implementation of the

Medusa system to be undertaken. As several man-years' \vorth of effort was invested

in the design of the Xerox Star's icons alone (Bewley et aI., 1983), and as the Apple

Lisa is said to be the result of 200 man-years of development effort, it is no surprise

that a complete implementation of Medusa is not available.

7.4 Conclusions

In this chapter the design rationale of a new user interface design entitled Medusa

was described and the criteria and requirements of user interfaces for novices that it

is intended to meet were presented. While an implementation of this interface \vas

begun, it remains unfinished and hence full usability testing cannot be undertaken. In

the following chapter, we apply usability evaluation and inspection methods that

may be employed even when a working prototype is not available and comment on

whether the Medusa system meets the requirements placed upon it and overcomes

the difficulties of existing metaphor-based systems.

196

Chapter 8

A Critique of the Medusa System Design

"After we gazed up at the glorious stained-glass windows and exquisite statuary, she

led me inside the sanctuary and showed me the ornate carvings on the chairs where

the choir customarily sat. At the bottom of one seat was a carving of a dinner scene.

My friend told me to stick my hand underneath and feel the hidden surface.

Incredibly, the craftsmen who had designed this furniture had actually carved the

feet oJ the Jestive celebrants under the chairs, even though no one would ever see

their loving artistry. They did it Jor the greater glory of God, because they wanted

things exactly right. They wanted to make sure that their work was absolutely

flawless.

This briefly reminded me oJ the decision by the producers oJ Cannonball Run II to

include a cameo appearance by Don Knotts in a film that already showcased Dom

DeLuise, Ricardo Montalban, and Jamie Farr, but I quickly realised that this was an

inappropriate analogy, and let it go."

- Joe Queenan (1998) America, Picador.

8.1 Introduction

The Medusa system design presented in previous chapters is designed to not be

subject to many of the failings of existing metaphor-based systems. In order to test

this claim, some determination of the usability of the system design must be

undertaken. Techniques for examining the usability of a system are classed either as

usability evaluation techniques or usability inspection techniques. Usability

evaluation techniques, such as traditional experiments, analysis of system use

patterns, questionnaires and interviews, and error rate analysis (Howard arid Murray,

1987) all rely on the system being implemented in an executable form, even if just a

prototype. As no working prototype of the system exists, conventional usability

testing and laboratory-based evaluation methods cannot be employed to judge the

usability of the first Medusa system design.

Usability inspection methods, surveyed in Nielsen and Mack (1994), are intended to

serve as "low cost" alternatives to usability evaluation methods. Inspection methods

can often be perfonned by evaluators alone, without the need for involving subjects

who represent the user population that the system is intended for. Inspection methods

also tend not to require a full implementation of the system, they can be performed

on specifications and storyboards; and they can often be perfonned by soft\vare

engineers who may not be skilled in user interface design. Inspection methods,

however, can only find a large minority of the usability faults that laboratory testing

can reveal (Desurvive, Kondziela and Atwood, 1992). With no implementation of

Medusa available to test, we must employ a suitable inspection method. Below we

describe and employ a usability inspection method tenned the cognitive walkthrough

method in order to examine the usability of the first version of the Medusa system.

198

8.2 The Cognitive Walkthrough

8.2.1 Interaction and The Cognitive Walkthrough

The cognitive walkthrough is a usability inspection method derived from Poison and

Lewis's (1990) CE+ model of learning by exploration. While differing in some

aspects, this model can be illustrated with reference to Norman's (1984) seven-stage

cycle of interaction, which is shown in Figure 8.1. In CE+, users' goal structures are

similar to the hierarchical structures of GOMS. Goals are represented by

propositions and are linked to other goals, background knowledge (also represented

as propositions), propositions that represent objects seen in the environment and to

propositions that denote actions (PoIson, Lewis, Rieman and Wharton, 1992).

Activation flows from the topmost goal to representations of actions, when an action

is sufficiently activated, it is executed. New propositions are created as the

environment changes in response to the action performed.

Intention
to act

~
Sequence
of actions

+
Execution
of the action

Evaluation of
interpretations

t
Interpreting the
perception

t
Perceiving the

state Of the world

The World

Figure 8.1 Norman's Seven-Stage Model of Interaction

199

In order for an action to be executed, a chain of associative connections must exist

between a goal and an action. "Label following" is onc such way in \vhich this chain

can exist. In this strategy, used commonly by na"ive users, an action, such as pressing

a button (using the example given in Poison, Lewis, Rieman and Wharton, 1992), is

chosen because the button is labelled in such a way that it shares terms ,vith a

currently active user goal. The cognitive walkthrough method seeks to identify

points in an interface's design where the chain of associative connections is broken.

These points include the label not sharing terms with the active user goal; the link

between the label and the button to be pressed being unclear; buttons not being

recognisable as buttons; and there being more than one label visible associated with

the current user goal.

The first Medusa system is designed to be used by novices, since the cognitive

walkthrough method \vas designed as a tool to explore the usability of such systems,

we are justified in using it. And while we would wish to conduct empirical testing

(this is discussed further in the concluding chapter), the cognitive walkthrough

method has been favourably compared with empirical testing and was judged likely

to provide useful data as to the usability of Medusa (Karat, Campbell and Fiegel,

1992). The cognitive walkthrough method did not compare favourably with another

inspection method, heuristic evaluation in an evaluation of HP-VUE, a user interface

to an operating system similar to Medusa, conducted by Jeffries, Miller, Wharton

and Uyeda (1991). Their results, however, highlighted a known failing of heuristic

evaluation (Nielsen, 1993), that the number of usability faults discovered by one

evaluator will be very small. A larger number of usability faults will be found \vith

three or more evaluators (five or six evaluators has been found to be the optimal

number, more and the costs outweigh the additional usability problems found). With

a single evaluator, the cognitive walkthrough method will find a similar number of

faults to heuristic evaluation, perhaps even morc.

200

May (1993) complains that the cognitive walkthrough method can be regarded as a

form of guidelines evaluation, and as such will compare badly with methods that

employ larger numbers of guidelines, although this was not observed in the work

undertaken by leffries et al. (1991). Instead, we are interested in exploiting a feature

of the cognitive walkthrough that May also regards as a failing, the emphasis on

formal structure and the "decomposition of a task sequence to emphasise the points

of the design that should be checked." (May, 1993: 11). We are concerned, as will be

explored further below, with aspects of the microstructure of certain human

computer dialogue structures, the cognitive walkthrough is better suited to this

analysis than other inspection methods. This concentration on the microstructure of

interaction, as others have noted, risks high-level problems going unrecognised. We

repeatedly acknowledge, however, that the usability of the Medusa system will not

be known in considerable detail until a prototype can be developed and

representative users involved in its testing. The cognitive walkthrough method,

though, especially when more fully integrated with Norman's seven-stage model (it

was simply used as an explanatory device above), offers a considerable advantage

over other inspection methods in permitting greater analysis and discussion of the

cognitive distances (Hutchins, Hollan and Norman, 1986) between intention and

action, and feedback and users goals, that indicate the amount of human information

processing involved in direct manipulation interaction (Rizzo, Marchigiani and

Andreadis, 1997).

8.2.2 Conducting the Walkthrough Method

The cognitive walkthrough method comprises two phases of activity; a preparation

phase, which is followed by the walkthrough itself. In the first phase, a set of task

scenarios (which must be supported by the system under investigation) is created.

For each task devised, an action sequence is created, this is a list of actions which, if

201

performed by users would result in the task being successfully carried out. Also for

each task scenario, assumptions about the users' abilities and initial goals must be

stated. For the second phase, the \valkthrough itself, for each of the actions in the

action sequence defined for each task scenario, a number of questionnaire forms,

provided in PoIson, Lewis, Rieman, and Wharton (1992) must be completed. The

forms contain questions about the availability of operations and the observability and

relevance of feedback in the display. In addition, the forms require the evaluator to

describe how the current set of users' goals is revised as new goals are created and

achieved as either the task is successfully performed, or in response to usability

problems discovered. If the questions in the forms cannot be answered successfully,

then a likely usability failing of the system will have been identified. Other sets of

walkthrough questions have been provided, for example in (Wharton, Reiman, Lewis

and Poison, 1994) and (John and Packer, 1995), but these articles seek to provide a

more usable version of the method for those evaluators who are not necessarily

skilled in He!. The set of questions given by Poison, Lewis, Rieman, and Wharton

(1992) obtain the most information from a system, and so this set was employed.

The cognitive walkthrough method was developed for evaluating the usability of

"walk up and use" systems such as automated teller machines and information

booths where the number of operations available at one time is limited, as are users'

experience and prior knowledge of the tasks supported by the system. The

walkthrough method has since, though, been shown to be of use in evaluating more

complex graphical user interfaces, and has been shown to be capable of being

learned without great difficulty by software designers who are not specifically

trained in HeI (John and Packer, 1995). The greatest problem with applying the

cognitive walkthrough method to systems such as Medusa, is the difficulty of only

being able to step through one of possibly many action sequences that permit the

task to be carried out. Where a choice of actions is accepted by the dialogue

component of a system, and both actions make progress in the performance of the

202

task, only one of the available choices may be considered in detail. Solutions to this

problem, and modifications to the cognitive walkthrough method which would

permit choices of actions to be considered in detail will not be considered further

here.

8.3 A Cognitive Walkthrough of the Medusa System

8.3.1 Preparation

The first phase of the cognitive walkthrough method is the preparation phase. This

phase is itself composed of a number of tasks that the system evaluator must

conduct. The first task for the evaluator, as mentioned above, is to choose the tasks

. to be analysed. These tasks must be resemble those that would be performed

regularly using the final system, and must be tasks that are sufficiently supported by

the system's. Normally a cognitive walkthrough does not consider tasks that must be

performed using other applications in addition to the one under investigation.

The second task to be performed during the first phase of the walkthrough is to

provide a task description. This description is normally at a high level of abstraction,

detailing the major task to be performed and the overall change in the system's state

to be brought about by performance of the task. The third task is to determine the

correct sequence of actions that the user must perform for each of the tasks

employed to evaluate the system. Where a number of task sequences may be judged

"correct" in that the task will be said to have been peIformed after the last action has

been peIformed, careful choices as to the action sequence considered are required. It

can be expected that the actions performed by users will not be optimal and error

free, so a realistic action sequence must be listed.

203

The next task for the evaluator is to identify the intended user population of the final

system. This is a task that is deliberately ignored in this case. Where the size of the

intended user population of the system grows, it bccomes impossible to make all but

very general statements about the visual capabilities, physical impainnents,

education levels, cultural background and computing experience of the users. We

therefore make no assumptions about potential users of the Medusa systems, apart

from general population trends, and that they can be expected to have an

understanding of cultures in Western industrialised societies, and can read the

display contents and use a mouse without difficulty.

The final task to be completed by the system evaluator during the preparation phase

is to describe the user's initial goals. That is, the system state and the state of the

wider task domain that they wish to bring about by perf onning the task. No

consideration is made of the user's wider aspirations, attitudes towards \\'ork and

technology, or the basic goals they are assumed to hold in common with all

autonomous systems.

8.3.2 Performing the Cognitive Walkthrough

Once the preparation phase has been completed, the \valkthrough itself can be

performed. The walkthrough is a repeated cycle of activity where for each action in

the action sequence constructed during the preparation phase, the individual(s)

conducting the walkthrough are required to complete the forms and answer the

questions provided by PoIson et al. (1992) for each action. These forms are

reproduced in Appendix B. The questions that system evaluators must answer ask

whether each "correct" action may be successfully planned and performed, whether

the resulting system feedback, if any, is interpreted appropriately and useful way by

the user, and consider \vhether progress towards completion of the task is seen to be

being made.

204

8.3.3 Task 1 . Running an Application

The first task considered, for which a walkthrough is conducted is runmng an

application program using the Medusa system. The Medusa system retains from

other model world-based systems the categorisation of files into application

programs and data files. In this task, the user wishes to run an application program

without making use of any particular data file. It is assumed that the icon denoting

the application is visible on-screen and has been located and recognised by the user.

This first task is deliberately simplified in order to demonstrate the use of the

cognitive walkthrough method. The correct action sequence for this task is given

below:

1. Move pointer to application icon. [Storyboarded in Figure 8.2]

2. Press mouse button. [Figure 8.3]

3. Move pointer over Run application option in tool bar menu. [Figure 8.4]

4. Release mouse button.

Figure 8.2 Moving the pointer over an icon

205

Figure 8.3 Revealing the tool bar for a file

Figure 8.4 Moving the pointer over the "Run Application" tool bar option

The resulting goal structure arising from conducting the \valkthrough is shown in

Table 8.1 where the notation employed in Poison et al. (1992) is used. The

walkthrough for the first task was completed in approximately two and half hours ,

written notes were taken and a verbal protocol of the author conducting the

walkthrough was recorded on audio tape to allow the contemporaneous notes to be

clarified and confirmed later if necessary. Protocol analysis of the recording was not

required as the action sequence for the task is know and prescribed by the cognitive

walkthrough method.

206

Run application

Move pointer over application icon

and-then Run indicated application

and-then

and-then

Press mouse button

Move pointer over run option

Release mouse button

Table 8.1 Goal structure for first walkthrough task .

8.3.4 Task 2 - Moving a File

The second task considered is the movement of files from one location to another in

the Medusa file space. File spaces are abstractions over the arrangement of bytes of

information stored on physical storage devices. In addition to the abstractions

employed by the operating system, the location of files gives them an additional

meaning in addition to their contents. The location of a file in the file space can

denote its meaning in the user's working history, their past projects, their on-going

work, and the resources they are employing in their immediate tasks. The task for

which a walkthrough is conducted is the movement of a single file from one

directory to another. The correct action sequence for this task is listed below:

1. Move pointer over icon denoting file to be moved.

2. Click mouse button.

3. Move pointer over Moue to ... option on tool bar. [Figure 8.5]

4. Click mouse button.

5. Move pointer to icon denoting the intended destination container or window view

onto a directory listing file. [Figure 8.6]

6. Click mouse button.

207

Figure 8.5 Selecting the "Move to" tool bar option

Figure 8.6 Indicating the destination container when moving a file

For this task and the next one considered, we alter the basic level of interaction to

use the cognitive \valkthrough to determine whether the structure of basic selection

tasks that make up interaction with the Medusa system should be performed by the

"press mouse button -. move pointer over option -. release mouse button" action

sequence found in the Apple Macintosh desktop and environments for programming

in Small talk-80, or by the "click mouse button -. move pointer over option -+ click

mouse button" sequence found in Microsoft Windows and some X Windows

tool ki ts. The goal structure eventually constructed for this task, defined using the

notation of PoIson et al. (1992) is shown below in Table 8.2.

208

Move file of interest to intended location

make tool bar visible

option

and-then

and-then

and-then

move pointer to icon

click mouse button

select option from tool bar

and-then

specify destination

and-then

move pointer to Moue to ..

click mouse button

move pointer to destination

click mouse button

Table 8.2 Goal structure for second walkthrough task.

The walkthrough for this task was completed in two hours, hand-written notes were

taken during the walkthrough and a verbal protocol was recorded onto audio tape.

8.3.5 Task 3 - Adding a Method to the Toolbar

As described in Chapters 6 and 7, commands are directed towards on-screen objects

via the tool bar. The options available on the tool bar at any point in time are

determined by the category of object towards which the command is issued, the

object'S current state, and the options selected by the user to be present on the tool bar

in certain situations. The Medusa system, through the on-screen display described as

being part of the computer-computer metaphor, allows the user to modify the

behaviour of the tool bar. This should be contrasted with other menu-based systems

where menu options can be used during interaction, but the user has no meta

reference to menu options themselves, and is unable to modify them. The third task

we consider is the addition of a previously unavailable option to the tool bar. This

209

option ,viII only appear on the tool bar when appropriate when interaction ,vith the

tool bar, as opposed to the "meta-toolbar" is resumed. The action sequence for this

task is given below:

1. Move the pointer over the "meta-toolbar" in the on-screen computer-computer

display. [Figure 8.7]

2. Press mouse button.

3. Move pointer to Rdd command option in the tool bar. [Figure 8.8]

4. Click mouse button.

5. Move pointer over Edit using leMt Tool option. [Figure 8.9]

6. Click mouse button.

Figure 8.7 Moving the pointer over the meta-toolbar

210

Figure 8.8 Selecting the" Add Command" tool bar option

Figure 8.9 Selecting the "Edit using Text Tool" hierarchical tool bar option

As with previous tasks, a goal structure for the task was constructed, experience

gathered from conducting the second walkthrough allowed a structure that made

greater use of hierarchy based around the smaller selection tasks that make up the

larger task to be constructed. The goal structure constructed in the PoIson et al.

(1992) notation is shown in Table 8.3.

211

Add option to tool bar

and-then

Command .•

TeMt Tool option

make toolbar visible (direct messages to meta-toolbar)

move pointer to mcta-toolbar

and-then

add option to tool bar

and-then

and-then

and-then

click mouse button

move pointer to Add

click mouse button

move pointer to Edit using-

click mouse button

Table 8.3 Goal structure for third walkthrough task.

8.4 Design Flaws in the Medusa System Version One

While intended to overcome the usability difficulties of existing metaphor-based

systems, the cognitive walkthroughs conducted on the first design of the Medusa

system reveal that this system too suffers from some usability failings. Some of these

failings reveal an interesting shortcoming of the principle of visibility underlying the

system design, and reveal that even the notion we have described as letting the

computer act as a metaphor for the target computing system may be subject to

breakdown, and a failure in its scope.

8.4.1 Basic Interaction

Like other WIMP systems, the Medusa system assumes that the large part of

interaction with the system will be accomplished by using an input device capable of

generating location and selection information. A location, in the fonn of two-

212

dimensional co-ordinates, can be generated by an input device such as a mouse or

trackball, in the case of the Medusa version one system, the choice of devices is of

no concern, only the design space (Macinlay, Card, and Robertson, 1990) is relevant.

Selections are made using a single switch or button; in Medusa version one, most

tasks are selection tasks, and no more complex form of input is required.

Interaction with many objects in the Medusa model world is based on an object

message notion, on-screen objects change their state in response to messages (often

in the form of options on the tool bar) being sent to the object of interest. As

explained in Chapter 7, the metaphor of highlighting is not adopted in the Medusa

system due to the problems that it causes users. Instead clicking on an object is

interpreted as a cue to present the tool bar listing the commands or messages that may

be issued to that object in its current state. This mechanism permits the distinction

between tracking and naming objects to be exploited within Medusa, the recognition

that one need not identify an object in order to be aware of its presence or type in

order to perform some tasks upon it (Smith, 1996). Medusa allows this distinction to

be employed within the model world as it can in the real world. In order to rely on

the association in the user's mind that the toolbar that appears refers to the object that

the pointer was over when the mouse button was clicked, two explanations can be

given. The first is a transfer of the notion of the current object (similar to the notion

of focus, the client application to which subsequent events should be directed) by

those users that understand the concept from their experience of using other window

based systems. The second exploits the phenomenon, claimed by Jeannerod (1997)

to have been first documented by Aristotle, that events arising from the same region

of space in the visual field apply to the same object.

This approach to interaction differs from interaction with the options listed on the

toolbar and its associated menus. On the toolbar, an option becomes highlighted

when the pointer's hots pot is over it. Two reasons are proposed for this difference.

213

One reason is pragmatic, deriving from a need to be aware of the applicability of

Fitts' Law in HeI, the target of a toolbar option is small, as is the hots pot (the active

region of the pointer, the location of which is taken to be the source of a mouse

event), highlighting an option allows the user to confirm that the intended target of a

movement of the pointer has actually been reached. The second reason is that we

claim that the user selects tool bar options whereas objects in the model \vorld are not

selected, there is no notion of a current object, only one which is the object to \vhich

a message is sent. The first Medusa system thus employs an objecl-lnessage

interaction style, rather than choosing between SVO, SOY or VSO· structures

(Subject-Verb-Object, Subject-Object-Verb, and Verb-Subject-Object respectively)

that categorise languages (Pinker, 1994), including direct manipulation user interface

dialogue structures, thus removing the need to be aware of the culture into which the

system is to be introduced. By avoiding the conversation paradigm, it is possible to

consider further the continuum of model worlds from two dimensional model \\'orlds

to augmented and virtual realities, this will be explored further in Chapter 9. Users

must, however, learn the basic action sequences that make up selection tasks in

Medusa. These action sequences may differ from the low-level motor sequences that

users have mastered when using other systems, although they are also easily

described using the dialogue modelling approach of Buxton (1990).

One question, as mentioned above, that it was hoped that the walkthroughs would

answer was which dialogue structure making up selection tasks in Medusa should be

chosen. It would appear that neither choice makes much difference to the usability of

these very basic tasks. The only problems that require further designer effort are

those that arise when users familiar with one approach transfer the motor sequence to

a system that uses the alternative approach. An approach to overcome this problem,

one adopted by the Solaris desktop environment, is to support both alternatives

within the state machine for processing mouse-generated events wherever possible.

Different routes may therefore be taken to reach the same final (accepting) state of

214

the dialogue's state machine that is interpreted as a tool bar option selection task

having been performed.

8.4.2 Understanding the Computer-Computer Metaphor

The cognitive walkthroughs revealed few usability problems that anse from

interaction with the on-screen components whose design is motivated by the notion

of the computer-computer metaphor. The problems that were revealed are ones of

inelegance motivated by the requirements of consistency and visibility. The addition

of methods to, or deletion of methods from, the tool bar in the third walkthrough

requires that the user select methods from a complete list of all the methods to

objects of all categories that may be encountered within the system. This arises

because the "meta-object" in the computer-computer on-screen display is of no

particular category (in the Medusa ontology it is simply an "object"), thus the list of

methods from which selections can be made cannot be restricted to those applicable

to a particular object category. While it might be possible to have the user select an

object's category and then modify the tool bar, such a solution would require the task

to be performed within a dialogue box. In this solution the object's category could be

selected, and a choice from the subsequent list of associated methods made. The use

of dialogue boxes, however, requires that sub-dialogues that cannot be interrupted be

implemented. The user will not be able to complete other tasks or respond to urgent

events or alarms until the task supported by the dialogue box has been satisfactorily

completed. It is possible to refer to environments such as ARKola to show the

advantages of the approach adopted there and also here in Medusa.

8.4.3 Directly Manipulating the Intangible

The first version of the Medusa system seeks to provide user interface components

that represent important aspects of the underlying functionality sufficient for a more

215

complete understanding of the system to be obtained than can be obtained from other

metaphors in the depiction of the model world. The results of the cognitive

walkthroughs, however, suggest points \vhere even the scope of letting the computer

act as a metaphor for the underlying computer system is limited, and where tasks are

not easily supported by the Medusa user interface design. These points of breakdown

arise from the need to provide on-screen representations of data structures that are

not provided as part of the underlying operating system, but which are part of the

interface itself. These representations depict data structures that do not describe a

system state, but instead they describe the user's interaction \vith the system, often

referring to past events, not the current state and states which might be achieved in

the future.

One problem arises from the basic means of interaction with the system. A task

supported by many existing window-based systems is the use of a double click of the

mouse button. The double click usually performs the "open" task, to \vhich the

system responds by displaying the contents of a folder, running an application or

restoring an icon depicting a running application to its full-sized window

representation. The use of the double-click is ubiquitous, but problematic. A double

click is an event invested with greater semantics by the system than the combination

of two mouse button clicks separated by a short delay that makes it up. Olsen (1998)

suggests that this difficulty of interpretation of events is resolved by the first

button-down event being interpreted as selection of the object, and the second

click as opening the object. The double click thus presents the Medusa system wi th a

number of problems. Firstly, it presents the problem of depicting the notion of the

currently selected object, which we seek to avoid entirely. Secondly it presents the

problem of supporting the notion of "opening" a file which relics on a metaphor

within the model world mapping to a very wide range of different system semantics.

Due to the range of speeds with which users can, and prefer to, double-click the

mouse button, interface features are often provided allowing the user to place an

216

upper limit on the delay between clicks below which the sequence of actions is to be

interpreted as a double-click event. While representations allowing users to adjust

this value can be devised, the delay between click events is a value which must be

stored in a data structure that is introduced by the development of a user interface.

The designer is not required to provide a user interface to an existing data structure,

or to support the user's existing work practice, instead the must introduce new

concepts that are not derived from either of these domains.

Direct manipulation user interfaces, as has been noted above, are characterised by

easily reversible actions. The lessons drawn by PoIson and Lewis (1990) from their

CE+ model of interface learning include the need for systems to provide obvious

ways for the effect of actions to be undone, if the system is to be easy to learn. Many

other authors have made similar requirements of interactive systems. The first

version of the Medusa system does not consider how undo facilities should be

provided. The provision of an undo facility within the Medusa system causes greater

problems than coping with the double-click as discussed above.

Undo facilities cause particular problems for a metaphor-based system. Whereas a

typical user interface metaphor presents icons in the model world that denote or

depict aspects of the underlying data structures, or the functions that apply to these

data structures, an undo facility is not usually a feature provided by the underlying

operating system. The problem of providing an undo facility in a metaphor-based

system is one of providing the facility in the first place in addition to providing a

depiction and a behaviour of the depiction in the model world. The product-oriented

view of metaphor is not one that can be adopted therefore. Providing an undo facility

is complex because no clear data structure to which a metaphor is required exists,

instead an undo facility must interact with a structure that represents and captures

aspects of the user's dynamic pattern of interaction with the system. This structure is

required to store the system state, methods for undoing those user operations that are

217

undoable, as well as the user's task and command history. This structure therefore

does not fit in either with the process-oriented view of metaphor. The undo facility,

while it may be guided by the user's current work practice, cannot be entirely

specified and depicted from an analysis of the way in which the user's tasks are

currently performed and from the language with which users describe their artefacts

of work. We consider an undo facility for the Medusa system, and ho\v undo

facilities in metaphor-based system may be developed in general, in the final

chapter.

8.5 Conclusions

In this chapter a critique of the first Medusa system design was undertaken using the

cognitive walkthrough method. Of concern to evaluators when employing any

usability evaluation method are the number of usability errors revealed by

application of the method, and the assumptions about systems, users, and interaction

upon which the evaluation method is based. These assumptions determine the types

of usability errors that can be revealed. The numbers and types of usability errors

that can be revealed by the cognitive walkthrough method have been previously

examined (Bell et al., 1991; leffries et al., 1991). This work demonstrates that the

walkthroughs conducted examining the usability of the Medusa system reported on

above are likely to only reveal a small majority of the system's usability errors and

that some major usability problems may be missed. One means of increasing the

number of usability errors detected, by making a number of those conducting the

walkthroughs experts in the task domain supported by the software application is

clearly not possible for the sort of system considered here where no particular real

world task domain is supported.

The cognitive walkthroughs conducted reveal no other usability problems, but we

can predict aspects of the system that might give rise to difficulties in a full

218

implementation. The design principle of making relevant data structures visible will

sometimes be in conflict with the concept of tangibility. Some on-screen objects will

be sources of information only, they will not be equal opportunity (Runciman and

Thimbleby, 1986) in allowing their state to be changed both by the system and the

user. An example is the keyboard buffer which shows the text that has been typed by

the user but which has not yet been processed by the target application. The effect of

further typing (even of presses of the delete key) will serve only to add to the

contents of the buffer, the semantics of keys such as the delete key must be provided

by the application. It therefore makes no sense for cut, copy, and-paste tasks to apply

to this display, even though it resembles user interface components that might

support such tasks. The consistency of interaction sought will still hold though,

being an on-screen object the buffer can still be sent messages, the set of messages

will be smaller, however, than the user might expect.

8.5.1 Is The Computer Metaphor Better Than Others?

One question that needs to be answered is whether the computer-computer metaphor

is an improvement over existing user interface metaphors. The methods employed

here show that some tasks are no more difficult to perform in Medusa than in other

systems, but that other tasks have more complex action sequences in order to be

consistent with the design approach adopted. The consistent approach adopted

however means that once a correct interaction sequence has been learned, it can be

employed when interacting with all categories of on-screen objects. In the first

Medusa system, our concern is that the semantics of operations can be easily learned

by the user. The theoretical framework used to examine the system semantics is

silent on how operations are invoked or performed, hence the system usability - in

terms of putting intention into action - may be found lacking, although we found no

serious difficulties from the testing conducted. In the other versions of the Medusa

system described in Chapter 9, the nature of the actions needed to perform in order

219

to change the state of the system has received considerably more attention. Whether

this attention results in improved usability is not yet determined.

220

Chapter 9

Revised Versions of the Medusa System

"As long as the software is nerdified. and major conceptual limitations are built

right into the software at that level. then it cannot get far. This is a philosophical

question: when people program - i.e. decide on which set of possible options they

should make available - they express a philosophy about what operations are

important in the world. If the philosophy they express is on anything like the level of

breathtaking stupidity that the games they play and the internet conversations they

have are. then we are completely sunk."

- Brian Eno (1996) A Year with Swollen Appendices, Faber and Faber.

In previous chapters, serious criticisms of the world view underlying the theories of

metaphor assumed to be employed in user interface design and human-computer

interaction were presented. This world view can only be assumed, however, as few

design case studies or articles on metaphor in the human-computer interaction

literature of which we are aware explicitly state the theory of metaphorical

comprehension, extension, or mapping, employed in the design of a particular model

world. Previous chapters also served to introduce a recent theory of metaphor (the

Lakoff/Johnson "contemporary" theory) and to explicitly apply it to user interface

designs. The case studies examined features of existing user interface designs that

any theory must be able to explain given that these systems are used successfully by

users, or which give rise to documented difficulties attributed to users' failures to

recognise, comprehend. and make use of the metaphor. The Lakoff/Johnson theory

was found to satisfy these requirements of a theory of metaphor when applied to

graphical user interfaces.

9.1 The Medusa System - Version T,,·o

The first version of the Medusa system, described above, is one which uses the

methods of analysis employed in Chapters 4 and 5 as the basis for describing objects

in the model \vorld and designing tasks that change the state of these objects. The

world view on which these means of analysis are based, however, is one that is

rejected in Chapter 4. In addition to employing the Lakoff/lohnson theory of

metaphor as a tool for analysing existing user interface designs, if it is to be judged

worthy of further consideration, it should be employed as a means of generating user

interface metaphors that can be more readily comprehended by the user. The design

of a second, revised, version of the Medusa system is thus presented in this section.

9.1.1 Direct Manipulation

It is clear that in order for users to be able to manipulate on-screen objects, and

perform operations on them, users must be able to recognise the on-screen arrays of

pixels as distinct objects. The objects having attributes and functionality provided by

the underlying software. Users must also be able to classify them so they suggest

what actions may be performed on and using them. The action sequences that can be

performed will come either from metaphorical extension from other graphical user

interfaces, prior experience, or from some form of instruction or help in using the

system. It is this aspect of the design of metaphorical model worlds that led to

consideration of a contemporary theory of user interface metaphors after traditional

views of categorisation were found subject to the same assumptions and problems of

an Objectivist \vorld view. The modem view of categorisation is not adopted in the

222

Medusa version one moocl world, although subsequent versions of the Medusa

system take this into account.

As well as having to categorise on-screen objects to make use of them, it is

necessary to be able to categorise events and actions in a mooel world. The most

important category in learning and using an interactive system is that of causality.

This is the perception of a user-initiated action causing feedback or a change in

attributes of the object that the user directly interacts with, and in any objects and

attributes that the user additionally interacts with indirectly during the course of their

action. Lakoff (1987: 54-55) observes that:

-Prototypical causation appears to be direct manipulation, which is

characterized most typically by the following cluster of interaction

properties:

1. There is an agent that does something.

2. There is a patient that undergoes a change to a new state.

3. Properties 1 and 2 constitute a single event; they overlap in time

and space; the agent comes in contact with the patient.

4. Part of what the agent does (either the motion or the exercise of

will) precedes the change in the patient.

5. The agent is the energy source; the patient is the energy goal; there

is a transfer of energy from agent to patient.

6. There is a single definite agent and a single definite patient.

7. The agent is human.

8. a. The agent wills his action.

b. The agent is in control of his action.

c. The agent bears primary responsibility for both his action and

the change.

223

9. The agent uses his hands, body, or some instrument.

10. The agent is looking at the patient, the change in the patient is

perceptible, and the agent perceives the change."

In previous chapters aspects of behaviour of existing user interface designs that

cannot be categorised as direct manipulation, and that could not be accounted for by

a metaphorical mapping to the physical world were discussed. A criteria of the

Medusa interface design is that such user interface behaviours should be avoided,

and that it should be possible to categorise user actions as direct manipulation

according to Lakofrs definition. The first version of the Medusa system above

simplifies interaction mostly to selection tasks. While this design choice attempts to

ensure consistency and to prevent breakdowns in the system image, methods of

interaction and action sequences familiar to users from other flat model \\'orlds

cannot be applied fully, but designs of Medusa interfaces cannot ignore transfer

between systems.

9.1.2 The Workbench

The use of the root window in the second version of the Medusa system does not

differ from its use in the first version, so little \vill be added in this section to that

given in Section 7.2.1. The root window in this version of Medusa remains a

workbench, an area for planning that allows the user to place objects and groups of

objects in positions of their choice before using the objects in their tasks, or placing

them in the intended final destination. Kirsh (1996) describes some ways in which

the environment may be used in planning and perfonning tasks. An important use of

space is to permit better choices of actions to be made, and to serve as a source of

reminders, while tasks are being perfonned. By constraining the perceived action

set, the actions seen as being possible at a particular moment in time, affordances

may be simultaneously constrained and highlighted. The ways in which on-screen

224

objects can be positioned so as to aid planning and task perfOlmance are sometimes

restricted by the user interface style. The use of windows and the restriction, by

some systems, of icons to a fixed grid of locations physically limits the placement of

icons on the 2D desktop. Kirsh (1996: 419) also suggests that simple linear

arrangements of objects to be employed in a task sequence are too restrictive. He

claims that even production line assembly plants do not employ strictly linear

arrangements of objects to be manipulated, and that agents must usually rely on

"known systems of arrangements, or on some design that makes sense relative to the

subject matter. 11 Kirsch suggests that the DESKTOP metaphor encourages the

placement of peripheral equipment such as printers and the wastebasket around the

edges of the screen to reflect the traditional placement of office equipment around

office walls. Such placement might not be best suited to the needs of the user in

performing tasks involving on-screen objects. The location of objects also impacts

upon the tasks of seeking wanted icons and determining their location. Kirsh (1996:

422) says:

"Perhaps the most obvious way of simplifying perception is to

arrange objects in space so they form equivalence classes, or

partitions, that reflect preconditions, or properties that are useful to

track, notice or exploit...The primary value of such external

partitioning is that it makes it easier:

• to keep track of where things are;

• to notice their relevant affordances."

9.1.3 Objects in the Model World

On-screen objects in the model world of the first Medusa system are instances of

categories of objects defined in a hierarchy following the notions of classical

categories, that is, membership of a category (or class, in the implementation) is

225

determined by the objcct posscssing necessary and sufficient attributes. The Medusa

object category structure shown in Figure 7.1 is artificial and imposed by the system

design, although a similar approach to describing the world may be found in the

ontology of Douglas Lcnat's eye system, as described by Sowa (1995). Barsalou

(1995: 168) states that:

" ... clearly, the purpose of categorization is not to know an entity's

category. Instead, the purpose of categorization is to identify

information in memory that provides useful inferences. Upon

accessing a category for an entity, a tremendous amount of

knowledge becomes available that is useful in a variety of ways. This

knowledge may specify the origins of the entity, its physical structure,

its possible behaviour, its implications for the pcrccivcr's goals, or

actions for interacting with it successfully. Accessing a category is

not an end in itself but instead the gateway to knowledge for

understanding an entity, and interacting with it properly."

The first version of Medusa imposes a classical category structure on objects in its

model world, as do most, if not all, object-based interfaces. The classical theory of

categories has been questioned, however, for at least five decades, and the first

Medusa system ignores the fact that category structures can be created to meet the

needs of performing immediate tasks and to achieve short-term goals (Barsalou,

1995), Many of these novel categories are based around prototypes (clear cases and

best examples of category membership), in accordance with the modern theory of

categorisation (Rosch, 1973, 1978) employed and described by Lakoff (1987). It

remains a matter of further study as to what role category structures play in

understanding and interacting with graphical model worlds. The example of GIF

format files "'as aiscussed above as problematic in that most are still images, but

some, as web-page programmers know and take advantage of, make up small

226

animations. It would be interesting to know if a radial category structure, of the sort

employed by Lakoff (1987), based around prototypical still and animated files forms

any part of users'. or perhaps only web programmers'. understanding of file systems.

The second version of Medusa seeks to acknowledge the modem theory of

categorisation. Previous attempts to accommodate prototypes in this theory with

object-based and object-oriented user interface design have been unsatisfactory,

however. as object-oriented design adopts the classical theory in the categories that

make up class hierarchies. A better approach to the implementation of the second

Medusa system is to make use of programming languages with a PROTOTYPE

INSTANCE object structure rather than the traditional CLASS-INSTANCE

approach. In this way the user can more easily impose a category structure on objects

in the model world than they can in the first version of the Medusa system.

9.1.4 File Management - Piles or Objects

The file management facilities provided by the first version of the Medusa system

were developed to resolve failings in implementations of the desktop metaphor. In

particular they address the DESKTOP metaphor's use of files and folder analogies as

a means of accounting for the structure of the file space and the tasks that alter the

state of the file space. The folder is only one form of possible file organisation,

however. Despite argument to the contrary (Fertig. Freeman, and Gelertner, 1996),

the conclusion reached by Nardi and Barreau (Barreau and Nardi, 1995; Nardi and

Barreau, 1997) is that users prefer location-based search of files, and that locations

of files serve as reminders of tasks to be performed. They also state that most users

archive relatively little information and avoid elaborate filing schemes. Their

proposed requirements for filing systems and filing tasks are thus not satisfied, and

indeed are made more difficult. by the traditional notion of the desktop metaphor.

227

Malone's (1983) study of how documents and information resources are arranged in

the physical office differentiates between files and piles. In Malonc's terminology

files are defined as units where the elements (such as individual folders) are

explicitly titled and arranged in a systematic ordcr (such as alphabetical or'

chronological). Groups7 such as drawers in filing cabinel~7 nlay also be explicitly

titled and systematically arranged7 but they need not be. In piles, though, the

individual elements (papers7 folders, and so on) arc not necessarily titled, and thcy

are not generally ordered in a particular way. Table 9.1 summarises differences

bet\veen files and piles.

Elements

titled

Elements

ordered

Groups

titled

Groups

ordcred

Files

Piles

Yes

?

Yes

No

?

No

Table 9.1 Units of desk organization (Malonc, 1983: 106)

?

?

File management in the second version of the Medusa system is intended to satisfy

the following criteria7 or to take account of the following observations:

1. Categories are often devised to suit the needs of tasks and such categories are

often based around prototypes.

2. Objects can be placed and grouped in locations so aC) to distinguish them from

other objects, to highlight their affordances, and to aid in the pcrformance of

users'tasks.

3. The folder metaphor restricts the placement of objects and is prone to

breakdowns.

228

4. The Lakoffllohnson theory of metaphor comprehension claims that meaning is

structured and grounded in image schema that capture our repeated and common

experiences of interacting with the external world.

The second version of the Medusa system therefore adopts a means of organising

files based on piles. and tasks to interact with piles are grounded in image schema to

obtain their meaning. A file organisation system based on a pile metaphor has

already been devised (Mander. Salomon. and Wong. 1992). In this implementation

of a pile metaphor. the folder metaphor is not adopted. instead files are arranged in

pile structures. these piles can be casually organised on the root window. Electronic

piles can be either system-created or user-created. System-created piles are stacked

neatly, implying a set of rules behind how the pile was created. User-created piles

have a dishevelled appearance, items are added to the pile by being "dropped" onto

it Piles may be labelled (to indicate categories. possibly relevant to the user's current

tasks). When a file is dropped onto a pile a dialogue box is presented asking whether

the file should be simply added to the pile. or whether the user wishes to modify the

script that was employed when constructing the pile. Over time the criteria by which

it is appropriate for a file to be placed on the pile may change. hence the need to

change the script may change. At its simplest. a file may be placed on the pile

because the file contains particular keywords. Other. more complex. placement

strategies require that the user is able to write scripting language programs that

determine how piles are constructed.

The pile metaphor devised by Mander and his colleagues adopts the product-oriented

approach to metaphor-based design. The piles do not depict existing data structures

within the operating system's functionality (as in the case of the treatment of files.

links and directories in the first version of the Medusa system). instead the piles

depict data structures added to the desktop's functionality. These data structures are

not necessarily based on the user's work language and task processes, they are only

229

based on the broad results of the need to support casual structuring of files noted by

Malone (1983). The resulting design process adopted by Mander and his colleagues

was to construct runnable prototypes of paper-based designs using Macromedia

Director which were then examined by users.

The testing undertaken of the prototype piles addressed the piling models, the

methods for initiating browsing, viewing cone representations and how items are

found \\'ithin a pile. An issue that will be addressed further below is the piling

model, \\'hether piles are "document-centred" or "pile-centred". In the document

centred approach, the pile is represented as a collection of individual items, each

document is depicted by a rectangle, a pile being created whenever a single

document on the desktop has another placed on top of it. Items on the pile may be

removed by clicking on any visible region of the item of interest and drJgging it

away from the pile. The pile as a whole, however, cannot be moved to a ne\v

location on the desktop. In the pile-centred approach, a pile acts like a Macintosh

folder. If a dragged file passes over a file on the desktop, the occluded file is

highlighted (like a folder) to indicate that it is a potential target and that a pile would

be formed if the user \\'ere then to drop the held file onto the file belo\v. Clicking on

any part of the pile and dragging the pointer moves the entire pile around the

desktop.

In user testing, Mander and his colleagues (1992) found that while individual users

displayed a preference for one or other of the pile creation methods, neither \vas

judged to be superior. A number of problems were, however, revealed. In the pile

centred approach, users appreciated being able to add objects to the pile easily, and

being able to move the pile as a whole, but noted the problem of selecting an

individual item from within the pile. The opposite is true of the document-centred

approach where users \\'ere unclear as to how to move the pile as a whole, but users

appreciated being able to easily select an individual item from within the pile. In

230

both cases users had the difficulty of knowing whether a file dropped onto a folder

sitting on the desktop would be placed inside the folder, or whether a pile would be

created. Experience of the Macintosh interface was found to lead most users to

believe that the file would be placed inside the folder. As Mander, Salomon, and

Wong (1992) note, the design of piles and user's expectations cause questions to be

raised about how well the pile metaphor fits into the desktop metaphor.

Another important issue, which will be addressed further below, is the issue of

interaction with piles. This concerns how Mander and his colleagues solve the

difficulties of emulating interaction with complex fragile 3D structures in the real

physical world, in an environment where interaction is limited to gestures that can be

generated using a mouse or touch screen. Testing compared two approaches,

between double clicking and a horizontal gesture (shown in Figure 9.1) to spread out

the pile's contents, and between double-clicking and a vertical gesture (shown in

Figure 9.2) to browse the pile's contents within the viewing cone.

(a) Mouse gesture

1-~.I
t

(b) Spread-out contents of pile

Figure 9.1 Spreading out a pile's contents by a horizontal gesture

(Mander. Salomon. and Wong. 1992: 630).

231

• •• -- .

(a) Gesture to generate (b) Viewing cone showing (c) Document selected and

viewing cone a page of the document

under the pointer

removed from the pile

Figure 9.2 Gestures to browse the contents of piles

The results of the testing undertaken found that 9 out of 10 users preferred double

clicking on piles over the use of gestures, subjects finding the gestures non-intuitive

and ambiguous. In general, users stated that they would employ the "spreading out"

approach to viewing the contents of piles, this approach better supporting

comparison and recognition tasks.

Failings of the Pile Metaphor

To understand the failings and successes of the pile metaphor requires completion of

a larger exercise, an exercise one can describe as an effort to understand the fabric of

meta-realityl. Meta-reality, a term coined by Smith (1986) and depicted in Figure

9.3, is the space in ARK in which the hand resides and in which objects removed

from ARK alternate realities reside until replaced into a possibly different alternate

reality. A similar space can be found in each of the interfaces described in Chapter 2.

It is the space that the pointer (or hand) resides and moves within. The pointer is an

1 So termed by analogy with David Deutsch's om) The Fabric of Reality. Penguin, London.

232

on-screen object that only needs to exhibit spatiomimesis, and that can be subject to

breakdowns in spatiomimesis due to temporal uncertainties in the underlying

hardware and software. The reality (or desktop, or room network, and so on) beneath

the meta-reality must display a larger repertoire of behaviour, and is subject to a

wider range of breakdowns. The pile metaphor is another metaphor subject to

breakdowns, for example. objects dropped onto electronic piles do not bounce off

and fall to the table. and electronic piles are stable no matter how high they are built

and do not topple over. The pile metaphor. perhaps more than other 2.5D model

worlds. reveals that an account of understanding of such user interfaces must account

for a reality/meta-reality split. We observe that the design space of the mouse used to

position the pointer is a 2D plane. but the reality beneath is 2.5 or 3D, for example.

no matter how -high- electronic piles grow, the pointer never collides with them.

User

within

!he COInC)uIef

r-:-:ta Reality

i buntln.

ra~~t
~
~ --obiects

1
+

i +
Alte rnate Ftealities

Figure 9.3 Reality. alternate reality. and meta-reality (Smith, 1986).

Both folders (called files by Malone) and piles pose additional problems that are not

part of the metaphors that are used to understand them, but which must be solved to

allow tasks to be performed on them._ The principle concern in this thesis is to

233

provide facilities that allow objects in the on-screen model \\'orld to be arranged to

aid users in the performance of their immediate tasks. The user should be able to

arrange information resources (files in traditional computing terms) to aid rcminding

and to constrain and suggest actions. Malonc's study rcveals that piles, in

themselves, do not aid with identifying the priority of tasks. Malone suggests that the

colour of items on the electronic desktop could denote their priority, a system feature

that can be found in recent versions of the Macintosh Finder running \vith colour

display hardware. Malone suggests an alternative means of denoting priority is the

size of icons, this suggestion is hard to integrate into a system such as Medusa where

the physics of the model \vorld is intended to be plausible and suggest grounding in

image schemata familiar from interaction with the real \\'orld. A mapping of

LARGER ++ HIGHER PRIORITY has less meaning than mappings such as

HIGHER PITCH ++ MORE (the familiar UP is MORE schema) mentioned above.

The other alternatives that Malone suggests to indicate priority are the location of

items, a criteria that the second version of Medusa is designed to support, and

frequency-based reminding, a task best delegated to an assistant.

9.1.5 Performing Tasks in Medusa Version Two

The first version of Medusa, described above, adopts the convention of the folder

metaphor for file organisation, which has the advantage of allowing hierarchical

categorisation and organisation, but the failings of the folder convention and

difficulties in understanding the concept of files were addressed and hopefully

resolved. The folder convention was found lacking in the need to support ad hoc

categorisation of on-screen objects to perform tasks, and in the association of

category with physical location that the second version of Medusa was designed to

support. An obvious user interface design that supports these facilities (one assumed

in the second version of Medusa) is the pile. This is the second approach to file

organisation in information-rich work identified by Malone (1983) and which has

234

already been prototypcd and subjected to some user testing (Mander, Salomon, and

Wong, 1992).

Unfortunately, as is revealed by the analysis of interaction with piles presented in

Appendix e, the image schemata that ground users' understanding of folders (in the

terms of the Lakoffllohnson theory) are the same that ground understanding of

interaction with piles. A consequence, of recognising that understanding and

interaction with both piles and folders are grounded in the same schemata via

metaphors with similar mappings (FOLDER is CONTAINER, and PILE is

CONTAINER) are that interaction with piles in Medusa version two is similar to

interaction with folders in Medusa version one. This is especially the case as actions

can only be expressed via the narrow channel of the mouse in our current designs.

Piles in Medusa Version Two

The design of the second version of Medusa adopts the pile metaphor as its file

organisation mechanism in the pile-centred form. The folder metaphor is not adopted

in this system design. The folder metaphor is part of the wider OFACE metaphor

and has the difficulties described above in supporting multimedia file types.

Adopting the pile metaphor also resolves the problem of ambiguity as to whether a

pile, or a folder on top of a pile, is the target for a file being moved, without the need

for more complex mouse gestures or multimodal input. In a pile-oriented version of

Medusa, a pile could be created explicitly by informing a file that is not currently a

member of another pile or too close to other files on the workbench that it is the first

element of a new pile. A toolbar option that would implement this is shown in Figure

9.4.

235

Figure 9.4 Starting a new pile

In a class-instance view of how categories of objects are realised, making a file the

first element of a pile \\'ould suggest that the file would now multiply inherit

properties and tool bar actions from a second pile category. In a prototype-centred

view, new attributes and methods are simply dynamically added to the file's

interface. Once a pile has been started, other files can be added to it. Drag and drop

operations such as moving files into folders, or placing a file onto the top of a pile in

Mander, Salomon, and Wong's (1992) prototype, risk semantic errors being made.

The toolbar interaction style of Medusa is meant to prevent this possibility. A toolbar

option that allows files to be added to an existing pile can be seen in Figure 9.5.

236

Figure 9.S Adding a file to an existing pile

In a Mander, Salomon, and Wong's pile-centred system, the viewing cone is used to

scan through the contents of a pile, in a pile-oriented version of Medusa a Spread

out contents option would be placed on the toolbar but would only appear when

the pointer is over a file that is a member of a pile. The pile is assumed to be the

object towards which messages from the toolbar are directed, files must be removed

from the pile if they are to be the focus of action, in keeping with everyday

experience of piles of objects, and the containment schema underlying understanding

of the pile. Spreading out the contents of a pile in a pile-oriented version of Medusa

is storyboarded in Figure 9.6.

237

3

Figure 9.6 Spreading out a pile in a revised version of Medusa

How Many Piles c an a File be in?

A pile is a depiction of all the files that meet the conditions of category membership

that the pile denotes. Using the Lakoff/lohnson theory, it is claimed that

understanding of the pile is based upon a PILE is CONTAINER metaphor, currently

there is no formulation of machine support for pile creation in Medusa version two.

In subsequent work, however, to provide such machine support, the risk of falling

into the same trap as Lifestreams and the Semantic File System, described below,

must be noted and avoided. Adopting the Aristotelean CATEGORY is

238

CONTAINER metaphor underlying the classical theory of category membership,

according to Lakoff (1987) and Johnson (1987), must be avoided. Even without

machine support to construct piles. the problem of determining which pile a file

should be in remains. It is possible to argue that a file can be placed in many piles at

the same time. In the folder metaphor this is achieved either by means of aliases or a

filename-inode link. both of which were examined above. In the second version of

Medusa there is only one copy of an object unless the file is explicitly duplicated by

the user, reflecting experience of files in the physical world. our concern being to

support direct manipulation as described by Lakoff (1987). If a file' is duplicated, the

problem of version control must be addressed. simple replication of a file's contents

raises the problem of not only having to remember a file's location, but also the

location of the version wanted, as can be seen in the protocols quoted in Appendix

C.

Piles Across Volumes

The computer-computer metaphor makes explicit the presence of additional storage

volumes connected to the workstation. The root window displays the piles supported

by the internal hard disk, there is also, however, the problem of depicting the files

stored on other volumes. In the folder metaphor and in the container concept of

Medusa version one, the external volume is just another container and the interaction

design of allowing dragging within directories and moving across directory and

volume boundaries is adopted. There are no directories within a volume in the

second version of Medusa hence allowing direct manipulation to occur. The design

of existing operating systems makes the design of Medusa-style interfaces to this

problem difficult.

For example, in UNIX file systems (each physical disk may store up to seven file

systems) can be mounted into, and un-mounted from, an overall file space. Hiding

239

the implementation of filespaces is achieved in UNIX by forbidding links that cross

file systems, the data and the links to it (what appears in a directory listing) must

exist in the same file system. If a file system is un-mounted then its contents are

invisible to both the user and system until remounted. In the Macintosh system, by

contrast, aliases may cross volume boundaries and, as in UNIX, an un-mounted

volume only becomes apparent by its absence, the volume's icon does not appear on

screen, and double-clicking on an alias's icon will cause an error message to be

displayed. While neither the UNIX link nor the Macintosh alias owe their design to

the LINK schema (Johnson, 1987: 117-119), the UNIX link is more in keeping \vith

it, in that links between objects (filename/inode and datablocks in the case of UNIX)

are typically "spatially contiguous within our perceptual field." Links between more

than t\VO objects and spatially and temporally discontinuous entities (action at a

distance) are less typical. We have repeatedly stated that the difficulty with links

arises at points of breakdo\vn, either in breaking of the link itself, or in direct

manipulation in the model world. In the second version of Medusa, physical \\'orld

notions are adopted to improve understanding of the model world. For this reason

links are not employed in the second version of Medusa, instead each icon depicts an

instance of a file, if a file needs to be present in a number of piles then it must be

duplicated. The problem that must then be confronted is that of version control,

knowing and determining the state of an object in the model world.

A related problem, one also related to the problem of version control, is managing

file organisation on volumes that are only occasionally connected to the workstation,

such volumes including floppy disks, ZIP drives and equivalent removable disk

technologies, and personal digital assistants with some storage capacity. The need to

take such technologies into account means that it is not possible for Medusa to adopt

a solution to managing the piles on the root window similar to that in the Kansas

environment (Maloney and Smith, 1995). In Kansas, the root window is very large,

and only a small user-selectable region of it can be seen at anyone time. The

240

advantages of Kansas's being a synchronous shared workbench designed as a

collaborative environment (although subject to the drawbacks inherited from the

Alternate Reality Kit) are also lost in Medusa.

The same interaction style as in Medusa version one is employed in the second

version of Medusa to implement copying files across volumes, copying being the

default operation across the data path shown in the computer-computer metaphor.

The toolbar contains Moue and Copy operations and the user must specify one of

the external volumes in the computer-computer metaphor on-screen schematic as the

destination for the file or pile to be transferred. Dourish and Button (1998: 421),

considering file copying in a system based on the folder metaphor, note:

•... the abstraction that has been offered by the system - the folder

- hides the details on which ... understandings could be based. The

differences between local and remote folders, the difference in the

operation of local and remote copy operations, and the consequences

of these differences are hidden from view.

Furthermore, it is not sufficient simply to offer two different kinds of

folders providing a distinction between local and remote ... Actions

and accounts are situated within the specific circumstances of their

production, not within abstract characterisations of them. In other

words, what is important here is not the differences between two

abstract types of copying (local copying and remote copying), but the

specifics of this or that copying operation. There are far too many

different features of the occasion (including distance, available

network bandwidth, other people's activities, the types of files

involved, and even the type of network infrastructure) for designers

241

or users to be able to distinguish among then1 in the abstract model

that the system offers."

The second versIon of the Medusa system does not have local copying, only

movement across the workbench. The problem of depicting remote copying remains,

however. Dourish and Button, rather than "trying to provide different abstractions

for all the different circumstances in which copying may take place", propose

providing an aCCOU1lt of copying, "a metaphorical frame drawn from the

ethnomethodological perspective on the organisation of action." Dolirish and

Button's account of file copying is a schematic, shown in Figure 9.7, depicting data

buckets and connections between them which is claimed to have some explanatory

power in cases of breakdown.

Name Name

Figure 9.7 An account of file copying (Dourish and Button, 1998: 423)

Accounts are related to Dourish's (1995) notion of reflection in computing systems2•

A reflective computing system is one in which a program has access to its own

representation and execution environment, and is able to understand how a particular

state came about and can alter its own subsequent execution. While notions similar

to that of reflection fonn the Medusa system design, including object-based help and

visibility and tangibility, Medusa is limited in the degree to which the end-user (and

the system itself) can modify and re-program it. What Dourish and Button do not

2 The idea of reflective computing systems is due to Brian Cantwell Smith, full details may be fOlUld

in (Smith. 1996).

242

provide, it should be noted, is an appreciation or analysis of the metaphors

underlying their account of file copying, and the functionality hidden, as well as that

revealed, by their metaphors. It was stated in Chapter 6 that the computer-computer

metaphor-inspired depiction of the copying process differs from Dourish and

Button's account of copying. The relationship between the ideas underlying Medusa

and reflective systems remains a topic requiring further consideration.

Versions

The ability to duplicate files, and to copy files onto disk volumes or PDAs that may

belong to other users, raises the problem of version control and the depiction of

different versions within both Medusa system designs. The problem is more acute,

however, in the second Medusa system. There are a number of ways of managing

versions of a particular file that the user may modify. One approach is to allow

complete independence of objects, any modification produces a new version within

the same pile or region of workbench as other previous versions. While possibly

useful for some users, this approach pennits the phenomenon quoted in Appendix C

where the user may lose track of the location of the draft sought. Many operating

systems limit the number of versions in the same container to the current draft and

the most recent version prior to modification. The computer-computer metaphor

schematic allows a change of version strategy to be included as part of the system

behaviour that the user may control. Where duplicates of a file exist in a number of

piles another version strategy that the user may adopt is for each copy to be a

manifestation of the same most recent draft3• Two existing designs implement this

functionality without the drawbacks of links and aliases. The first is the publish-and-

3 An analogy may be found in particle physics. one answer offered to the question of why all

observed and studied electrons have the same properties is that there is only one electron, but it moves

around quickly.

243

subscribe model from the Macintosh operating system (described in Olsen, 1998,

Chapter 13). In this model the user selects some information and informs the

application that they \vish to publish it. An edition file containing the published

information is then created and the user must then create a subscription in the

destination file. Any changes to the edition file cause corresponding changes in the

sUbscription. Such a mechanism is compatible with the user determining how many

past versions of a file are placed in a pile.

The publish and subscribe model is compatible with file movement across volume

boundaries, and has advantages over the other mechanism for file synchronisation

Olsen (1998) also describes, the moniker, found in Microsoft's OLE architecture.

The first part of a moniker is an absolute pathname in which the linked information

is stored, the second part are identifiers that reference the linked data within the

duplicated file. In thc moniker approach, the link may break and identifiers may also

be deleted from the file during editing, making duplication and synchronisation even

more difficult across distributed disk volumes. If a file is to appear in a number of

piles, possibly on different disk volumes, a publish-and-subscribe mechanism will be

required. Following Dix, Rodden, and Sommervillc (1996), howcver, it is known

that in a collaborative version of Medusa, with multiple disk volumes and

occasionally attached PDArs, the notion of "the current version" of a file is almost

meaningless, and that the Medusa system will need to reflect this. I t is believed that

little needs to be added to the Medusa system design to make this apparent, however.

Versjons and Synchronisation in a Revised Medusa Design

File version and synchronisation mechanisms based on the idea of links, as described

above, are prone to difficulties and the metaphor breaks down quickly. On PalmPilot

devices, synchronisation of data when the palmtop device and the personal computer

on which a duplicate of the data on the palmtop ,vas once created (copies on either or

244

both machines may have since been modified) is performed by a conduit. In the

Palm operating system. this term means a form of dynamic library that dynamically

and temporarily extends the facilities offered by the personal computer's operating

system in order to allow the synchronisation to occur. It is possible to investigate

whether the use of the term ·conduit· is more than just a case of designers needing to

select or coin a term to name a particular type of computer program. Reddy (1993)

proposes that our ideas of communication. and the language used to talk about

language itself, are grounded in the CONDUIT metaphor. The components of this

metaphor being:

.(1) language functions like a conduit, transferring thoughts bodily

from one person to another;

(2) in writing and speaking, people insert their thoughts or feelings in

the words;

(3) words accomplish the transfer by containing the thoughts or

feelings and conveying them to others; and

(4) in listening or reading, people extract the thoughts and feelings

once again from the words.· (Reddy. 1993: 170)

10hnson's (1987: 59) list of the parts that make up the CONDUIT metaphor is more

useful for considering the design of a file synchronisation mechanism that assumes

his and Lakofrs theory of metaphor. 10hnson's list of parts is:

• 1. Ideas or thoughts are objects.

2. Words and sentences are containers for these objects.

3. Communication consists in finding the right word-container for

your idea-object. sending this filled container along a conduit or

through space to the hearer, who must then take the idea-object out

of the word-container.·

245

In the Lakoff/Johnson theory, metaphors are grounded in terms of image schemata.

The CONDUIT metaphor is, in Johnson's description, grounded in a number of

schemata. One of these is the COMPULSION schema (shown in Figure 9.8) in

which a force has a magnitude, moves along a path and has a direction. In Figure

9.8, the solid line denotes an actual force vector, the broken line denotes a potential

foce vector or trajectory. In the CONDUIT metaphor, the COMPULSION schema

captures the illocutionary force of an utterance.

~1"""""""""~~·············11'.

Figure 9.8 The COMPULSION schema (Johnson, 1987: 58)

The other schemata that ground the CONDUIT metaphor are BLOCKAGE,

REMOVAL OF RESTRAINT, DIVERSION. and COUNTERFORCE. The

suggestion made in Appendix C is that the schemata that ground an interface

metaphor possess entailments that must be addresses by attributes or actions

provided to the user \vho must understand the metaphor and perform actions in

keeping \vith the metaphor that change the state of on-screen objects. In a revised

version of Medusa, the toolbar for the root window might contain the option

Create a CondUit, as other object-based interfaces must allow the user to create

new instances of objects, or must allow instances of them to be fetched from a

convenient store. The issue of ho\v a conduit object can be rendered will be ignored

and will be left as a topic for further graphic design and usability testing effort.

When a conduit object is created and becomes part of the Medusa model \vorld.

According to the Medusa design principles, it should be possible to interact with the

conduit, it should possess an associated toolbar that will contain options that follow

from the entailments of the schemata that ground the CONDUIT metaphor. A first

list of suitable options can be seen in Figure 9.9. ~urther options might be added, but

246

they should, where possible, be entailments of the schemata that ground the

CONDUIT metaphor.

Rdd file to synchronise ..

Remoue file ..

Synchronise direction ..

Check: settings

Set transfer speed ..

Synch clash settings ..

Removal of BLOCKAGE

Create BLOCKA GE

COMPULSION

REMOV AL OF RESTRAINT

COMPULSION

COUNTERFORCE

Figure 9.9 Toolbar options for a conduit

9.1.6 Other File Organization Solutions

Piles and folders are two important approaches to information organisation within

interactive computing environments, important because they are prompted by

existing practice of those engaged in tasks drawing on other information resources.

Many have said, however, that the computer is not merely a tool, but also a system

that can support new ways of working that are not merely imitated (or used as source

domains) in user interface designs. Other user interface solutions to the problem of

file organisation have been suggested, these are briefly surveyed below in order to

determine whether other interface designs have advantages that suggest that any

subsequent versions of the Medusa system should adopt these designs.

247

The Spatial Data l\llanal:ement System

While the Spatial Data Management System (SDMS) was first developed by

Nicholas Negroponte, Richard Bolt, and their collaborators, in the 1970's, and

examples such as Bolt's "Put that there" are well-known historical artefacts, the

SDMS project can be claimed to be on-going as display and rendering technology

advances. As Medusa is currently tied to the desktop, we are most interested in the

early versions of SDMS, more recent versions being closer to notions of virtual

reality environments. The first SDMS employed a wall-sized display upon \\'hich on

screen objects denoting items of interest could be placed and moved to meaningful

locations. The SMDS system is claimed as being a major influence on the computer

desktop, but computer desktops are smaller than real desktops, requiring additional

metaphors such as Rooms or mechanisms such as Sun Microsystems' workspace

switch in their Common Desktop Environment. SDMS, in particular in "Put That

There", however suffer from some of the same problems that folders, piles, and

environments in which both can be found, give rise to. While speech recognition and

pointing de-referencing allow deitic reference to objects to be made ("put that

there"), ambiguities such as that found by Mander, SaIomon, and Wong (1992) still

require resolution. If a folder is on top of a pile and an additional file is to be added

to the pile, is the pile or folder the target? Section 6.4.5 addressed resolving this

ambiguity of reference.

Dynamic Queries and the Semantic File System

An issue that is essentially at the heart of file organisation and interaction with

information resources is category construction, "finding" information where file

placement facilities support "reminding". Dynamic queries, an approach developed

by Ben Shneiderman and his colleagues at the University of Maryland, of which

FilmFinder is a representative system, combines direct manipulation \vith database

248

visualisation to allow users to filter information through the use of features such as

buttons and sliders. Records in the database may be reduced to a manageable set by

adjusting the range of values between which field values may lie using interface

components that directly manipulate these ranges of values. While the user can

quickly find records they are interested in, the dynamic query approach does not

address how the records are described and indexed, categories (such as "thrillers"

and "action movies"), and members of the categories are defined by those who build

the database. For the user of a system in which they create many of the objects to be

indexed and retrieved, and define categories to suit their tasks, dynamic queries offer

little.

The semantic file system (Gifford, Jouvelot, Sheldon, and O'Toole, 1991) addresses

tasks performed prior to those supported by dynamic queries. It constructs sets of

potentially useful files, by giving additional semantics to files as well as providing

associative access to a file system via virtual directories. Using familiar UNIX

directory commands such as Is and cd, associative queries are interpreted to

produce file listings that are more meaningful than the basic hierarchical directories

that the semantic file system adds to. Transducers are devices added to the basic file

system that associate additional attributes with each file extension (the filename's

suffix such as ".C" which normally denotes the file's type). The mail transducer, for

example, would associate the field-attribute pairs "from:". "to:". "subject:" and

"text:" with each file with the suffix ".txt". It is recognised that a similar mechanism

to the transducer is needed in an implementation of the Medusa systems in order to

"register" new file types so that suitable icons can be constructed, among other

functions. These attributes can be used in queries that resemble conventional

commands to generate more meaningful lists of files. A query such as "Is -F

/sfs/owner: /smith" described by Gifford et al. (1991) lists all the files owned

by a user with the system name "smith" stored in the directory /sfs.

249

While adding much to basic file y terns, the u er interface to the emantic file

ystem adds little to the UNIX command-based u er interface, the failing of which

have long been documented (Norman, 1981). Again the pr blem f command-ba ed

y tern, forcing the u er to have a conver ation with an un een agent ab ut an

un een ta k domain, arise. While adding additional emantic t the file y tern, the

extra attributes are hidden, as are the commands u ed t di c v r them, in addition

the attributes depend on the person who con truct tran ducer . Thi per n i n t

the user in existing implementations of the emantic file y tern. The type f bject

that can exist within the file sy tern are al 0 still limited to the et f fil nam

suffixes. As Medusarequires a form of object type regi tration mechani m, it can be

hopefully seen that some of the more u eful idea intr duced by the emantic file

ystem can be adopted and improved upon.

Lifestreams

Lifestreams is prompted by a number of objection t the de kt p metaph r,

including an objection to the notion of the need to upp rt I cati n-ba ed earch

mecharusms. Fertig, Freeman, and Gelemter (1996) note that Barreau and Nardi'

(1995) studies of users of the Macintosh and a number of PC-ba ed op rating

systems show the following similarities between u er :

"1. A preference for location-based search for finding file (in

contrast to logical, text-based search);

2. The use of file placement as a critical reminding fun [ion;

3. The use of three types of information: ephemeral, working and

archived~

4. The 'lack of importance' of archiving files. tI

250

Fertig et al. claim that imilaritie 1, 2, and 4 are artefacts of the computing systems

studied rather than tatements of the way users actually acquire, organise, and

maintain information. Fertig, Freeman, and Gelemter's Lifestreams system propose

a new metaphor that replace traditional files and directories. Lifestreams, shown in

Figure 9.10, i claimed to be based upon the metaphor of a time-ordered stream of

document . E ery document created i tored in the lifestream, the tail of the stream

is the past, in the future the tream contains documents that the user will need , such

as reminder , "to do" li ts, and meeting chedules. In the present, the stream contains

items such a work in progre and recently anived e-mail. The claims made for

Lifestream include that the y tern supports reminding and archiving inherently in

the model , and al 0 that it aids in locating information. One way in which

Lifestreams does thi is by ephemeral and working information typically being

located in the pre ent part of the stream. The other is by allowing the easy creation

and destruction of ub tream by filtering the stream as a whole according to

appropriate cri teria.

. ~e..:'.'Iid __ BT

...
Figure 9.10 A Life tream (taken from a video presented at CHI'964).

4 http://www.acm.orgl ig / igchi/cbi961proceedings/videos/Fertigletf.htm

251

As can be seen in Figure 9.10, the Lifestream of documents forms a diagonal line

across the display. Documents in the present are shown in the bottom right-hand

corner of the screen, documents are stacked so that the rear-most document in the top

left-hand corner of the display is the oldest one rendered. After a period of time,

documents "fall off" the edge of the screen and are automatically archived. A

scrollbar allo\vs the time parameter to be altered affecting the documents that are

shown in the region of the display where "present" documents are displayed. In order

to move into the future, however, so that reminders may be introduced, the

Lifestreams system "clock" must be altered by a function reached from -a menu

option. Lifestreams is proposed as an alternative to the desktop metaphor, one that

has the "organisational metaphor" of a time-ordered stream of documents. It is

possible, however, to employ the Lakoffllohnson theory to critique Lifestreams. The

frequent use of the \vord "stream" to describe the Lifestreams interface is to employ

an appealing metaphor. In terms of Lakoff and Johnson's (1999, Chapter 10) analysis

of the metaphors that describe understanding of time, however, Lifestreams suffers

from problems, and it may not differ considerably from the systems it seeks to

replace.

While Lifestreams adopts a metaphor in which the passage of time maps onto the

position and motion of objects, Lifestreams does not adopt the MOVING TIME

metaphor, \vhich based on the following schema:

"There is a lone, stationary observer facing in a fixed direction. There

is an indefinitely long sequence of objects moving past the observer

from front to back. The moving objects are conceptualised as having

fronts in their direction of motion." (Lakoff and 10hnson, 1999: 141)

252

This schema combines with a TIME ORIENTATION metaphor, the mappings of

which are shown in Table 9.2, to produce a set of composite mappings shown in

Table 9.3.

The Location of the Observer

The Space in Front of the Observer

The Space Behind the Observer

--
-

The Present

The Future

The Past

Table 9.2 Mappings for the Time Orientation metaphor

(Lakoff and Johnson, 1999: 140).

The Location of the Observer - The Present

The Space in Front of the Observer - The Future

The Space Behind the Observer - The Past

Objects - Times

The Motion of Objects Past the Observer - The "Passage" of Time

Table 9.3 Mappings for the Composite Moving Time metaphor

(Lakoff and Johnson, 1999: 142).

It should not be concluded that the Lifestreams interface metaphor is not grounded in

a pattern of interaction that people can understand easily, only that the schema that

grounds the Lifestream concept is one unfamiliar to many people. To speakers of the

Aymara language used in Chile (described by Lakoff and lohnson, 1999: 141) the

metaphor ·THE PAST is IN FRONT" is grounded by the notion of being able to see

the results of what you have just done in front of you. Thus while Lifestreams may

have an acceptable level of usability, its design conflicts with the culture and

everyday experience of embodied interaction with the world of most of its intended

user population.

253

One can also question whether Lifestreams is as radical an alternative to electronic

support for the notions of piles and folders as it is claimed to be. The analysis of

piles and folders presented in Appendix C shows that both these forms of file

organisation can be understood in terms of the same image schemata and metaphors

with similar mappings. Similar claims can be made for ho\v Lifestreams is

understood. The MOVING TIME metaphor that underlies Lifestreams (albeit

combined with a mostly unfamiliar TIME ORIENTATION), , and the MOVING

OBSERVER metaphor (the other mutually exclusive metaphor used in descriptions

of temporal events in most languages) are both extensions of an EVENT-FaR-TIME

metonymy (Lakoff and 10hnson, 1999: 154). The example "The Kronos Quartet

concert is approaching" given by Lakoff and lohnson (1999: 154) obtains its

meaning by the event of the concert standing for the time of the concert, and the time

is conceptualised as approaching. In the EVENT-FOR-TIME metonymy:

"Times are then conceptualised as locations or bounded regions in

space or as objects or substances that move. Events are then located

with respect to those locations in space or objects that move." (Lakoff

and 10hnson, 1999: 155)

Thus within Lifestreams, newly edited or created documents and reminders are

located with respect to locations or bounded regions in the part of the display

denoting the stream. We could therefore undertake an analysis similar to that in

Appendix C of how present, ephemeral, and sub-streamed documents are referred to

and find that manipulation of items within the categories formed in these regions of

time is reasoned about in the same way as a pile or folder. It is noticeable that, like

the second version of Medusa, Lifestreams resolves the problem of ambiguity

introduced by trying to integrate folders with the overall organisation structure of the

user interface by not having a folder interface feature at all. Also noticeable are the

254

commands provided by Lifestrcams to manipulate documents and streams, new,

clone, transfer, find, and summary, most of which either have the same

semantics as the generic commands, or those of class instance creation in object

oriented programming languages.

While Lifestreams may not be as radical an alternative to piles and folders as its

creators believe, and relies for understanding on schemata that are unfamiliar to

many users, the Lifestreams system does address a number of important problems.

The most serious problems are the related issues of archiving and- scalability. The

pile metaphor does not address archiving, information is used only for comparatively

short periods of time and then disposed of, suiting the habits of knowledge workers.

Scalability is not a problem that needs to be addressed if the information to be

employed in tasks or the creation of new files is ephemeral, but where archiving is

employed the number of files in an information space may grow to be large. In

Lifestreams, files that are pushed off the edge of the display are automatically

archived. The user must scroll back into the past in order to enter the region of time

where the (now invisible) files may be found, although most of the depiction of each

file will be hidden by the more recent files. The user may also use the find facility,

but this function serves to create a substream. It is worth investigation to determine

whether time-based search (when did I create that file?) is as prone to the difficulties

of location-based search (where did I leave that file?), especially in terms of the

consequences mentioned above of conceptualisations arising from the EVENT-FOR

TIME metonymy.

Data Mountain

Data Mountain (Robertson et al., 1998) is a relatively simple means for storing and

retrieving web documents. The Data Mountain, shown in Figure 9.11, is a texture

mapped rectangular plane segment angled at 60° to the horizontal plane extending

255

away from the viewer and rendered in perspective. The Data Mountain is intended to

replace the "favourites" or "bookmarks" mechanism of world-wide web browsers as

a means of noting and returning later to web pages of interest to the user. Thumbnail

icons, reductions of a \veb page to icon size, may be placed on the mountain in

locations meaningful to the user and icons may occlude others. If icons are placed at

the top of the mountain the act of rendering them in perspective will make them

appear smaller than icons placed at the foot of the mountain.

Figure 9.11 Data Mountain for web page favourites

(Robertson et al., 1998: 153).

Data Mountain, it should be noted, is, like the Spatial Data Management System and

Perspective Wall, a spatial metaphor (Jones and Dumais, 1986), not a spatialization

metaphor (Demasco, Newell, and Arnott, 1994; Regier, 1996) of the sort grounded

in UP, IN, OUT, and so forth, schemas, discussed above. Lakoff and Johnson (1980)

report that the mountain is a poor concept to ground in the body. Only reference to

"the foot of the mountain", as we made in the last paragraph. is meaningful, and

leads others (Bederson et al., 1996) to claim that the MOUNTAIN is BODY

metaphor is a dead metaphor. Data Mountain is however interesting in allowing

casual arrangement of icons collected together in space allowing ad hoc

categorisation, and allowing spatial memory to aid in locating web pages sought.

256

This ability is very effective in the Data Mountain system (Czerwinski et al., 1999)

even when the thumbnail images are removed leaving only blank icons, although

. mouse-over text giving the page's title for each icon is found to be required to

maintain retrieval ability over long periods of time. There remain, however,

unanswered questions as to the scalability of this design in domains other than web

page bookmarks. , In a web favourites system the number of bookmarks is likely to

be small and there is likely to be a fast turnover of those links that become redundant

quickly (it is claimed that between 2 and 9% of any web search engine's indexed

collection of links will be out of date at any time).

Alternative Interface Physics

The metaphor-based interfaces to file organisation systems considered so far have

mostly been flat model worlds (ARK, the desktop, Rooms), or augmented real-world

environments (OigitalOesk, metaDESK, and wearable computers). In these systems

the image size is fixed and the user's viewpoint is changed, either by manipulating a

set of 2.50 windows, moving to another Room, shifting the radar view, or by motion

of the head. A recent alternative solution is to adopt a different physics in which the

size of the workbench is fixed, often a screen-size in area, but the workbench can be

deformed to bring regions of interest into the region of attention. According to

Carpendale, Cowperthwaite, and Fracchia (1995: 219) this concept" ... provides a

useful metaphor for the actions performed to create the distortions. Pulling a section

towards oneself to see it better, or ... magnify it, appears to be a natural response."

A system that implements alternative interface physics is the Perspective Wall

(Mackinlay, Robertson, and Card, 1991). The Perspective Wall is a pliable flat sheet

on which icons denoting documents are placed. The central region of the wall is

placed closest to the observer's point of view, parallel to the plane of the screen, and

contains most information in greatest detail. The portions of the wall either side of

257

the central region bend away from the observer and are rendered in perspective. If

the user clicks on an icon on a portion of the wall outside of the central region, the

wall scrolls and distorts until the icon lies within the central region and the portions

of \vall either side of the icon outside of the central region increase or decrease

appropriately.

The Perspective Wall exploits computer animation technology, metaphors from

pliable surface interfaces, and metaphors to the relative acuity of vision across the

surface of the retina, but is still limited in the numbers and types of files it can

provide access to. The version of the Perspective Wall described by Mackinlay,

Robertson, and Card (1991) arranges icons by advancing creation date from the

oldest to the youngest from the left of the wall to the right. The wall maps the file's

type, drawn from a fixed set of categories, to the vertical dimension of the wall.

The PAD++ environment (Bederson et al., 1996) has a more pliable surface than the

Perspective Wall. It may be deformed by the semantic zooming process on a more

local scale within the central region, which in the case of PAD++ occupies the entire

screen. The regions outside the central region can be brought into view using links

and portals to other parts of the model world. PAD++ has been employed as a

framework in which a number of familiar types of systems have been implemented,

these include a \vorld-wide \veb browser and a file directory browser. The browser

uses thumbnail icons of \veb pages, as in the Data Mountain, to depict particular

pages. These icons can be enlarged by zooming to better detennine the identity of

the web document, or completely enlarged until the document is rendered full-size

and as the focus of the user's attention. The directory browser is similar to the

PAD++ web browser, but files are only depicted as coloured squares, the colour

denoting category membership, until zoomed to the maximum magnification

possible where the file's contents become visible.

258

Further Developments of the Pile Metaphor

The initial work on the pile metaphor undertaken by Mander, Salomon, and Wong

(1992) was based upon prototypes built using Macromedia Director. These

prototypes, however, were shallow, in that most proposed user interface features

were implemented but not linked to any underlying functionality. Subsequent

prototypes employed clustering techniques to support both piles and documents in

the same information space and both direct manipulation and automatic sorting

tasks. Using clustering to collect together seemingly related files allows the task of

subpiling to be delegated to an electronic assistant. How the 'agent' that performs this

task can be comprehended as part of a desktop metaphor (viewing it as part of a

wider OFFICE TASKS metaphor raises the problems encountered with Ed discussed

in Chapter 4) is not explained though. Unfortunately work (Rose et al., 1993) that

might have continued on employing clustering techniques to widen the sorts of

categories of objects that piles contain; to allow user-defined categories to be

automatically constructed from more complex file attributes; and to resolve

remaining pile user interface's inconsistencies, was abandoned (Rose, 1998) when

Apple's Advanced Technology Group was disbanded. It is clear, however, that work

picking up where on piles left off should be added to the topics for further study if

the scalability problem of managing files in user interfaces to organisation

mechanisms is to be addressed.

9.2 Medusa-"t: A System Addressing Temporal Problems

In their view of design, taking into account long-standing criticisms of the

Objectivist tradition underlying classical views of metaphor, Winograd and Rores

(1986: 178) state:

259

"Computers have a particularly powerful impact, because they are

machines for acting in a language. In using them \ve engage in a

discourse generated \vithin the distinctions set down by their

programmers. The objects, properties, and acts we can distinguish and

perform are organised according to a particular background and pre

understanding. In most cases this pre-understanding reflects the

rationalistic tradition we have criticised ... It includes biases about

objectivity, about the nature of 'facts' (or 'data' or 'information') and

their origin and about the role of the individual interacting with the

computer.

We have argued that tools based on this pre-understanding will lead

to important kinds of breakdown in their use."

It has already been discussed above how the mismatch between the objects and

objects' attributes, and tasks that objects' behaviours support, provided in a model

world and what is suggested by the metaphorical source domain can cause

breakdowns in user interfaces. Delays and lags are other causes of breakdown in

metaphors and analogies in model worlds. The tradition that informs Winograd and

Aores suggests that breakdowns force the user into a state of having to account for

the breakdown, a true state of being in the (model) world is denied them. Rather than

being able to naturally perform their work in the task domain, additional effort must

be expended to model the system. In addition to the sources of breakdown caused by

failure of metaphors, breakdowns also occur due to the unpredictable temporal

behaviour of computing systems (Dix, 1987).

Two approaches may be found to solve the problem of temporal behaviour of

systems that users may find troublesome. One approach is a design solution, the

temporal behaviour of the system may be examined, modelled and understood (both

260

from a system and the users' perspective} and the user interface may be designed to

incorporate features which explain the temporal behaviour within the system's

conceptual model. This approach is adopted in the design of the first two Medusa

systems. Another approach is a technological approach. The system may be designed

and implemented so that the temporal behaviour of the system is controlled and

guaranteed. An example is the attempt to guarantee the instantaneous response to

typed input in a commercial word processor by only updating the line on which the

cursor currently lies, and updating the layout of the remainder of the document

visible on-screen when the user pauses typing (reported in Dix, 1991).

The Medusa-'t system is based upon the Medusa system, and assumes the same task

domain as the Medusa system. The concern of the Medusa-'t system is to guarantee,

where possible, the temporal behaviour of the system so that feedback of the system

state and updating of the diagrammatic display depicting parts of the system image

are appropriate and immediate. This approach simplifies the conceptual model and

the interface design, the details of software design, however, as well as the

implementation details, become more complicated. The issues of software

architecture, implementation, operating system design and treatment and modelling

of concurency and real-time system development require considerable attention if

the Medusa-'t system is to be successfully implemented.

Some authors doubt that the real-time behaviour of systems needs to be considered.

Took (1990a: 126), for example, claims that:

" ... timing is much less critical in general user interface systems than

in process control applications, for example, because human users are

more tolerant of delays or variations in timing than machines."

261

Hill (1992) states his hope that the complexities of real-time programming can be

avoided in user interface design. The need to consider temporal issues in user

interface design is becoming more widely recognised (Johnson and Gray, 1995),

however. When polled as to their requirements, users state that they prefer fast

system responses, and data exist on the optimum rates for displaying text, for

example. Feedback can, however, be too immediate, if information flow is from the

system to the user, there are maximum rates at which information may be presented

if users are to be able to obtain information from the display (Card, Moran, and

Newell, 1983).

Where the effects of actions and operators on the state of the user interface must be

interpreted or learned for later use, reinforcement in the learner's mind that a

particular action helps bring about a desired system state is reduced if the system

feedback, and subsequent reinforcement is delayed (Kaelbling, 1993). Effects of

system response time on the strategy users employ when interacting with user

interfaces have also been noted. With increasing delays between user input and

system response, users avoid actions which may cause errors and do not request

output to confirm the system state, actions are increasingly planned and

experimentation avoided (Grossberg et al., 1976). Where system delays are shorter

than the many seconds in Orossberg's et al. (1976) experiment, but also vary,

changes in user strategy have been observed by Teal and Rudnicky (1992) (although

not as clearly in the replication of Teal and Rudnicky's experiments performed by

O'Donnell and Draper, 1995). Their experiment considered user input to an

unbuffered system where delays between user input and system feedback varied, and

users were unable to enter further input until feedback was received. Where delays

exceed 1.75 seconds, users are said to adopt a monitoring strategy, waiting for

system feedback before continuing. Between delays of 0.75 seconds and 1.75

seconds users are seen to adopt a pacing strategy, entering input to the system

without waiting for feedback, judging delays between input and adjusting the delay

262

in response to errors where the judged delay is shorter than the actual system delay.

Where delays are shorter than 0.75 seconds the user is able to adopt a strategy of

automatic performance, latencies between keystrokes due to cognition and the

human motor system are longer than system delays.

As well as long delays between user input and system feedback causing users to alter

their behaviour to compensate, and the learning of systems being complicated, a

number of other arguments for addressing the temporal behaviour of user interface

software have been proposed. The seven stage model of interaction with interactive

systems proposed by Norman (1984), for example, relies on there being no

perceivable delays between the execution of user actions and system feedback for

the loop of interaction to be maintained.

9.2.1 Implementing Medusa-,;

Work has progressed on the refinement and implementation of systems described in

the Agent notation (Treglown, 1998), and we have now a complete formal

operational semantics and heuristics for converting the required external behaviour

of agents into Java code (but not a full set of refinement laws). Methods for

converting a timed Agent model, developed for the task of describing systems such

as Medusa-"t into a suitable language running on a suitable combination of hardware

and operating system, remain to be completed.

9.3 Conclusions

The first version of the Medusa system, the version that has received most design

effort, while attempting to overcome known difficulties in the application of

metaphors in the design of the model world is based in the Objectivist tradition

rejected in the last chapter. In this chapter, two revised versions of the Medusa

263

system, one taking into account the Lakoff/lohnson theory of metaphor

understanding, another recognising breakdowns introduced by the temporal

behaviour of interactive systems, were discussed. In the following chapter, the

contributions of the Medusa systems to HCI, and suggestions for further work, arc

presented, as are conclusions drawn from the work presented above.

264

Chapter 10

Conclusions and Further Work

What keeps you awake at night?

Trying to finish the phrase 'A bad simile is like a ... I

- Mark Lamarr, questionnaire column, The Guardian, 5/9/98.

10.1 Summary of the Thesis

In this chapter we summarise the work undertaken, suggest the contribution of the

work to HeI theory and to user interface design, indicate further work immediately

arising from the work reported on here, and introduce on-going work to resolve

unfinished problems. The work undertaken and reported in this thesis can be

summarised as follows:

• a survey of interface styles and design methods revealed the problem of choice in

the user interface design process, and resulted in the role of metaphor and analogy

in user interfaces and in user interface design being considered for investigation,

• a survey of a number of important and influential systems that are based on explicit

metaphors in their model worlds revealed the important concepts, interaction

styles, and widgets that these systems introduce,

• a literature review showed the limitations of employing metaphors and analogies in

previous user interface designs,

• a small-scale study of first-time Apple Macintosh users supported findings of a

previous similar study and identified problematic features for which improved user

interface designs were judged to be needed,

• a literature review sought to examine where metaphors fit into the wider context of

users' mental models of interactive systems and the pervasive nature of metaphor in

these models \vas discussed,

• an analysis and model-building exercise of current systems applied the QPf

method of describing mental models which is not usually employed in HCI. These

models revealed inherent flaws in some metaphor-based systems, and revealed that

some reconsideration was required of the domains between which metaphorical

mappings are thought to be made. This consideration supported Laurel's (1993)

previously proposed analysis of domains and mapping in interface metaphors,

• an examination of current system design showed the failings of existing user

interface metaphors and of the existing theories of metaphor understanding,

• an application of a contemporary theory of metaphor due to Lakoff and 10hnson to

user interface design was made by recognising the need to be aware of results in

formal semantics that question the nature of metaphorical understanding previously

assumed in HCI,

• a number of case studies extended the limited use to which the Lakoffllohnson

account of metaphor understanding has previously been put in analysing user

interface designs, and which further demonstrated the usefulness of this approach,

• a new system design named Medusa based on the guidelines and the QPT models

discussed in Chapter 5 was designed,

• revision of the first Medusa system design were presented based on the results of

usability testing, and based on the results of applying the theory introduced in

Chapter 8 as a generative source of novel user interface designs,

• a comparison between the second, revised, design and recent user interface designs

for the same task domain showed the comparability of these designs and suggested

optimism for the usability of an implementation of the revised system design.

266

10.2 Contributions of the Thesis

Bannon and B~dker (1991) identify two approaches to design within HCI, a task

analysis approach, which they criticise and reject in favour of an artifact approach.

The task analysis approach informs the development of the first Medusa system.

This approach is characterised by the assumptions underlying cognitive science and

psychology, and the use of task analysis methods and programmable user models in

design. In this approach, the computing system is programmed from an analysis and

structured description of the tasks currently performed by eventual users of the new

system, or from an analysis of the cognitive resources and knowledge structures

needed to perform the task.

The artifact approach, by contrast, assumes that tools (hence also computing

systems) are only fully revealed and understood in use, where "in use" has a far

wider meaning than studying systems in the laboratory with representative users as

subjects. While the second version of Medusa cannot claim to be informed by the

artefact approach, it is based on assumptions that criticise some of the assumptions

underlying the first Medusa system. Below we discuss the contributions of the two

Medusa systems in terms of the two approaches to HC! design, and also in terms of

one set of suggestions for key HCI issues that should be addressed.

10.2.1 Medusa in a Cognitivist Framework

The first Medusa system, described in Chapter 6 and evaluated in Chapter 7, is

grounded in the traditional cognitivist framework that is rejected in the methods of

analysis used in the design of the second Medusa system. The use of the Qualitative

Process Theory in Chapter 5 to describe mental models of model worlds based on

physical world metaphors, and to provide a semantics to user operations in order to

267

explain changes to objects in the Medusa model world assumes an Objectivist world

view. The work on Medusa version one makes two contributions. Firstly, Laurel's

(1993) notion of user interface similes is strengthened as identifying the important

domains between which mappings should be made in user interface metaphors.

Secondly, mismatches between the on-screen model world and the underlying

functionality are identified as a key source of user difficulties in understanding the

system.

In addition, the way of viewing software that this contribution employs has also been

acknowledged l as being an influence on the design of the Ontological Sketch Model

(Blandford and Green, 1997) for modelling user interfaces and identifying usability

faults. The Ontological Sketch Model (OSM), as its name suggests, requires the

system designer or analyst to construct an ontology of interface objects and the

actions that can be performed on them. The analyst lists the things that the user must

know about in the interface, their attributes, accessibility, relevance to either the

application domain or the device domain, whether the object is visible and whether

or not it has a meaningful name or symbol. OSM, being more of a system

engineering approach, captures aspects of the model world that QPT does not, QPT

not being initially devised for use in He!. OSM and QPT are comparable, however,

in the number of aspects of system described in models of user-initiated actions and

the effects that these actions have on interface objects. QPT describes these effects in

a more formal way, however, and more tools exist that currently do for OSM to

make predictions of the outcomes of effects. A section of an OSM description of a

drawing package (taken from Blandford and Green, 1997) can be seen in Table 10.1.

1 Thomas Green (personal communication) 14th November 1997. seminar at the Knowledge Media

Institute. The Open University. Milton Keynes.

268

Action Object Effect Context Notes

click drawing area lay down a discrete mode

point for a

sketchy-line

drag drawing area lay down continuous speed of

shape for a mode dragging

sketchy-line affects

sketchiness

Table 10.1 Part of an OSM table for a drawing package

10.2.2 Medusa in a Cognitive Semantics Framework

The second version of Medusa adopts the LakofflJohnson contemporary theory of

metaphor in order to account for how some interactive computing systems can be

understood. While the application of this theory to interactive computing systems is

not unique. our application of it began independently of Rohrer's work (1995). The

contribution of the work contained in Chapters 8 and 9 and in (Treglown, 1999) is to

demonstrate the applicability of the Lakoff/Johnson theory to describe a wider range

of interactive systems than it has been attempted to describe before. This work also

promotes the Lakoff/Johnson contemporary theory as a candidate theory applicable

to the design and evaluation of computing systems. The comparative analysis

presented in Chapter 9 and Appendix C shows the value of applying the

contemporary theory of metaphor as a predictive and analytical tool to reason about

modem metaphor-based software technology. Benyon and Imaz (1999) demonstrate

their recent adoption of the approach to design suggested by employing the

Lakoff/Johnson theory in HCI and show that the contemporary theory is gaining the

attention of other members of the HCI community.

269

10.3 Does the Work Address Key Issues in HeI?

Shneiderman (1986) identifies seven key issues that HeI should address, in this

section we examine whether the work conducted and reported in this thesis is

appropriate in terms of work that is deemed valuable and necessary, and whether the

\vork addresses any of Shneiderman's challenges to researchers. According to

Shneiderman's (1989) more recent, but less finely delineated, identification of

important future directions in HeI research, we can claim that the work undertaken

addresses the need to cater for office practice and the inclusion of more complex

documents (containing media other than just text) in the model world. We can also

claim that the Medusa systems contribute to understanding the temporal behaviour of

interactive systems. Below we consider in further detail the contributions of the work

in terms of Shneiderman's (1986) classification. While the detailed challenges he sets

the HeI community are presented in tenns of the prevailing technologies of the era

in which his paper was published, the delineation of research problems is still

valuable.

10.3.1 Interaction Styles - What is Natural?

In Shneiderman's analysis, natural interaction is said to be strongly related to the

notion of directness, irrespective of the modality of interaction. Frolich (1993)

observes that the meaning of directness has altered from Shneidennan's original

meaning of the "first personness of interaction through manipulation" to Hutchins,

Hollan, and Norman's (1986) meaning of it being a combination of distance and

engagement. Engagement refers to first personness, the sense that the on-screen

objects are the actual objects being manipulated. The term distance is employed in

Hutchins' et al. conception of direct manipulation systems to refer to the complexity

of mapping goals to actions meaningful to the computer at the interface. Systems

270

termed direct are designed so that this distance is minimised. Frolich notes that it is

legitimate to apply the notion of directness to both conversational and manipulative

systems and that the trend towards interfaces exclusively based upon manipulative

interaction is an accident of history and is a trend that he states should be halted. For

tasks such as information retrieval, mail handling, time handling, and programming,

conversational and mixed mode systems are said to be more appropriate and more

direct than action-based systems.

Frolich also claims that the historical association of directness with model world

interfaces leads to an assumption that the use of real world metaphors improves

directness. He suggests instead that it is also possible to conceive of direct

conversational systems which do not employ metaphorical devices to reduce

psychological distance. and also that the traditional historical association diverts

attention away from supporting action-based interaction by using non-metaphorical

icons to represent abstract computational structures. While we agree with another of

Frolich's observations, that some real-world metaphors can result in indirect systems

that do not enhance the user's experience of using the system, we offer different

views to Frolich's. In the light of modem theories of metaphor examined and

employed in this thesis we disagree with Frolich's central claim that designers should

be encouraged to be sceptical about choosing action-based solutions to design

problems. We also disagree with the suggestion that visual formalisms (that are

claimed to rely less on metaphor for their semantics) and that language-based or

mixed language/action-based forms of interaction should be used.

The contemporary theory of metaphor suggests that language cannot be as free of

metaphor as Frolich believes, and that metaphor is central to cognition and

semantics. Neither is it clear that. in the light of the contemporary theory, that visual

formalisms, as described by Nardi and Zarmer (1993), are entirely free of metaphor

in their semantics, as has been suggested. Graphs (x-y plots of data), for example,

271

are often mentioned as examples of visual formalisms, but, as is employed in some

audio representations of data values using varying pitch (Buxton et al., 1985),

underlying the semantics of the representation is an up is lnore metaphor. In other

visual formalisms, for example graphs (nodes and links) such as Petri nets, quantities

such as time may be grounded in terms of physical location in the diagram. Where

visual formalisms are also dynamic and interactive, with further investigation it may

prove that metaphors, in the terms that we now think of them, may be relied upon

more for understanding of the formalism. than claimed.

In contrast to Frolich, we claim that while some metaphors can produce indirect

systems, the key to directness is not necessarily to employ language-based or

collaborative manipulation interfaces (described below). Instead we claim that

directness is a product of the type and complexity of image schemata that ground a

metaphorical mapping. We have shown that a feature found in an implementation of

the desktop user interface breaks the invariance principle and is hard to account for.

It also fails to suggest suitable actions that would allow tasks to be performed. The

schemas that ground interaction \vith the second version of the Medusa system are

simple. The resulting interaction with the system would appear to be direct. A claim

that we tentatively propose, and shall investigate as further work, is that directness is

a concept related to Lakofrs invariance principle, and that collaborative

manipulation systems should be adopted only when the schemata that ground

metaphors and actions become complex or the invariance principle is broken. The

Medusa systems, and the approaches adopted to understand them, do, at least, seem

to provide a framework in which directness can be consistently discussed.

10.3.2 Input Techniques - Putting Intention into Action

The choice and use of particular input devices with an interactive system is a topic

related to the issue of naturalness of interaction. It remains a topic of ongoing \vork

272

as to how the amount of distance and directness between user intention and system

terminology is changed by the use of different input devices. Application of results

reported in leannerod (1997) suggests that a number of recent and novel input

devices can be very direct if used in physical world metaphors. The mouse, however,

despite its prevalence as an input device in direct manipulation interfaces, presents a

number of problems. We cannot yet detail the image schemata underlying

spatiomimesis and mouse-based interaction in general, and account for the reduced

directness that the mouse seems to give rise to. Work to fully provide a rigorous

grounding of mouse-based interaction in terms of image schemas and metaphor is

ongoing. This work is likely to draw on results discussed in Lakoff and lohnson

(1999). This work demonstrates that where Regier (1996) shows how the linguistic

and pre-linguistic spatial concepts that form many of the image schemata that we

have employed in the analyses of user interfaces above can be acquired from

prototypical examples, these spatial concepts can also be used to suggest and

generate suitable motor skills to perform tasks (Bailey, Feldman, Narayanan, and

Lakoff, 1997; Narayanan, 1997).

10.3.3 Output Organisation

Concern for visibility and tangibility ensures Shneiderman's recommendation to

enforce consistency in the model world. The use of either the browser metaphor or

pile metaphor for file organisation reflects the user's need for organisation (either

messy or tidy) and classification of objects according to the immediate needs of their

tasks and their category structures, according to the version of Medusa being used.

The more focused concerns under this issue, such as the fonts and colours used,

remain design options to be addressed if a full implementation of the system is

developed.

273

10.3.4 Response Time

The need to account for the temporal behaviour of the Medusa systems was

mentioned above alongside descriptions of the user interface features in Medusa that

are intended to aid the user in forming a useful and accurate mental model of the

system. We have suggested throughout the thesis that the designs of both versions of

Medusa, and the design of Medusa-"t, are motivated in part by the need to address the

issue of system response time, and to account for a system's temporal behaviour. The

Medusa systems and Medusa-"t adopt two different strategies in their -design,

respectively providing the user of an account of the cause of temporal breakdowns,

and attempting to ensure that breakdowns do not occur.

10.3.5 Error Handling - Preventing User Errors

It is normally assumed that in "extreme" direct manipulation interfaces, i.e. those

that implement physical world metaphors, it is not possible to make errors, as

commonly understood. Alternatively it is assumed that only semantic errors can be

made, where the user is not prevented from performing erroneous physical actions

that have little sensible meaning in the machine's terms. In the first version of the

Medusa system, the object-message style of interaction limits the number of errors

that can be made; messages that cannot be sent to an object in its current state do not

appear on the toolbar. In the second version of Medusa tasks that might cause errors

to arise, particularly file movement tasks, are less likely to occur as the semantic

distance between the on-screen world and the system semantics is reduced. Users

may still perform tasks that they may not actually have wanted to perform, however,

and will require undo and recovery facilities.

As noted in Chapter 7, the first Medusa system makes no explicit provision for undo

and recovery facilities within the model world and in the support of users' tasks.

274

Undo (the provision of a feature that allows a previous system state to be returned

to), and recovery (the ability to return to a previous state and to rerun history issuing

a different set of commands), present particular difficulties in the design of an

interactive system. Neither facility is product-oriented (task analysis cannot fully

reveal the ways in which recovery might be conducted using a facility yet to be

introduced). Rather the true usability of such features will be revealed in system use,

the tool itself will be changed by the introduction of an undo facility, and so the true

nature of interaction with a system that supports undo cannot be fully predicted. An

analysis of the schema that might underlie potential metaphors for undoing

commands remains to be conducted. This is despite the need to provide one for the

Medusa system identified in Chapter 7, and the recognised need to understand the

limits and possibilities of undo in metaphor-based user interfaces in general

(Tognazzini, 1992: Chapter 10).

10.3.6 Individual Differences

The differences of gender, age, ethnic background, cultural heritage, and so on, that

Shneiderman judges must be accounted for by design guidelines are not considered

in any detail in this research. The intended user population of the Medusa systems is

all users of the systems who perform tasks supported by the operating system

through necessity not choice. Therefore, it should be possible to perform all tasks

supported by Medusa with little expertise. The issue of cultural diversity and

metaphor understanding in interactive system design is briefly discussed in Section

10.4.2.

A topic that Marcus (1993) discusses, that is also deserving of further investigation

continuing the work begun and reported in this thesis, is the need to be aware of

cultural diversity in the design of computing systems. In Marcus' analysis, the types

of metaphor that he considers important in forming the basis for a user interface

275

design, and the types of metaphor that he feels help the designer to design a product

for an international audience, are metaphors that are broad in scope and that are

meant to encourage understanding of a large part of the system's functionality. These

metaphors are subject to the problems described in Chapter 3 and by 10hnson (1994).

The use of metaphor in the second version of Medusa described in Chapter 9

recognises the centrality of metaphor in cognition and understanding claimed by the

Lakoffllohnson theory of metaphor understanding. In the contemporary theory,

cultures define the categories that people possess, their conceptual structures, and the

prototypical effects in category usage that will arise from the categories and

conceptual structures. One conclusion that the contemporary theory allows us to

reach is that since cultural effects are demonstrated even in the very basic image

schemata that underlie people's understanding of the world, the strictly action-based

Medusa version two system, or any other direct manipUlation interface, can never be

an "interface for all." Lakofrs (1987) survey claims, for example, that even FRONT

BACK schemata (very basic and common patterns of interaction with the external

world) differ across cultures. However there exists within Medusa considerable

scope for exploring further limits to the comprehensibility and usability of direct

manipulation interfaces where metaphor is employed in their meaning and

understanding.

10.3.7 Explanatory and Predictive Theories

Shneiderman's (1986) most firmly stated demand is for HCI to develop robust

theoretical foundations, theories forming a basis for research, design guidelines, and

teaching. The complaint underlying the research reported here is that while metaphor

is thought to be central to understanding the world (and user interfaces), and while

theories of metaphor and metaphor understanding exist, few applications of specific

theories of metaphor as applied to HeI seem to exist. The work reported here has

sought to remedy this, and as such can be said to address one of the issues that

276

Shneiderman judges important. The work undertaken to date has not invalidated the

notion that the Lakoffllohnson contemporary theory is a promising candidate theory

capable of accounting for much of metaphorical understanding of interfaces, and

understanding of metaphor-based systems. A continued investigation of how

successful and useful a predictive tool the contemporary theory can be in user

interface design is ongoing, and some discussion of this work can be found below. In

some views of the process of scientific endeavour, a theory is of worth if it is, in

principle, falsifiable. Further work using the LakofflJohnson theory should therefore

address criticisms of it (for example Vervaeke and Green, 1997).

10.4 Suggestions for Further Work

10.4.1 Full Implementation of the Medusa Systems

As discussed in Chapter 7, usability evaluation methods are based upon assumptions

about the nature of learning and using interactive systems. These assumptions

determine the types of usability errors revealed. Usability evaluation methods also

differ in the number of usability errors that they reveal. The cognitive walkthrough

method employed in Chapter 7 reveals only a small number of usability errors, this

number would be increased if the number of system evaluators were increased. The

use of a usability inspection method was required due to the lack of a working

prototype of the Medusa system described in Chapter 6.

The Medusa systems are grounded on particular models and theories, and a partial

implementation of the first version was based on an (again partial) formal

specification using the Agent notation (Abowd, 1990). The aims of the research

include examining the possibility of specifying aspects of direct manipulation. The

research aims also include examining the possibility of being able to formally

describe system features which can maintain metaphors that do not suffer from the

277

breakdowns common to existing metaphors. However, even if a full specification

had been completed, and principles of usability, such as those provided by Dix

(1991), had been applied to the specification and the specification verified, it is

unlikely that all usability errors would have been revealed. Work by Harrison, Roast,

and Wright (1989) and Wright, Merriam, and Fields (1998) shows that the abstract

model of a system cannot reveal all usability problems; testing involving a

completed system and human subjects is required to reveal the true range of usability

problems. Given the more complex model of metaphor and cognition assumed in the

design of the second version of the Medusa system, the need for user testing is even

greater than for the first Medusa system. The "scientific" model of usability analysis

presented by Wright, Merriam, and Fields (1998) is of particular interest. For

example, the testing of claims made by formal models by usability testing allows

formal models to be refined and made more useful. The empirical study reported in

Chapter 4, and the issues surrounding metaphor, action, and categorisation

demonstrated by recent models and theories show that data obtained from people is

the most valuable source of data when seeking to understand the user's

understanding of an interactive system. Progress toward identifying useful interface

metaphors and the schemata that structure them can be made by investigating

existing systems and tasks in detail. Given a suitable corpus of interaction data,

existing metaphor-based design methods seek to determine the verbs and nouns

making up the task domain. In our approach, demonstrated in Appendix C, we

attempt to identify the spatialisation, and other, metaphors that the task domain is

understood in terms of. It is these larger metaphors that we will use in future to

generate better visual representations and interaction sequences.

10.4.2 Implementing Agents

The formal notation explored as a means of specifying the Medusa systems, as

mentioned, was Abowd's (1990) Agent model and language. While work has

278

continued on applying this model to the specification of interactive systems, and the

problem of refining the specification into code (Treglown, 1998), refinement into all

programming languages suitable for interactive user interfaces is not yet possible.

Also, the additional theory developed, while permitting refinement of the external,

dynamic, behaviour of agents, relies on transformation by hand~ tools to automate

the refinement process remain a topic for further work. The agent model is, however,

unsuitable for specifying some classes of systems that work in user interface

metaphor must address. The model of concurrency adopted by the external

behaviour of all the agent models that we have employed to date in this work cannot

capture truly concurrent events. This problem will need further attention if the

problem of designing a collaborative and shared Medusa environment is considered.

The first step in this process is to continue work reported in (Treglown, 1998), and to

generate a semantic equivalence between agent specifications and modules of code

in a suitable programming language. This should be done instead of continuing to

translate a transition system compiled from the external behaviour components of the

agents making up a system into high-level language code in a principled, but

informal way.

10.5 The Future of Metaphors and Direct Manipulation

10.S.1 Classes of Metaphor and Understanding Directness

The types, or paradigms, of interaction that the user might have with a computing

system are defined by Hutchins (1989) who refers to these types of interaction as

interaction metaphors. The definitions employed in this thesis are Hutchins', but we

have avoided referring to them as metaphors to reduce confusion. The types of

systems we considered in this work were said to be based on the model world

paradigm, in contrast with the conversation paradigm. Hutchins defines two other

interaction metaphors, however, and some consideration should be paid to these,

279

especially if they should become increasingly relevant, and prevalent, in future

systems. The declaration metaphor is based on ideas from speech act theory where

utterances are sufficient to change the state of the \vorld (for example, "I pronounce

you man and wife"). A declarative interface differs from the conversation paradigm

in that utterances have a "causal force" in the world. The declaration metaphor is a

poor metaphor, however, as \vhen the user issues an ungrammatical expression, no

change in the world occurs. Thus if the user issues an expression with no causal

force, or one that cannot bring about a change in the state of the world, there is no

way to filter ol:lt or report objections to these expressions. Interaction witli such a

system would eventually prove frustrating, not least because many expressions,

notably those involving deictic reference, cannot be acted upon.

The final interaction metaphor defined by Hutchins (1989) is collaborative

manipulation, which is depicted in Figure 10.1. In this interaction metaphor,

Hutchins states that the computer should be an actor in the setting in which it is

employed and thus should behave as a human does in human-human interaction and

should support conversational interaction. The model world metaphor, the

interaction style that has been the subject of this thesis, is based on the assumption

that people are skilled at manipulating objects in the environment. Because work is

often conducted in a social world, and in a collaborative manner, this implies that

user interfaces should consist of both a model world and an intelligent agent. Both

the user and the agent should have equal ability to alter the system's state, but the

agent can automate those tasks that are tedious for the user to perform.

280

~
symbolic
descriptions ,

INTERFACE
INTERMEDIARY -

USER

actions

state
changes

~
actions state

chang es ,
...

WORLD OF ACTION
IS THE INTERFACE

Figure 10.1 The collaborative manipulation metaphor (Hutchins, 1989: 25).

The notion that the collaborative manipulation metaphor represents the future of

direct manipulation is one advocated by Frolich (1993). Shneiderman's

(Shneiderman and Maes, 1997) antagonism towards agents, by contrast, means that

he feels that the user should be the sole party in control of the system and that

improving information visualisation should be the aim of the designer. Frolich

(1993), building on recognised limitations of direct manipulation systems; and Maes

(Shneiderman and Maes, 1997), arguing from the observation that file storage

systems are no longer restricted to a small number of volumes on a local area

network); both conclude that software agents and virtual partners are required. While

the Medusa system designs do not exclude the possible inclusion of an agent as an

application consistent with the model world, the file space model assumed by the

first Medusa system better permits repetitive tasks and searching of the world-wide

web to be conducted. These tasks use the same data structures that the user must

understand and interact with in the local file space. The second version of the

Medusa system, because it considers the grounding of metaphors in physical

experience and because it is based on physical world metaphors, requires that any

agent will be less consistent with the local model world. The agent's representation

of the wider file space will be inconsistent with the user's, and it will be harder for

the user to state their intentions so that the agent can act on them. By contrast,

discussion of the local model world is easier. If the assumption that the image

281

schemata that the Medusa model world metaphors are grounded upon are common to

the experience of the users is correct, then we possess a means for an agent and the

user to discuss tasks and changes in the system's state. We also possess a basis for

the same meaning of their respective utterances, irrespective of modality, to be

inferred.

10.5.2 Metaphors for Future Computing Systems

In Chapter 2 a short review was undertaken of interesting computing systems of the

sort described as antisedentary beigeless computing (ABC) by Underkoffler (1997)

in which clear use of metaphor in their user interface is made. Marcus (1993)

provides one analysis of the use of metaphor in ABC systems. In contrast to Frolich,

Marcus is a proponent of the use of metaphors in user interfaces, and in future user

interfaces. The principal type of ABC system that Marcus (1993) addresses are those

termed personal digital assistants (PDAs). This class of ABC system is subject to

the same criticisms of existing desk-bound systems that motivated the design of the

Medusa systems.

Unlike Norman's (1998) information appliances, which are typically computing

systems dedicated to a single information-based task with the ability to share this

infonnation with other information appliances, PDAs provide several application

software packages that typically support office-based tasks in a single device. The

PDA, therefore, must provide user interfaces to each of these applications within the

capabilities provided by the PDA as a whole. Marcus' (1993) analysis provides

metaphors (such as the Rolodex, the "to do" list, calendars, assistance, search, and

selection) that a PDA must support. A basic PDA therefore presents the same

problems in terms of its use of metaphor as those described in depth in Chapter 3.

Where some PDAs differ from simply being a pocket-sized implementation of the

desktop, however, is in preferentially supporting the verbs over the nouns that

282

describe users' tasks in the design of the user interface metaphors. The data objects

which the applications manipulate are hidden or bound with the application's state

rather than denoted as on-screen objects in their own right. One can see a key reason

for this if the physical size of a typical PDA screen is compared with the screen real

estate needed to implement a folders and files, or pile-based, data retrieval and

storage mechanism. A focus of further work will be to examine how a Medusa-like

system might be implemented for a PDA. Our experience of living with a PalmPilot2

PDA for some time has demonstrated that support for classification and dynamic

reclassification of events and data files, a topic addressed in detail in Chapter 9, is

often in conflict in existing PDAs with support required to model the conceptual

structures used to describe the model world.

10.5.3 Metaphor-based Design

Above, a number of new interface designs were presented, but although attempts

were made to justify particular design decisions, very little was said about the

impact, if any, of the development of Medusa on design practice. As with many

other activities, analogy plays a part in design (Maclean et al., 1991), but we have, so

far, not devoted much attention to how design of metaphor-based systems is, or

should be, conducted. A small number of design methodologies for metaphor-based

systems have been devised, and while they differ in the number of steps in the design

process, many of the steps are common to the different methodologies. Marx (1994),

Madsen (1994), and Carroll, Mack, and Kellog (1988) agree that design is a four

step process. Firstly, potential metaphors, from the user's point of view, are

identified. Matches between these metaphors and underlying software are then

identified with respect to representative task scenarios that the system must support.

2 PalmPilot is a registered trademark of 3COM corporation.

283

Likely mismatches and their implications are also identified. Finally, design

strategies to help users manage mismatches must be identified.

For Smyth et al. (1995) design of metaphor-based systems is based upon a far

simpler model of metaphor understanding than those described in Chapters 3 and 8,

and comprises six stages. Firstly the system functionality is defined, next potential

vehicles (source domains) are generated and described. Vehicle-system (target

domain) pairings are then analysed to identify mismatches, including conceptual

baggage - user's assumptions arising from the metaphor that cannot be applied in

the electronic domain. Implementation of the metaphor eventually chosen requires

that the issues of representation, realism and consistency must be considered. The

next step in Smyth's et al. design process is to examine and choose suitable

evaluation techniques, finally, lessons learned while undertaking the design of a

metaphor-based system are used to adjust the details of how process steps are

performed in future design tasks.

Moll-Carrillo et al. (1995) adopt the same steps as Smyth's et al. design process. For

Tscheligi and Vaananen-Vainio-Mattila (1998), design of metaphor-based systems

consists of the following steps; firstly analysis of the task domain is undertaken, then

mappings between sources and the target are generated. Visualisations of the sources

in suitable graphical representations are then generated, the final step is to conduct

evaluations of the mappings and their graphical representations. Tscheligi and

Vaananen-Vainio-Mattila's work is interesting in that they, unlike others who have

proposed metaphor-based design methodologies, have developed a design support

environment to aid the development of metaphor-based interfaces. This tool, called

ShareME, is limited, however, in that it addresses only the analysis problem -

finding suitable metaphors for a task domain - and only organisational metaphors

such as houses and libraries for navigation tasks are stored in its metaphor library. If

tools are to be more useful they must address more steps in the design process, and

284

they must havc access to a widcr range of possible source domains. Marcus (1994:

42-43) suggests that:

"What we shall see is not only the phenomenon of massive doses of

ever changing news, sports, fashion, and tools delivered wirelessly 24

hours per day, but also constantly fluctuating 'artifacts' or 'vehicles'

for the delivery of the content. User interfaces will become

publications themselves ... As new metaphors emerge, older ones will

disappear. The constant will be change. Imagine what it would be like

if the Macintosh GUI were announced one week with world-wide

flare and were gone in three months to be replaced by another variant.

Welcome to the future.·

Donald A. Norman3 promises, or perhaps threatens, that "there will always be new

metaphors" for user interfaces to information systems. The theories and analysis

methods described above will give us ways of determining which of these new

metaphors, irrespective of an overall design methodology devised, and the design

support tools eventually employed to create them, can be understood by users.

These methods also give us ways of suggesting consistent ways of interacting with

these new systems.

3 Personal commWlication at book signing of (Nonnan, 1998), London, 26th October 1998. This

remark, however, contradicts sections of (Norman, 1998), see pages 180-181, which were discussed

in Section 5.1.

285

References

Abowd, G. D. (1990) Agents: Communicating Interactive Processes. In D. Diaper,
D. Gilmore, G. Cockton & B. Shackel (eds.) Human-Computer Interaction -
INTERACT'90, North-Holland, Amsterdam: 143-148.

Abowd, G. D. (1991) Formal Aspects of Human-Computer Interaction. Doctoral
thesis, Oxford University Computing Laboratory technical monograph PRG-97.

Adelson, B. (1989) Evaluating and Debugging Analogically Acquired Models. In G.
Salvendy & M. J. Smith (eds.) Designing and Using Human-Computer Interfaces
and Knowledge Based Systems, Elsevier Science Publishers, Amsterdam: 51-58.

Allwood, C. M. & Eliasson, M. (1987) Analogy and other Sources of Difficulty in
Novices' very First Text-editing. International Journal of Man-Machine Studies, 27:
1-22.

Andersen, P. B. (1997) A Theory of Computer Semiotics. Cambridge University
Press, Cambridge .

. Anderson, B., Smyth, M., Knott, R. P., Bergan, M., Bergan, J., and Ally, J. L. (1994)
Minimising Conceptual Baggage: Making Choices about Metaphor. In: Cockton G.,
Draper, S. W., Weir G. R. S. (eds.) People and Computers IX. Cambridge University
Press, Cambridge: 179-194.

Anderson, J. R. (1982) Acquisition of Cognitive Skills. Psychological Review, 89(4):
369-406.

Anderson, J. R. (1983) The Architecture of Cognition, Harvard University Press,
Cambridge, Massachusetts.

Anderson, J. R. (1993) Rules of the Mind, Lawrence Earlbaum Associates, Hillsdale,
New Jersey.

Apple (1983) A Guided Tour of Macintosh and MacWrite-MacPaint. Tutorial disk
and audio cassette. Apple Computer Inc., Cupertino, California.

Apple (1990) Macintosh Reference. Apple Computer Inc., Cupertino, California.

Ark, W., Dryer, D. C., Sclker, T. & Zhai, S. (1998) Representation Matters: The
Effect of 3D Objects and a Spatial Metaphor in a Graphical User Interface. In H.
Johnson, L Nigay & C. Roast (eds.) People and Computers XIII, Springer-Verlag,
Berlin: 209-219.

Baecker, R, Small, I. & Mander, R (1991) Bringing Icons to Life. In Proceedings of
CHJ'91 - Human Factors in Computing Systems, (New Orleans, Louisiana, 27 April
- 2 May 1991), ACM, New York: 1-6.

Bailey, D., Feldman, J., Narayanan, S. & Lakoff, G. (1997) Modeling Embodied
Lexical Development. In M. O. Shafto & P. Langley (eds.) Proceedings of the
Nineteenth Annual Conference of the Cognitive Science Society, (Stanford
University, 7-10 August 1997), Lawrence Erlbaum Associates, Mahwah, New
Jersey: 19-24.

Bannon, L J. & B0dker, S. (1991) Beyond the Interface: Encountering Artifacts in
Use. In J. M. Carroll (ed.) Designing Interaction, Cambridge University Press,
Cambridge: 227-253.

Bannon, L., Cypher, A., Greenspan, S. & Monty, M. L. (1983) Evaluation and
Analysis of Users' Activity Organization. In Proceedings CHI'83 - Human Factors
in Computing, (Boston, Massachusetts, 12-15 December 1983), ACM, New York:
54-57.

Bardini, T. (2000) Bootstrapping: Douglas Engelbart, Coevolution, and the Origins
of Personal Computing. Stanford University Press, Stanford, California.

Bamard, P. & May, J. (1995) Cinematography and Interface Design. In Human
Computer Interaction - INIERACF'95, (Lillehammer, Norway), Elsevier,
Amsterdam: 26-31.

Barreau, D. & Nardi, B. A. (1995) Finding and Reminding: File Organisation from
the Desktop. SIGCHI Bulletin, 27(3): 39-43.

Barsalou, L. W. (1995) Deriving Categories to Achieve Goals. In A. Ram & D. B.
Leake (eds.) Goal-Driven Learning, MIT Press, Cambridge, Massachusetts: 121-
171.

Bass, L. & Coutaz, 1. (1991) Developing Software for the User Interface, Addison
Wesley, Wokingham.

Bass, L., Kasabach, C., Martin, R, Siewiorek, D., Smailagic, A. & Stivoric, J.
(1997) The Design of a Wearable Computer. In Proceedings of CHl'97 - Human
Factors in Computing Systems, (Atlanta, Georgia, 22-27 March 1997), ACM, New
York: 139-146.

Bederson, B. B., Hollan, J. D., Perlin, K., Meyer, 1., Bacon, D. & Furnas, G. (1996)
Pad++: A Zoomable Graphical Sketchpad for Exploring Alternate Interface Physics.
Journal of Visual Languages and Computing, 7: 3-31.

2f51

Bell, B., Rieman, J. & Lewis, C. (1991) Usability Testing of a Graphical
Programming System: Things We Missed in a Programming Walkthrough. In
Proceedings of CHI'91 - Human Factors in Computing Systenls, (New Orleans, 27
April- 2 May 1991), ACM, Ne\v York: 7-12.

Benyon, D. & Imaz, M. (1999) Metaphors and Models: Conceptual Foundations of
Representations in Interactive Systems Development. HUlnan-Colnputer Interaction,
14: 159-189.

Benyon, D., Davies, G., Keller, L., Preece, J. & Rogers, Y. (1990) A Guide to
Usability, The Open University Press, Milton Keynes.
Bewley, W. L., Roberts, T. L., Schroit, D. & Verplank, W. L. (1983) Human Factors
Testing in the Design of Xerox's 8010 "Star" Office Workstation. In Proceedings of
CHI'83 - Human Factors In Computing Systems, (Boston, Massachuset~s, 12-15
December 1983), ACM, New York: 72-77.

Bier, E. A., Stone, M. C., Fishkin, K., Buxton, W. A. S. and Baudel, T. (1994) A
Taxonomy of See-Through Tools. In Proceedings of CHI'94 - Human Factors in
Computing Systems, (Boston, Massachusetts, 24-28 April 1994), ACM, New York:
358-365.

Bier, E. A. & Stone, M. C. (1986) Snap-Dragging. Computer Graphics, 20(4): 233-
240.

Billingsley, P. A. (1988) Taking Panes: Issues in the Design of Windowing Systems.
In M.Helander (ed.) Handbook of Human-Computer Interaction, North-Holland,
Amsterdam: 413-436.

Blandford, A. & Green, T. R. G. (1997) OSM: An Ontology-based Approach to
Usability Evaluation. In Proceedings of a Workshop on Representations, (Queen
Mary and Westfield College, London, July 1997).

Bly, S. A. & Rosenberg, J. K. (1986) A Comparison of Tiled and Overlapping
Windows. In Proceedings CHI'86 - Human Factors in Computing Systems, (Boston,
Massachusetts, 13-17 April 1986), ACM, New York: 101-106.

Bobrow, D. O. (ed.) (1985) Qualitative Reasoning about Physical Systems. MIT
Press, Cambridge, Massachusetts.

Bobrow, D. O. & Norman, D. A. (1975) Some Principles of Memory Schemata. In
D. O. Bobrow & A. Collins (eds.) Representation and Understanding, Academic
Press, London: 131-149.

Borg, K. (1990) IShell: A Visual UNIX Shell. In Proceedings of CHI'90 - Human
Factors in Computing Systems, (Seattle, Washington, 1-5 April 1990), ACM, New
York: 201-207.

288

Brewster, S. A., Wright, P. C. & Edwards, A. D. N. (1993) An Evaluation of
Earcons for Use in Auditory Human-Computer Interfaces. In Proceedings of
INTERCHI'93 - Jluman Factors in Computing Systems, (Amsterdam, The
Netherlands, 24-29 April 1993), ACM, New York.

Brock, J. F. (1996) Whose Metaphor? Interactions, 3(4): 25-35.

Br0ndmo, H. P & Davenport, G. (1989) Creating and Viewing the Elastic Charles: A
Hypermedia Journal. MIT Media Laboratory technical report, also in Proceedings of
Hypertext2, (York, 29th June 1989).

Brooks, R. (1983) Towards a Theory of the Comprehension of Computer Programs.
International Journal of Alan-Alachine Studies, 18: 543-554.

Burstein, M. H. (1986) Concept Formation by Incremental Analogical Reasoning
and Debugging. In R. S. Michalski, J. G. Carbonell & T. M. Mitchell (eds.) Machine
Learning: An Artificial Intelligence Approach Volume 2, Morgan Kaufmann, Los
Altos: 351-369.

Buxton, W. A. S. (1990) A Three-State Model of Graphical Input. In D. Diaper, D.
Gilmore, G. Cockton & B. Shackel (eds.) Human-Computer Interaction -
INTERACT90, North-Holland. Amsterdam: 449-456.

Buxton, W. A. S. (1993) Input and Interaction: The Pragmatics of Haptic Input. Pre
conference tutorial notes, (The National Gallery, London, 9th February 1993).

Buxton, W., Bly, S. A., Frysinger, S. P., Lunney, D., Mezrich, J. J. & Morrison, R.
C. (1985) Communicating with Sound. In Proceedings of CHI'85 - Human Factors
in Computing Systems, (San Francisco, California, 14-18 April 1985), ACM, New
York: 115-119.

Byme, M. D. (1993) Using Icons to Find Documents: Simplicity is Critical. In
Proceedings of INTERCHI'93 - Human Factors in Computing Systems, (Amsterdam,
The Netherlands, 24-29 April 1993), ACM, New York: 446-453.

Carbonell, J. G. (1983) Learning by Analogy: Formulating and Generalizing Plans
from Past Experience. In R. S. Michalski, J. G. Carbonell & T. M. Mitchell (eds.)
Machine Learning: An Artificial Intelligence Approach, Tioga, Palo Alto, California:
137-161.

Card, S. K. & Henderson, A. (1987a) A Multiple, Virtual-Workspace Interface to
Support User Task Switching. In Proceedings of CHI & GI 1987 - Human Factors
in Computing Systems and Graphics Interface, (Toronto, Canada, 5-7 April 1987),
ACM, New York: 53-59.

Card, S. K. & Henderson, D. A. (1987b) Catalogues: A Metaphor for Computer
Application Delivery. In H.-J. Bullinger. B. Shackel & K. Korwachs (eds.) Human
Computer Interaction - INTERACT87. North-Holland, Amsterdam: 959-964.

289

Card, S. K., Moran, T. P. & Newell, A. (1983) The Psychology of HUlnan-Colnpuler
Interaction, Lawrence Earlbaum, Hillsdale, New Jersey.

Card, S. K., Pavel, M. & Farrell, J. E. (1985) Window-based Computer Dialogues.
In B. Shackel (ed.) Human-Computer Interaction - INTERACT'84, North-Holland,
Amsterdam: 239-243.

Carpendale, M. S. T., Cowperthwaite, D. J. & Fracchia, F. D. (1995) 3-Dimcnsional
Pliable Surfaces: For the Effective Presentation of Visual Information. In
Proceedings of the ACM Symposium on User Interface Software and Technology -
UIST'95, (Pittsburgh, Pennsylvania, 14-17 November 1995), ACM, New York: 217-
226.

Carroll, J. M. (1990) The Nurnberg Funnel: Designing Minimalist Instruction for
Practical Computer Skill, MIT Press, Cambridge, Massachusetts.

Carroll, J. M. & Mack, R. L. (1985) Metaphor, Computing Systems, and Active
Learning. International Journal of Man-Machine Studies, 22: 39-57.

Carroll, J. M. & Mazur, S. A. (1986) LisaLeaming. IEEE Computer, 19(11): 35-49.

Carroll, J. M. & Olson, J. R. (1988) Mental Models in Human-Computer Interaction.
In M. Helander (ed.) Handbook of Human-Computer Interaction, Elsevier/North
Holland, Amsterdam: 45-65.

Carroll, J. M. & Rosson, M. B. (1987) Paradox of the Active User. In J. M. Carroll
(ed.) Interfacing Thought: Cognitive Aspects of Human-Computer Interaction, MIT
Press, Cambridge, Massachusetts: 80-111.

Carroll, J. M. & Thomas, J. C. (1982) Metaphor and the Cognitive Representation of
Computing Systems. IEEE Transactions on Systems, Man, and Cybernetics, SMC-
12(2): 107-116.

Carroll, J. M., Mack, R. L. & Kellogg, W. A. (1988) Interface Metaphors and User
Interface Design. In M. Helander (ed.) Handbook of Human-Computer Interaction,
North-Holland, Amsterdam.

Chee, Y. S. (1993) Applying Gentner's Theory of Analogy to the Teaching of
Computer Programming. International Journal of Man-Machine Studies, 38: 347-
368.

Clark, D. M. S. (1993) Self-Explanatory Objects: An Investigation of Object-Based
Help. Unpublished doctoral thesis, Institute of Educational Technology, The Open
University, Milton Keynes.

Cockton, G. (1992) Architecture and Abstraction in Interactive Systems. PhD Thesis,
Department of Computing Science, Heriot-Watt University, Edinburgh.

290

Coutaz, J. (1987) PAC, an Object Oriented Model for Dialog Design. In Bullinger,
H-J. and Shackel, B. (eds.) Human-Computer Interaction - INTERACT'87, North
Holland, Amsterdam.

Cypher, A. (1990) Managing the Mundane. In B. Laurel (ed.) The Art of Human
Computer InterJace Design, Addison-Welsey, Wokingham.

Czerwinski, M. P., van Dantzich, M., Robertson, G. & Hoffman, H. (1999) The
Contribution of Thumbnail Image, Mouse-over Text and Spatial Location Memory
to Web Page Retrieval in 3D. In M. A. Sasse & C. Johnson (eds.) Human-Computer
Interaction - INTERACT99, IOS Press, London: 163-170.

Davis, E. (1996) Osmose. Wired UK edition, 2.08, August 1996.

de KJeer, J. & Brown, J. S. (1984) A Qualitative Physics based. on Confluences.
Artijiciallntelligence, 24: 7-84.

Decortis, F., de Keyser, V., Cacciabue, P. C. & Volta, G. (1991) The Temporal
Dimension of Man-Machine Interaction. In G. R. S. Weir & J. L. Alty (eds.) HCI
and Complex Systems, Academic Press, London: 51-72.

Demasco, P., Newell, A. F. & Arnott, J. L (1994) The Application of Spatialization
and Spatial Metaphor to Augmentive and Alternative Communication. In
Proceedings oJ the ACM ConJerence on Assistive Technology - ASSETS'94, ACM,
New York: 31-38.

Dennett, D. C. (1978) Intentional Systems. In Brainstorms: Philosophical Essays on
Mind and Psychology, Penguin, London: 1-22.

Desurvire, H. W., Kondziela, J. M. & Atwood, M. E. (1992) What is Gained and
Lost when using Evaluation Methods other than Empirical Testing. In A. Monk, D.
Diaper & M. D. Harrison (eds.) People and Computers VII, Cambridge University
Press: 89-102.

Dix, A. J. (1987) The Myth of the Infinitely Fast Machine. In D. Diaper & R.
Winder (eds.) People and Computers Ill, Cambridge University Press, Cambridge:
215-228.

Dix, A. J. (1991) Formal Methods for Interactive Systems, Academic Press, London.

Dix. A. J. & Abowd, G. D. (1995) Delays and Temporal Incoherence due to
Mediated Status-Status Mappings. In C. Johnson & P. Gray (eds.) Papers from a
Workshop on Temporal Aspects of Usability, (University of Glasgow, 6 July 1995),
Department of Computing Science, University of Glasgow, tecnical report GIST-
095-1.

Dix, A. J., Rodden, T. & Sommerville, I. (1996) A Modal Model of Versions. In
Proceedings of a RCS-FACS Workshop on Formal Aspects of the Human-Computer
Inter/ace, (Sheffield, 10-12 September 1996): 100-109.

291

Douglas, S. A. & Moran, T. P. (1983) Learning Test Editor Semantics by Analogy.
In Proceedings of CHI'83 - Human Factors in Computing Systems Proceedings,
(Boston, Massachusetts, 12-15 December 1983), ACM, New York: 207-211.

Dourish, P. (1995) Developing a Reflective Model of Collaborative Systems. ACM
Transactions Oil Computer-Human Interaction, 2(1): 40-63.

Dourish, P. (2001) lVlzere the Action Is: The Foundations of Elnbodied Interaction.
The MIT Press, Cambridge, Massachusetts.

Dourish, P. & Button, G. (1998) On "Technomethodology": Foundational
Relationships Benveen Ethnomethodology and System Design. Human-Computer
Interaction, 13: 395-432.

Du Boulay, J. B. H., O'Shea, T. & Monk, J. (1981) The Black Box inside ~he Glass
Box: Presenting Computing Concepts to Novices. International Journal of Man
Machine Studies, 14: 237-249.

Evanson, S. & Holland, S. (1996) Script of narration to "The Front Desk", British
Broadcasting Corporation television programme to accompany the Open University
course "M206 - Computing: An Object-Oriented Approach".

Fernstrom, M. & Bannon, L (1997) Explorations in Sonic Browsing. In H.
Thimbleby, B. O'Conaill & P. Thomas (eds.) People and Computers XlI, Springer
Verlag, Berlin: 117-132.

Fertig, S., Freeman, E. & Gelemter, D. (1996) "Finding and Reminding"
Reconsidered. SIGCHI Bulletin, 28(1): 66-69.

Fisher, S. S., McGreevy, M., Humphries, 1. & Robinett, W. (1986) Virtual
Environment Display System. In Proceedings of an ACM Workshop on Interactive
3D Graphics, (Chapel Hill, North Carolina, 23-24 October 1986), ACM, Ne\v York.

Fitzmaurice, O. W., Ishii, H. & Buxton, W. (1995) Bricks: Laying the Foundations
for Graspable User Interfaces. In Proceedings of CHl'95 - Human Factors in
Computing Systems, (Denver, Colorado, 7-11 May 1995), ACM, New York:

Forbus, K. D. (1984) Qualitative Process Theory. Artificial Intelligence, 24: 85-116.

Forbus, K. D. (2001) Exploring Analogy in the Large. In D. Gentner, K. J. Holyoak
& B. N. Kokinov (eds.) The Analogical Mind: Perspectives from Cognitive Science.
MIT Press, Cambridge, Massachusetts: 23-58.

Forbus, K. D. & Oentner, D. (1986) Learning Physical Domains: Toward a
Theoretical Frame\vork. In R. S. Michalski, J. G. Carbonell & T. M. Mitchell (eds.)
Machine Learning: An Artificial Approach Volume 2, Morgan Kaufmann, Los Altos,
California: 311-348.

Forbus, K. D., Gentner, D. & Law, K. (1994) MAC/FAC: A Model of Similarity
based Retrieval. Cognitive Science, 19: 141-205.

292

Foss, D. 1., Rosson, M. B. & Smith, P. L. (1982) Reducing Manual Labor: An
Experimental Analysis of Learning Aids for a Text Editor. In Proceedings of the
Conference on Human Factors in Computing Systems, (Gaithersburg, Maryland, 15-
17 March 1982), ACM, New York: 332-336.

Fox, C. & Gonzalez, V. (1989) The Notebook: A New Model for the User Interface.
In G. Salvendy & M. J. Smith (eds.) Designing and Using Human-Computer
Inter/aces and Know/edge Based Systems, Elsevier, Amsterdam: 620-626.

Fraser, B. (1993) The Interpretation of Novel Metaphors. In A. Ortony (ed.)
Metaphor and Thought 2nd edition, Cambridge University Press, Cambridge: 329-
341

French, R. M. (1995) The Subtlety of Sameness: A Theory and CQmputer Model of
Analogy-Making, MIT Press, Cambridge, Massachusetts.

Frolich, D. M. (1993) The History and Future of Direct Manipulation. Behaviour
and Information Technology, 12(6): 315-329.

Furnas, G. W., Landauer, T. K., Gomez, L. M. & Dumais, S. T. (1987) The
Vocabulary Problem in Human-System Communication. Communications of the
ACM, 30(11): 964-971.

Galloway, J. P. (1993) Helping Teachers Learn Computing with Analogies: Weak or
Strong. In N. Estes & M. Thomas (eds.) Proceedings of the 10th International
Conference on Technology and Education, (Cambridge, Massachusetts, 21-24
March 1993).

Gaver, W. W. (1986) Auditory Icons: Using Sound in Computer Interfaces. Human
Computer Interaction, 2: 167-177

Gaver, W. W. (1989) The SonicFinder: An Interface that uses Auditory Icons.
Human-Computer Interaction, 4: 67-94

Gaver, W. W. (1991) Sound Support for Collaboration. In Proceedings of
ECSCW'91, (Amsterdam, 25-27 September 1991).

Gaver, W. W. & Smith, R. B. (1990) Auditory Icons in Large-Scale Collaborative
Environments. In D. Diaper, D. Gilmore, G. Cockton & B. Shackel (eds.) Human
Computer Interaction - INTERACT'90, North-Holland, Amsterdam: 735-740.

Gaver, W. W., Smith, R. B. & O'Shea, T. (1991) Effective Sounds in Complex
Systems: The ARKola Simulation. In Proceedings of CH1'91 - Human Factors in
Computing Systems, (New Orleans, Louisiana, 28 April - 2 May 1991), ACM, New
York.

Gentner, D. (1983) Structure-Mapping: A Theoretical Framework for Analogy.
Cognitive Science, 7: 155-170.

293

Gentner, D., Bo\vdle, B. F., Wolff, P. & Boronat, C. (2001) Metaphor is like
Analogy. In D. Gentner, K. J. Holyoak & B. N. Kokinov (eds.) The Analogical
Mind: Perspectives from Cognitive Science, MIT Press, Cambridge, Massachusetts:
199-254.

Gentner, D. & M. Jeziorski, M. (1993) The Shift from Metaphor to Analogy in
Western Science. In A. Ortony (ed.) Metaphor and Thought 2nd Edition, Cambridge
University Press, Cambridge: 447-480.

Gentner, D. & Stevens, A. L. (eds.) (1983) Mental Models, Lawrence Earlbaum
Associates, Hillsdale, New Jersey.

Gibbs, R. W. (1993) Process and Products in Making Sense of Tropes. In A. Ortony
(ed.) Metaphor and Thought 2nd Edition, Cambridge University Press, Cambridge:
252-276.

Gick, M. L. & Holyoak, K. J. (1980) Analogical Problem Solving. Cognitive
Psychology, 12: 306-355.

Gick, M. L. & Holyoak, K. J. (1983) Schema Induction and Analogical Transfer.
Cognitive Psychology, 15: 1-38.

Gifford, D. K., Jouvelot, P., Sheldon, M. & O'Toole, J. (1991) Semantic File
Systems. In Proceedings of the 13th ACM Symposium on Operating System
Principles.

Gittins, D. (1986) Icon-based Human-Computer Interaction. International Journal of
Man-Machine Studies, 24: 519-543.

Grossberg, M., Wiesen, R. A. & Yntema, D. B. (1976) An Experiment on Problem
Solving with Delayed Computer Response. IEEE Transactions on Systems, Man and
Cybernetics, SMC-6(3): 219-222.

Halasz, F. & Moran, T. P. (1982) Analogy Considered Harmful. In Proceedings of
the Conference on Human Factors in Computer Systems, (Gaithersburg, Maryland,
15-17 March 1982), ACM, New York: 383-386.

Halasz, F. G. & Moran, T. P. (1983) Mental Models and Problem Solving in Using a
Calculator. In Proceedings of CHI'83 - Human Factors in Computing Systems,
(Boston, Massachusetts, 12-15 December 1983), ACM, New York: 212-216.

Halasz, F. G., Moran, T. P. & Trigg, R. H. (1987) NoteCards in a Nutshell. In
Proceedings of CHI & GI 1987 - Human Factors in Computing Systems and
Graphics Interface, (Toronto, Canada, 5-7 April 1987), ACM, New York.

Halfhill, T. R. (1997) Good-bye, GUI: Hello, NUL Byte, 22(7): 60-72.

Hall, R. P. (1989) Computational Approaches to Analogical Reasoning: A
Comparative Analysis. Artificial Intelligence, 39: 39-120.

294

Harrison, M., Roast, C. & Wright, P. (1989) Complementary Methods for the
Iterative Design of Interactive Systems. In G. Salvendy & M. Smith (eds.) Designing
and Using Human-Computer Interfaces and Knowledge-based Systems, Elsevier,
Amsterdam: 651-658.

Hayes, P. J. (1985) Naive Physics I: Ontology for Liquids. In J. Hobbs & B. Moore
(eds.) Formal Theories of the Commonsense World, Ablex, Norwood, New Jersey:
71-108.

Heckel, P. (1996) Debunking the Software Patent Myths. In P. Ludlow (ed.) High
Noon on the Electronic Frontier. MIT Press, Cambridge, Massachusetts: 63-108.

Henderson, D. A. & Card, S. K. (1986) Rooms: The Use of Multiple Virtual
Workspaces to Reduce Space Contention in a Window-Based Graphical User
Interface. ACMTransactions on Graphics, 5(3): 211-243.

Henry, T. R. & Hudson, S. E. (1990) Multidimenional Icons. ACM Transactions on
Graphics, 9(1): 133-137.

Hill, R. D. (1992) Languages for the Construction of Multi-User Multi-Media
Synchronous (MUMMS) Applications. In B. A. Myers (ed.) Languages for
Developing User Interfaces. lones and Bartlett, London.

Hix, D. & Hartson, H. R. (1993) Developing User Interfaces. John Wiley and Sons,
Chichester.

Hofstadter, D. R. (1985) Analogies and Roles in Human and Machine Thinking. In
Metamagical Themas, Basic Books, New York: 547-604.

Holland, J. H., Holyoak, K. J., Nisbett, R. E. & Thagard, P. R. (1986) Induction:
Processes of Inference, Learning, and Discovery. MIT Press, Cambridge,
Massachusetts.

Holyoak, K. J. & Thagard, P. (1989) Analogical Mapping by Constraint Satisfaction.
Cognitive Science, 13: 295-355.

Houde, S. & Salomon, G. (1993) Working Towards Rich & Aexible File
Representations. In Adjunct Proceedings of INTERCHP93 - Human Factors in
Computing Systems, (24-29 April 1993, Amsterdam, The Netherlands), ACM, New
York: 9-10.

Howard, S. & Murray, D. M. (1987) A Taxonomy of Evaluation Techniques for
HC!. In H.J. Bullinger & B. Shackel (eds.) Human-Computer Interaction
INTERACT87, Elsevier Science B.V.lNorth-Holland, Amsterdam: 453-459.

Howes, A. and Young, R. M. (1991) Predicting the Learnability of Task-Action
Mappings. In Proceedings of CHI '91 - Human Factors in Computing Systems, (New
Orleans, Louisiana, 27 April- 2 May 1991), ACM, New York: 113-118.

295

Hutchins, E. (1989) Metaphors for Interface Design. In M. M. Taylor, F. Neel & D.
G. Bouwhuis (eds.) The Structure of Mu ltimoda I Dialogue, Elsevier/North-Holland,
Amsterdam: 11-28.

Hutchins, E. L., Hollan, J. D. & Norman, D. A. (1986) Direct Manipulation
Interfaces. In D. A. Norman & S. W. Draper (eds.) User Centered System Design,
Lawrence Earlbaum Associates, Hillsdale, New Jersey: 87-124.

Indurkhya, B. (1992) Metaphor and Cognition, Kluwer Academic, Dordrecht, The
Netherlands.

Ishii, H. & Ullmer, B. (1997) Tangible Bits: Towards Seamless Interfaces between
People, Bits and Atoms. In Proceedings of CH1'97 - Human Factors in COlnputing
Systems, (Atlanta, Georgia, 22-27 March 1997), ACM, New York: 234-241.

-
Jeannerod, M. (1997) The Cognitive Neuroscience of Action, Blackwell, Oxford.

Jeffries, R., Miller, J. R., Wharton, C. & Uyeda, K. M. (1991) User Interface
Evalation in the Real World: A Comparison of Four Techniques. In Proceedings of
CHl'91 - Human Factors in Computing Systems, (New Orleans, 27 April - 2 May
1991), ACM, New York: 119-124.

John, B. E. & Packer, H. (1995) Learning and Using the Cognitive Walkthrough
Method: A Case Study Approach. In Proceedings of CHl'95 - Human Factors in
Computing Systems, (Denver, Colorado, 7-11 May 1995), ACM, New York: 429-
436.

Johnson, C. & Gray, P. [eds.] (1995) Papers from a ~Vorkshop on Temporal Aspects
of Usability, (University of Glasgow, 6 July 1995), Department of Computing
Science, University of Glasgow, technical report GIST -G95-1.

Johnson, G. J. (1994) Of Metaphor and the Difficulty of Computer Discourse.
COlnmunications of the ACM, 37(12): 97-102.

Johnson, J., Roberts, T. L., Verplank, W., Smith, D. C., Irby, C. H., Beard, M. &
Mackey, K. (1989) The Xerox Star: A Retrospective. IEEE Computer, 22(9): 11-28.

Johnson, M. (1987) The Body in the Mind: The Bodily Basis of Meaning,
Imagination and Reason, University of Chicago Press, Chicago.

Jones, W. P. & Dumais, S. T. (1986) The Spatial Metaphor for User Interfaces:
Experimental Tests of Reference by Location versus Name. ACM Transactions on
Office Information Systems, 4(1): 42-63.

Kaelbling, L. P. (1993) Learning in Embedded Systems, MIT Press, Cambridge,
Massachusetts.

Kandogan, E. & Shneiderman, B. (1997) Elastic Windows: Evaluation of Multi
window Operations. In Proceedings of CHI'97 - Human Factors in Computing
Systems, (Atlanta, Georgia, 22-27 March 1997), ACM, New York: 250-257.

296

Karat, C.-M., Campbell, R. & Fiegel, T. (1992) Comparison of Empirical Testing
and Walkthrough Methods in User Interface Evaluation. In Proceedings of CHI'92
- Human Factors in Computing Systems, (Monterey, California, 3-7 May 1992),
ACM, New York: 397-404.

Katz, S. D. (1991) Film Directing Shot by Shot: Visualizing from Concept to Screen.
Michael Weise Productions, Studio City.

Kay, A. C. (1969) The Reactive Engine. Doctoral thesis, University of Utah, Salt
Lake City, Utah, USA.

Kay, A. C. (1993) The Early History of Smalltalk. ACM SIGPLAN Notices, 28(3):
69-95.

Keane, M. T., Ledgeway, T. & Duff, S. (1994) Constraints on Analogical Mapping:
A Comparison of Three Models. Cognitive Science, 18: 387-438.

Keiras, D. (1992) Diagrammatic Displays for Engineering Systems: Effects on
Human Performance in Interacting with Malfunctioning Systems. International
Journal oJ Man-Machine Systems, 36: 861-895.

Kei ras , D. E. & Bovair, S. (1984) The Role of a Mental Model in Learning to
Operate a Device. Cognitive Science, 8: 255-273.

Kei ras , D. E. & Poison, P. G. (1983) A Generalized Transition Network
Representation for Interactive Systems. In Proceedings oJ CHl'83 - Human Factors
in Computing Systems, (Boston, Massachusetts, 12-15 December 1983), ACM, New
York: 103-106.

Keiras, D. E. & Poison, P. O. (1985) An Approach to the Formal Analysis of User
Complexity. International Journal oJ Man-Machine Studies, 22: 365-394.

Kirsch, D. (1996) The Intelligent Use of Space. In P. E. Agre & S. J. Rosenschein
(eds.) Computational Theories oJ Interaction and Agency, MIT Press, Cambridge,
Massachusetts: 397-435.

Kobayashi, M. & Schmandt, C. (1997) Dynamic Soundscape: Mapping Time to
Space for Audio Browsing. In Proceedings oJ CHI'97 - Human Factors in
Computing Systems, (22-27 March 1997, Atlanta, Georgia), ACM, New York: 194-
201.

Kohler, H. (1987) The Space-Concept and the Control of Space. In H.-J. Bullinger,
B. Shackel & K. Kornwachs (eds.) Human-Computer Interaction - INTERACT87,
North-Holland, Amsterdam: 223-227.

Kosslyn, S. M. (1994) Image and Brain: The Resolution oJthe Imagery Debate, MIT
Press, Cambridge, Massachusetts.

297

Kuipers, B. (1984) Commonsense Reasoning about Causality: Deriving Behaviour
from Structure. Artificial Intelligence, 24: 169-204.

Kurtenbach, O. & Buxton, W. (1991) Issues in Combining Marking and Direct.
Manipulation Techniques. In Proceedings of the ACM Symposillln on User Interface
Software and Technology - UIST'91, (Hilton Head, South Carolina, 11-13 November
1991), ACM, New York: 137-144.

Lakoff, O. (1987) lVomen, Fire and Dangerous Things: lVhat Categories Reveal
about the Mind, University of Chicago Press, London.

Lakoff, O. (1993) The Contemporary Theory of Metaphor. In A Ortony (ed.)
Metaphor and Thought 2nd edition, Cambridge University Press, Cambridge: 202-
251.

Lakoff, O. & Johnson, M. (1980) Metaphors lVe Live By, University of Chicago
Press, London.

Lakoff, O. & Johnson, M. (1999) Philosophy in the Flesh: The Embodied Mind and
its Challenge to lVestern Thought, Basic Books, New York.

Landauer, T. K. (1989) Relations between Cognitive Psychology and Computer
System Design. In J. M. Carroll (ed.) Interfacing Thought: Cognitive Aspects of
Human-Computer Interaction, MIT Press, Cambridge Massachusetts: 1-25.

Landauer, T. K. (1995) The Trouble with Computers: Usefulness, Usability and
Productivity, MIT Press, Cambridge, Massachusetts.

Lansdale, M. W. & Ormerod, T. C. (1994) Understanding Interfaces: A Handbook
of Human-Computer Dialogue, Academic Press, London.

Laurel, B. (1993) Computers as Theatre, Addison-Wesley, Reading, Massachusetts.

Lee, A. Y., Foltz, P. W. & PoIson, P. O. (1994) Memory for Task-Action Mappings:
Mnemonics, Regularity and Consistency. International Journal of Human-Computer
Studies, 40: 771-794.

Levy, S. (1994) Insanely Great, Viking, New York.

Long, J. & Dowell, J. (1989) Conceptions of the Discipline of HCI: Craft, Applied
Science, and Engineering. In A. Sutc1iffe & L. Macauley (eds.) People and
Computers V, Cambridge University Press, Cambridge: 9-32.

Ltidtke, M. & Nackunstz, I. (1987) User Intetfaces to a Medical Archiving and
Communication System. In Bullinger, H.-J., Shackel, B. & KOf\vachs, K. (eds.)
Human-Computer Interaction - INTERACT 87, North-Holland, Amsterdam: 637-
642.

298

Lundell, J. & Anderson, S. (1995) Designing a "Front Panel" for Unix: The
Evolution of a Metaphor. In Proceedings of CHl'95 - Human Factors in Computing
Systems, (Denver, Colorado, 7-11 May 1995), ACM, New York: 573-579.

Mac Cormac, E R. (1985) A Cognitive Theory of Metaphor, MIT Press, Cambridge,
Massachusetts.

Mackinlay, J., Card, S. K. & Robertson, G. G. (1990) A Semantic Analysis of the
Design Space of Input Devices. Human-Computer Interaction, 5: 145-190.

MacLean, A., BelIotti, V., Young, R & Moran, T. (1991) Reaching Through
Analogy: A Design Rationale Perspective on Roles of Analogy. In Proceedings of
CHI'91 - Human Factors in Computing Systems, (New Orleans, Louisiana, 27 April
- 2 May 1991), ACM, New York: 167-172.

Mackinlay, J. D., Robertson, O. O. & Card, S. K. (1991) The Perspective Wall:
Detail and Context Smoothly Integrated. In Proceedings ofCHl'91 - Human Factors
in Computing Systems, (New Orleans, Louisiana, 27 April - 2 May 1991), ACM,
New York: 173-179.

Malone, T. W. (1983) How do People Organize Their Desks? Implications for the
Design of Office Information Systems. ACM Transactions on Office Information
Systems, 1(1): 99-112.

Maloney, J. H. & Smith, R. B. (1995) Directness and Liveness in the Morphic User
Interface Construction Environment. In Proceedings of the ACM Symposium on
User Interface Software and Technology - UIST'95, (14-17 November 1995,
Pittsburgh, Pennsylvania), ACM, New York.

Mander, R, Salomon, O. & Wong, Y. (1992) A 'Pile' Metaphor for Supporting
Casual Organisation of Information. In Proceedings of CHI'92 - Human Factors ;n
Computing Systems, 3-7 May 1992, Monterey, California), ACM, New York: 627-
634.

Marcus, A. (1993) Human Communication Issues in Advanced UIs.
Communications of the ACM, 36(4): 101-109.

Marx, A. N. (1994) Using Metaphor Effectively in User Interface Design. In CHl'94
- Human Factors in Computing Systems Conference Companion, (Boston,
Massachusetts, 24-28 April 1994), ACM, New York: 379-380.

May, J. (1993) Do Cognitive Walkthroughs Get Anywhere? ESPRIT Basic Research
Action 7040 - AMODEUS report UMlWP7.

Mayer, R E. (1976) Some Conditions of Meaningful Learning for Computer
Programming: Advance Organizers and Subject Control of Frame Order. Journal of
Educational Psychology, 68(2): 143-150.

Mayer, R. E. (1981) The Psychology of How Novices Learn Computer
Programming. ACM Computing Surveys, 13(1): 121-141.

299

Mayes, J. T., Draper, S. W., McGregor, A. M. & Oatley, K. (1988) Information
Row in a User Interface: The Effect of Experience and Context on the Recall of
MacWrite Screens. In D. M. Jones & R. Winder (eds.) People and COlnpuler W,
Cambridge University Press: 275-289.

Meira, S. L., Cavalcanti, A. L. C. & Santos, C. S. (1994) The Unix Filing System: A
MooZ Specification. In K. Lano & H. Haughton (eds.) Object-Oriented Specification
Case Studies. Prentice-Hall International, Wokingham: 80-109.

Mitchell, M. (1993) Analogy Making as Perception: A Computer Model, MIT Press,
Cambridge, Massachusetts.

Mitchell, M. & Hofstadter, D. R. (1990) The Emergence of Understanding in a
Computer Model of Concepts and Analogy-Making. Physica D, 42: 322-33~.

Mitchell, M. & Hofstadter, D. R. (1995) Perspectives on Copycat: Comparisons \vith
Recent Work. In D. R. Hofstadter and the Auid Analogies Research Group, Fluid
Concepts and Creative Analogies: Computer Models of the Fundamental
Mechanisms of Thought, Basic Books, New York.

Monk, A. F. & Dix, A. J. (1987) Refining Early Design Decisions with a Black-Box
Model. In D. Diaper & R. Winder (eds.) People and Computers Ill, Cambridge
University Press: 147-158.

Moran, T. P. (1981) The Command Language Grammar: A Representation for the
User Interface of Interactive Computer Systems. International Journal of Man
Machine Studies, 15: 3-50.

Morgan, C. & Sufrin, B. (1984) Specification of the Unix Filing System. IEEE
Transactions on Software Engineering, SE-IO(2): 128-142.

Muller, M. J. (1988) Multifunctional Cursor for Direct Manipulation User Interfaces.
In Proceedings of CHl'88 - Human Factors in Computing Systems, (Washington,
DC, 15-19 May 1988), ACM, New York: 89-94.

Myers, B. A. (1985) The Importance of Percent-done Progress Indicators for
Computer-Human Interaction. In Proceedings of CHI'85 - Human Factors of
Computing Systems, (San Francisco, California, 14-18 April 1985), ACM, New
York: 11-17.

Myers, B. A. (1988) Creating User Interfaces by Demonstration, Academic Press,
London.

Narayanan, S. (1997) Talking the Talk is Like Walking the Walk: A Computational
Model of Verbal Aspect. In M. O. Shafto & P. Langley (eds.) Proceedings of the
Nineteenth Annual Conference of the Cognitive Science Society, (Stanford
University, 7-10 August 1997), Lawrence Erlbaum Associates, Mahwah, New
Jersey: 548-553.

300

Nardi, B. & Barreau, D. (1997) "Finding and Reminding" Revisited: Appropriate
Metaphors for File Organization at the Desktop. SIGCHI Bulletin, 29(1).

Nardi, B. A. & Zanner, C. L. (1993) Beyond Models and Metaphors: Visual
Fonnalisms in User Interface Design. Journal oJ Visual Languages and Computing,
4: 5-33.

Nielsen, J. (1993) Usability Engineering, AP Professional/Academic Press, Boston,
Massachusetts.

Nonnan, D. A. (1981) The Trouble with Unix: The System Design is Elegant but the
User Interface is Not. Datamation, 27(12): 139-150.

Nonnan, D. A. (1983) Some Observations on Mental Models. In D. Gentner & A. L.
Stevens (eds.) Mental Models, Lawrence Erlbaum Associates, Hillsdale, New Jersey:
7-14.

Norman, D. A. (1984) Stages and Levels in Human-Machine Interaction.
International Journal oJ Man-Machine Studies, 21: 365-375

Norman, D. A. (1998) The Invisible Computer, MIT Press, Cambridge,
Massachusetts.

O'Donnell, P. & Draper, S. W. (1995) How Machine Delays Change User Strategies.
In G. Allen, J. Wilkinson & P. Wright (eds.) Adjunct Proceedings oJ HCI'95,
(Huddersfield, UK, 29 August -1 September 1995).

Olsen, D. R. (1998) Developing User InterJaces, Morgan Kaufman, San Francisco,
California.

Olson, J. S. (1992) The What and Why of Mental Models in Human-Computer
Interaction. In Proceedings oJ Mental Models and Everyday Activity, 2nd
Interdisciplinary Workshop on Mental Models, (Cambridge, 23-25 March 1992).

Ortony, A. (1979) Beyond Literal Similarity. Psychological Review, 86(3): 161-180.

Owen, D. (1986) Naive Theories of Computation. In D. A. Norman & S. W. Draper
(eds.) User Centered System Design: New Perspectives on Human-Computer
Interaction, Lawrence Earlbaum Associates, Hillsdale, New Jersey.

Payne, S. 1. (1988) Metaphorical Instruction and the Early Learning of an
Abbreviated-Command Computer System. Acta Psychologica, 69: 207-230.

Payne, S. J. (1991a) A Descriptive Study of Mental Models. Behaviour and
InJormation Technology, 10(1): 3-21.

Payne, S. J. (1991b) Display-Based Action at the User Interface. International
Journal oJ Man-Machine Studies, 35: 275-289.

301

Perez-Quinones, M. A. & Sibert, J. L. (1996) A Collaborative Model of Feedback in
Human-Computer Interaction. In Proceedings 0/ CHI'96 - Hunzall Factors ill
Computing Systelns, (Vancouver BC, Canada, 13-18 Apri11996), ACM, New York:
316-323.

Philips, C. H. E. & Apperley, M. D. (1991) Direct Manipulation Interaction Tasks: A
Macintosh-based Analysis. Interacting with COlnputers, 3(1): 9-26.

Pinker, S. (1994) The Language Instinct, William Morro\v Inc, New York.

P6lya, G. (1945) How to Solve it: A New Aspect of Mathematical Method, 2nd
Edition, Penguin, London.

Poison, P. G. & Lewis, C. H. (1990) Theory-Based Design for Easily Learned
Interfaces. Human-Computer Interaction, 5: 191-220.

Poison, P. G., Lewis, C., Rieman, J. & Wharton, C. (1992) Cognitive Walkthroughs:
A Method for Theory-based Evaluation of User Interfaces. International Journal of
Man-Machine Studies, 36: 741-773.

Putnam, H. (1981) Reason, Truth and History, Cambridge University Press,
Cambridge.

Raskin, J. (2000) The Humane Inter/ace: New Directions for Designing Interactive
Systems. ACM Press/Addison Wesley, Reading, Massachusetts.

Reddy, M. J. (1993) The Conduit Metaphor: A Case of Frame Conflict in our
Language about Language. In A. Ortony (ed.) Metaphor and Thought 2nd Edition,
Cambridge University Press, Cambridge: 164-201.

Regier, T. (1996) The Human Semantic Potential: Spatial Language and
Constrained Connection ism, MIT Press, Cambridge, Massachusetts.

Rekimoto, J. & Nagao, K. (1995) The World Through the Computer: Computer
Augmented Interaction with Real World Environments. In Proceedings of the ACM
Symposium on User Interface Software and Technology - UIST95, (Pittsburgh,
Pennsylvania, 14-17 November 1995), ACM, New York: 29-36.

Rieman, J., Lewis, C., Young, R. M. & PoIson, P. G. (1994) "Why is a Raven like a
Writing Desk?" Lessons in Interface Consistency and Analogical Reasoning from
Two Cognitive Architectures. In Proceedings of CHI'94 - HUlnan Factors in
Computing Systems, (Boston, Massachusetts, 24-28 April 1994), ACM Press, New
York.

Rizzo, A., Marchigiani, E. & Andreadis, A. (1997) The A VANTI Project:
Prototyping and Evaluation with a Cognitive Walkthrough Based on the Norman's
Model of Action. In Proceedings of Design of Interactive Systems - DIS'97 ACM,
New York: 305-309.

302

Resnick, M., Martin, E, Sargent, R. & Silvennan, B. (1996) Programmable Bricks:
Toys to Think With. IBM Systems Journal, 35(3&4): 443-452.

Rheingold, H. (1991) Virtual Reality, Seeker & Warburg, London.

Roast, C. R. & Harrison, M. D. (1994) User Centred System Modelling Using the
Template Model. In F. Paterno (ed.) Proceedings of a Eurographics Workshop on
the Design, Specification and Verification of Interactive Systems, (Bocca di Magra,
Italy, 8-10 June 1994): 261-273.

Robe rts on, G., CzeIWinski, M., Larson, K., Robbins, D. C., ThieI. D. & van
Dantzich, M. (1998) Data Mountain: Using Spatial Memory for Document
Management. In Proceedings of the ACM Symposium on User Interface Software
and Technology - UISr98, ACM, New York: 153-162.

-
Rogers, Y. (1986) Evaluating the Meaningfulness of Icon Sets to Represent
Command Operations. In M. D. Harrison & A. E Monk (eds.) People and
Computers, Cambridge University Press, Cambridge: 586-603.

Rogers, Y. (1992) Capturing Mental Models. In Y. Rogers, A. Rutherford & P. A.
Bibby (eds.) Models in the Mind: Theory, Perspective and Application, Academic
Press, London.

Rohrer, T. (1995) Feeling Stuck in a GUI Web: Metaphors, Image-schemas, and
Designing the Human Computer Interface. Available from The University of Oregon
WWW site URL http://darkwing.uoregon.edu/-rohrer/gui4web.htm

Rosch, E. H. (1973) Natural Categories. Cognitive Psychology, 4: 328-350.

Rosch, E. (1978) Principles of Categorization. In E. Rosch & B. B. Lloyd (eds.)
Cognition and Categorization, Lawrence Erlbaum Associates, Hillsdale, New
Jersey: 27-48.

Rose, D. E. (1998) Beyond Search: The Information Access Research Group at
Apple. SIGCHI Bulletin, 30(2): 85-89.

Rose, D. E., Mander, R., Oren, T., PonceIeon, D. B., Salomon, G. & Wang, Y. Y.
(1993) Content Awareness in a File System Interface: Implementing the 'Pile'
Metaphor for Organising Interaction. In Proceedings of the 16th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, ACM, New York: 260-269.

Rosenberg, J. K. & Moran, T. P. (1985) Generic Commands. In B. Shackel (ed.)
Human-Computer Interaction - INTERACT' 84, North Holland, Amsterdam.

Rumelhart, D. E. (1989) Towards a Microstructural Account of Human Reasoning.
In S. Vosniadou & A. Ortony (eds.) Similarity and Analogical Reasoning,
Cambridge University Press, Cambridge: 298-312.

303

Rumelhart, D. E. & Abrahamson, A. A. (1973) A Model for Analogical Reasoning.
Cognitive Psychology, 5: 1-28.

Rumelhart, D. E. & Norman, D. A. (1981) Analogical Processes in Learning. In J. R.
Anderson (ed.) Cognitive Skills and their Acquisition, Lawrence Earlbaum
Associates, Hillsdale, New Jersey: 335-359.

Runciman, C. & Thimbleby, H. (1986) Equal Opportunity Interactive Systems.
International Journal of Man-Machine Studies, 25: 439-451.

Rutherford, A. & Wilson, J. R. (1992) Searching for the Mental Model in Human
Machine Systems. In Y. Rogers, A. Rutherford & P. A. Bibby (eds.) Models in the
Mind: Theory, Perspective and Application, Academic Press, London.

Schiele, F. & Green, T. R. G. (1990) HCI Formalisms and Cognitive Psychology:
The Case of Task-Action Grammar. In M. Harrison & H. Thimbleby (eds.) Formal
Methods in Human-Computer Interaction, Cambridge University Press, Cambridge:
9-62.

Schmandt, C. & Mullins, A. (1995) AudioStreamer. Exploiting Simultaneity for
Listening. In Proceedings of CHI'95 - Human Factors in Computing Systems,
(Denver, Colorado, 7-11 May 1995), ACM Press, New York: 218-219.

Schon, D. A. (1983) The Reflective Practitioner: How Professionals Think in Action.
Basic Books.

Sheldrake, R. (1994) Seven Experiments That Could Change the lVorld: A Do-It
Yourself Guide to Revolutionary Science, Fourth Bitate, London.

Shneiderman, B. (1982) The Future of Interactive Systems and the Emergence of
Direct Manipulation. Behaviour and Information Technology, 1: 237-256.

Shneiderman, B. (1983) Direct Manipulation: A Step Beyond Programming
Languages. IEEE Computer, 16: 57-69.

Shneiderman, B. (1986) Seven Plus or Minus Two Central Issues in Human
Computer Interaction. In Proceedings of CHI' 86 - Human Factors in Computing
Systems, (Boston, Massachusetts, 13-17 April 1986), ACM, New York: 343-349.

Shneiderman, B. (1989) Future Directions for Human-Computer Interaction. In G.
Salvendy & M. J. Smith (eds.) Designing and Using Human-Computer Interfaces
and Knowledge Based Systems, Elsevier/North-Holland, Amsterdam: 2-17.

Shneiderman, B. & Maes, P. (1997) Direct Manipulation versus Interface Agents.
Interactions, 4(6): 42-61.

Sibert, J. L., Hurley, W. D. & Bleser, T. W. (1986) An Object-Oriented User
Interface Management System. Computer Graphics, 20(4): 259-268.

304

Simon, H. A. (1981) The Sciences of the Artificial 2nd Edition, MIT Press,
Cambridge, Massachusetts.

Simon, T. & Young, R. M. (1988) GOMS meets STRIPS: The Integration of
Planning with Skilled Procedure Execution in Human-Computer Interaction. In D.
M. Jones & R. Winder (eds.) People and Computers IV, Cambridge University
Press, Cambridge: 581-594.

Singley, M. K. & Anderson, J. R. (1989) The Transfer of Cognitive Skill, Harvard
University Press, Cambridge, Massachusetts.

Smith, B. C. (1996) On the Origin of Objects, MIT Press, Cambridge,
Massachusetts.

Smith, D. C. (1977) Pygmalion: A Computer Program to Mo.del and Simulate
Creative Thought, Birkhauser Verlag, Basel.

Smith, D. C., Irby, C., Kimball, R., Verplank, B. & Harslem, E. (1982a) Designing
the Star User Interface, Byte, 7(4), April 1982.

Smith, D. C., Irby, C., Kimball, R. & Harslem, E. (1982b) The Star User Interface:
An Overview. In Proceedings of the AFIPS National Computer Conference, (June
1982): 517-528.

Smith, R. B. (1986) The Alternate Reality Kit: An Animated Environment for
Creating Interactive Simulations. In Proceedings of the 1986 IEEE Computer
Society Workshop on Visual Languages, (Dallas, June 1986): 99-106.

Smith, R. B. (1987) Experiences with the Alternate Reality Kit: An example of the
Tension Between Uteralism and Magic. In Proceedings of CHI & GI1987 - Human
Factors in Computing Systems and Graphics Interface, (Toronto, Canada, 5-7 April
1987), ACM, New York: 61-67.

Smyth, M., Anderson, B., Knott, R. & Alty, J. L (1995) Reflections on the Design
of Interface Metaphors. In Human-Computer Interaction - INTERACT'95, Elsevier,
Amsterdam: 339-345.

Spiro, R. J., Feltovich, P. J., Coulson, R. L & Anderson, D. K. (1989) Multiple
Analogies for Complex Concepts: Antidotes for Analogy-Induced Misconception in
Advanced Knowledge Acquisition. In S. Vosniadou & A. Ortony (eds.) Similarity
and Analogical Reasoning, Cambridge University Press, Cambridge: 498-531

Sowa, J. F. (1995) Top-Level Ontological Categories. International Journal of
Human-Computer Studies, 43: 669-685.

Stafford-Fraser, Q. & Robinson, P. (1996) Brightboard: A Video-Augmented
Environment In Proceedings of CHI'96 - Human Factors in Computing Systems,
(Vancouver BC, Canada, 13-18 April 1996), ACM, New York: 134-141.

305

Stevens, W. R. (1992) Advanced Progralll1ning in the UNIX Environment, Addison
Wesley, Reading, Massachusetts.

Sutherland, I. E. (1963) Sketchpad: A Man-Machine Graphical COlnlnunicatioll
System. Doctoral Thesis, Massachusetts Institute of Technology, Cambridge, USA.

Tauber, M. J. (1988) On Mental Models and the User Interface. In G. C. van der
Veer, T. R. G. Green, l.-M. Hoc & D. M. Murray (eds.) lVorking with COlnputers:
Theory Versus Outcome, Academic Press, London: 89-119.

Teal, S. L. & Rudnicky, A. I. (1992) A Performance Model of System Delay and
User Strategy Selection. In Proceedings of CHl'92 - Hlllnan Factors in Computing
Systems, (Monterey, California, 3-7 May 1992), ACM Press, New York: 295-305.

Thagard, P., Holyoak, K. J., Nelson, G. & Gochfeld, D. (1990) Analog R~trieval by
Constraint Satisfaction. Artificial Intelligence, 46: 259-310.

Thimbleby, H. (1980) Dialogue detennination. International Journal of Man
Machine Studies, 13: 295-304

Thimbleby, H. (1990) User Interface Design, Addison-Wesley, Wokingham.

Tognazzini, B. (1992) Tog on Interface, Addison-Wesley, Reading, Massachusetts.

Took, R. K. (1990a) Surface Interaction: Separating Direct Manipulationlnler/aces
from their Applications. PhD Thesis available as Department of Computer Science,
University of York technical report YCST 90/10.

Took, R. (1990b) Surface Interaction: A Paradigm and Model for Separating
Application and Interface. In Proceedings of CHl'90 - Human Factors in COlnputing
Systems, (Seattle, Washington, 1-5 April 1990), ACM, New York: 35-42.

Treglown, M. & Q'Shea, T. (1993) The Computer-Computer Metaphor for
Multimedia Systems. In N. Estes & M. Thomas (eds.) Proceedings of the 10th
International Conference on Technology and Education, (Cambridge,
Massachusetts, 21-24 March 1993).

Treglown, M. (1994) Qualitative Models of User Interfaces. In G. Cockton, S. W.
Draper & O. R. S. Weir (eds.) People and Computers IX, Cambridge University
Press, Cambridge.

Treglown, M. (1998) From Agents to a Networked Display Manager. In J. May, J.
Siddiqi & J. Wilkinson (eds.) HC1'98 Conference Companion - Adjunct Proceedings
of the 13th British Computer Society Conference on Human Computer Interaction,
(Sheffield, 1-4 September 1998): 114-115.

Treglown, M. (1999) Is the Trashcan Being Ironic? Analysing Direct Manipulation
User Interfaces using a Contemporary Theory of Metaphor. In R. Paton & I. Neilson
(eds.) Visual Representations and Interpretations, Springer-Verlag, Berlin: 173-180.

306

Treglown. M. (2000) Embodiment and Interface Metaphors: Comparing Computer
Filing Systems. In S. McDonald. Y. Waern & G. Cockton (eds.) People and
Computers XW - Usability or Else!. Springer Verlag. London: 341-356.

Treglown, M. (2001) Filing. Piling, Grabbing, and Trashing: Applying a
Contemporary Theory of Metaphor to User Interface Design. In D. Rachovides & Z.
Swiderski (eds,) Proceedings of a PC-HC1'2001 workshop on Integrating
Metaphors. Multimodality and Multimedia. (University of Patras, Greece, 7
December 2(01).

Tscheligi, M. & Vaananen-Vainio-Mattila, K. (1998) Metaphors in User Interface
Development: Methods and Requirements for Effective Support. In D. Benyon & P.
Palanque (eds.) Critical Issues in User Interface Systems Engineering, Springer
Verlag, London: 249-263.

Tullis, T. S. (1985) Designing a Menu-based Interface to an Operating System. In
Proceedings of CHl'85 - Human Factors in Computing Systems, (San Francisco,
California. 14-18 April 1985). ACM. New York: 79-84.

Tversky, A. (1977) Features of Similarity. Psychological Review, 84(4): 327-352.

Ullmer, B. & Ishii, H. (1997) The metaDESK: Models and Prototypes for Tangible
User Interfaces. In Proceedings of the ACM Symposium on User Interface Software
and Technology - UISr97, (Banff, Alberta, Canada), ACM. New York: 223-232.

Underkoffler, J. (1997) Antisedentary Beigeless Computing. Personal Technologies.
1(1): 28-40.

Vahalia, U. (1996) UNIX Internals, Prentice-Hall, New Jersey.

Van Dam, A. (1997) Post-WIMP User Interfaces. Communications of the ACM,
40(2): 63-67.

Vervaeke, J. & Green, C. D. (1997) Women, Fire, and Dangerous Theories: A
Critique of Lakofrs Theory of Categorization. Metaphor and Symbol, 12: 59-80.

Waern, Y. (1985) Learning Computerized Tasks as Related to Prior Task
Knowledge. International Journal of Man-Machine Studies. 22: 441-455.

Waern, Y. (1990) Human Learning of Human-Computer Interaction: An
Introduction. In P. Falzon (ed.) Cognitive Ergonomics: Understanding. Learning
and Designing Human-Computer Interaction. Academic Press, London.

Weimer, D. M. & Ganapathy, S. K. (1989) A Synthetic Visual Environment with
Hand Gesturing and Voice Input. In Proceedings of CHI'89 - Human Factors in
Computing Systems, (Austin, Texas. 30 April- 4 May 1989), ACM, New York.

307

Wellner, P. (1991) The DigitalDesk Calculator: Tangible Manipulation on a Desk
Top Display. In Proceedings o/the ACM Symposium on User Inter/ace Software and
Technology - UIST91, (Hilton Head, South Carolina, 11-13 November 1991), ACM,
New York: 27-33.

Wertheim, M. (1999) Out of This World. New Scientist, 161(2172): 38-42.

Winograd, T. & Aores, F. (1986) Understanding Computers and Cognition: A New
Foundation/or Design, Addison-Wesley, Reading, Massachusetts.

Winston, P. H. (1980) Learning and Reasoning by Analogy. COlnlnunications 0/ the
ACM, 23(12): 689-703.

Wright, P., Merriam, N. & Fields, B. (1998) From Formal Models to Empirical
Evaluation and Back Again. In P. Palanque & F. Paterna (eds.) Formal Me-thods in
Human-Computer Interaction, Springer-Verlag, London: 283-315.

Young, R. M. (1981) The Machine inside the Machine: User's Models of Pocket
Calculators. International Journal 0/ Man-Machine Studies, 15: 51-85

Young, R. M. (1983) Surrogates and Mappings: Two Kinds of Conceptual Models
for Interactive Devices. In D. Gentner & A. L. Stevens (eds.) Mental Models,
Lawrence Earlbaum Associates, Hillsdale, New Jersey: 35-52.

Young, R. M. & Simon, T. (1987) Planning in the Context of Human-Computer
Interaction. In D. Diaper & R. Winder (eds.) People and Computers 11, Cambridge
University Press, Cambridge: 363-370.

308

Appendix A

Qualitative Process Theory Notation and Models of
Generic Processes

"One day, J had a saucepanjull of water on the gas ring. Just as it was about to boil,

I was suddenly called away. When J came back, 20 minutes later, the saucepan was

quite empty. Now I had locked the door; the window was closed, and the room was

empty except for the cat. So obviously it was the cat who drank the water. "

- Erik Satie (1866-1925), from sleeve notes, Piano Music, EMI Records.

This appendix summanses the Qualitative Process Theory notation due to Forbus

(1984) employed in this thesis. Possible QPT models of the generic commands that

may be applied to files (Rosenberg & Moran, 1985) are also presented.

A.1 Qualitative Process Theory Notation Employed in the

Thesis

Quantity-type

Has-Quantity

Individuals

Preconditions

Declaration of an object attribute.

Declaration of an attribute possessed by a

particular object type.

The objects involved in, and affected by a process.

Conditions which lie outside process definitions,

usually suggesting some human intervention.

Quanti tyCondi tions Conditions of values of attributes that must apply

Relations

Influences

A[•••]

Am[•••]

1+(•••)

1- (•••)

(T •••)

OCQ+

before a process becomes acti vc.

Relations between values of attributes of object.

Values are directly influenced by other values

while a process is active.

The amount (value) of some attribute of an object.

The magnitude of a value (sign is ignored).

Value is directly influenced by other values. The

value increases while the process is active.

Decreasing direct influence.

The proposition~ or condition~ is TRUE.

A value is qualitatively proportional to another.

The value increases while the process is active,

but the relationship is not as well defined as with a

direct influence.

A value is inversely proportional to another.

310

A.2 QPT Models of Generic Commands

A.2.1 Moving a file

Process move-file

Individuals:
source-file an object, Has-Quantity(source-file, size)
dest-file an object
source-dir a directory
dest-dir a directory,

Has-Quantity(dest-dir, free-space) -
path a data-path,

Connection(data-path,source-dir, dest-dir)

Preconditions:
(T task-is-move-file)
Aligned(path)

QuantityConditions:
A[free-space{dest-folder)] > A[size(source-file)]
A[size{source-file)] > ZERO

Relations:
Let move-rate be a quantity
A[move-rate] > ZERO
move-rate ocQ+ device-speed (dest-folder)
move-rate ocQ_ system-load

Influences:
1- (size{source-file), A[move-rate])
1+ (size{dest-file), A[move-rate])

311

A.2.2 Copying (or duplicating) a file

Process copy-file

Individuals:
source-file an object, Has-Quantity(source-file, size)
duplicate-file an object
source-dir a directory
dest-dir a directory,

Has-Quantity(dest-dir, free-space)
path a data-path,

Connection(data-path,source-dir, dest-dir)

Preconditions:
(T task-is-move-file)
Aligned{path)

QuantityConditions:
A[free-space(dest-dir)] > A[size{source-file)]
A[size(source-file)] > ZERO

Relations:
Let copy-rate be a quantity
A[Copy-rate] > ZERO
copy-rate ~Q+ device-speed(dest-folder)
copy-rate ~Q_ system-load

Influences:
1+ (size{duplicate-file), A[copy-rate])

312

A.2.3 Deleting a file

Process delete-file

Individuals:
file an object, Has-Quantity(file, size)

Preconditions:
(T task-is-delete-file)

QuantityConditions:
A[size(file)] > ZERO

Relations:
Let delete-rate be a quantity
A[delete-rate] > ZERO
delete-rate ocO- system-load
delete-rate ocO+ device-speed

Influences:
I- (size(file), A[delete-rate])

313

A.2.4 Printing a file

Quantity-Type (pages-to-print)
Quantity-Type (document-type)
Quantity-Type (paper)
Quantity-Type (printer-model)
Quantity-Type(pages)

process print-file

Individuals:
doc a document,

Has-Quantity(doc, document-type),
Has-Quantity(doc, pages)

myprinter a printer,
Has-Quantity (myprinter, pages-to-print),
Has-Quantity (myprinter , printer-model),
Has-Quantity (myprinter, paper)

network a datapath, Connected (doc, myprinter,
network)

Preconditions:
Aligned (network)
(T task-is-print-file)

QuantityConditions:
A[paper(myprinter)] > ZERO
A[pages-to-print(doc)] > ZERO

Relations:
Let print-rate be a quantity
A[print-rate] > ZERO
print rate ~Q printer-model(myprinter)
printrate ~Q document-type(doc)

Influences:
I-(pages-to-print(doc), print-rate)
I-(paper(myprinter), print-rate)

314

Appendix B

Forms used to Conduct Cognitive Walkthroughs

Chemist: Ah, certainly. Walk this way please.

Man: If I could walk that way, I wouldn't need aftershave.

- Chapman et al., Monty Python's Flying Circus: Just the Words Vol.}, Methuen.

B.I Forms Completed During a Walkthrough

During the second phase of a walkthrough, the walkthrough itself, a number of

questions must be answered and forms completed by the individual(s) conducting the

walkthrough for each action in the action sequence prepared which, if performed,

would result in the successful completion of the task.. The forms for the full version

of cognitive walkthrough undertaken and reported above are taken from Poison,

Lewis, Rieman and Wharton (1992) and reproduced below.

B.1.1 Section One of Phase Two of a Walkthrough

Cognitive Walkthrough For A Step

Task _____________ Action # ________ _

1. Goal structure for this step

1.1 Correct goals. What are the appropriate goals for this point in the
interaction? Describe as for initial goals.

1.2 Mismatch with likely goals. What percentage of users will not have these
goals, based on the analysis at the end of the previous step? Check each goal in
this structure against your analysis at the end of the previous step. Based on that
analysis, will all users have the goal at this point, or may some users have
dropped it or failed to fonn it? Also check the analysis at the end of the previous
step to see if there are unwanted goals, not appropriate for this step, that will be
fonned or retained by some users. (% 0255075 100)

316

B.1.2 Section Two of Phase Two of a Walkthrough

2. Choosing and executing the action.

Correct action at this step: ____________ _

2.1 Availability. Is it obvious that the correct action is a possible choice here? If
not, what percentage of users might miss it? (% 0255075 100)

2.2 Label. What label or description is associated with the correct action?

2.3 Link of label to action. If there is a label or description associated with the
correct action, is it obvious, and is it clearly linked with this action? If not, what
percentage of users might have trouble? (% 0255075 100)

2.4 Link of label to goal. If there is a label or description associated the correct
action, is it obviously connected with one of the current goals for this step?
How? If not, what percentage of users might have trouble? Assume all users
have the appropriate goals listed in Section 1. (% 0 2550 75100)

2.5 No label. If there is no label associated with the correct action, how will
users relate this action to a current goal? What percentage might have trouble
doing so? (% 0 25 50 75 100)

2.6 Wrong choices. Are there other actions that might seem appropriate to some
current goal? If so, what are they and what percentage of users might choose
one of these? (% 0 255075100)

2.7 Time-out. If there is a time-out in the interface at this step does it allow time
for the user to select the appropriate action? How many users might have
trouble? (% 0 25 50 75 100)

2.8 Hard to do. Is there an)1hing physically tricky about executing the action?
If so, what percentage of users will have trouble? (% 02550 75 100) .

317

B.l.3 Section 3 of Phase Two of a Walkthrough

3. Modification of goal structure
Assume the correct action has been taken. What is the system's response?

3.1 Quit or backup. Will users see that they have made progress towards some
current goal? What will indicate this too them? What percentage of users will
not see progress and try to quit or backup? (% 0 255075 100)

3.2 Accomplished goals. List all current goals that have been accomplished. Is
it obvious from the system response that each has been accomplished? If not,
indicate for each how many users will not realise it is complete.

3.3 Incomplete goals that look accomplished. Are there are any current goals
that have not been accomplished, but might appear to have been based on the
system response? What might indicate this? List any such goals and the
percentage of users \vill (sic) think they have actually been accomplished.

3.4 "And-then It structures. Is there an "and-then" structure, and does one of its
subgoals appear to be complete? If the subgoal is similar to the supergoal,
estimate how many users may prematurely terminate the "and-then" structure.

3.5 New goals in response to prompts. Does the system response contain a
prompt or cue that suggests any new goal or goals? If so, describe the goals. If
the prompt is unclear, indicate the percentage of users \vho will not form these
goals.

3.6 Other nelV goals. Are there any other ne\v goals that users will form given
their current goals, the state of the interface and their background knowledge?
Why? If so, describe the goals, and indicate how many users \vill form them.
NOTE that these goals mayor may not be appropriate, so forming them may be
bad or good.

318

Appendix C

Metaphors We Stack By

"PeT IBak] has an appealing visual analogy faT a system at the critical state: a sand

pile. "

- Roger Lewin (1993) Complexity: Life at the Edge of Chaos, J. M. Dent.

C.I Introduction

The second version of the Medusa system, discussed in Chapter 9 above, is designed

to make use of a version of the pile metaphor to support casual organisation of the

user's work and to support ad hoc categorisation to aid performance of the user's

immediate tasks. In this appendix an analysis is undertaken using the

Lakoff/Johnson theol)' to attempt to ground the metaphorical language used to

describe user's work and organisation of information. This analysis also seeks to

define the aspects of the second Medusa user interface that support file organisation

tasks. As we have not yet undertaken a study of users' existing pile-related tasks (

the analysis below is based upon the study undertaken by Malone (1983), who

provides considerable data from the users that he studied. We quote considerably

from Malone's (1983) paper below and use his text as the corpus to be analysed. The

need to conduct a study of our own similar to Malone's is prompted by the analysis

presented below, and would help to identify further issues and task scenarios that a

computer-based pile system may need to support.

C.2 Users' Construction and Use of Piles

Malone classifies the construction and use of piles into two types, neat and messy.

These categories reflect a user's job type and status in addition to their need for, and

use of, information resources. This distinction is maintained below in collecting

meaningful passages describing pile organisation from Malone's study in case a

number of metaphors are found to be needed to describe piles and their use.

e.2.1 A Neat Office

In Malone's study, 'Michael' is said to have a neat office. Malone describes Michael's

office and information usage saying:

"As a purchasing agent, Michael's' \vork is based primarily on a set of

standard forms. The arrangement of his office reflects the flow of

these forms, and the description will focus on this flow. There are

different piles and files in the office for different kinds of forms and

for forms in various stages of processing. Michael summarised one

aspect of this as follo\vs:

The good stuff is all out on the table. The paperwork flow is

always out. I don't put paperwork - other than the stuff that is in

the suspense file - in a drawer. (M.P., 10/27/81)

According to Michael's description, purchase requisitions enter his

office in his in-basket (top of tray A) and he sorts them into two

groups awaiting processing in pile B. Some requisitions can be

processed immediately and put in the out-basket (bottom of tray A);

others are kept in the 'hold' tray (middle of tray A) until further

infonnation can be collected (usually by telephone). Each morning,

320

Michael sorts the processed forms from the out-basket (bottom of

tray A) into folders in tray D for distribution.

When his copy of a purchase order returns to Michael's in-basket, he

files it in the suspense file (F) of open orders according to the date

when the merchandise is supposed to be delivered. When forms

confirming delivery ('receivers') amve from the receiving

department. they are temporarily placed in pile H and then matched

with the purpose orders on file ... Pile C contains purchase oroers from

file F that require some special action as a result of someone calling

to check on them or change them.

The bookshelf contains primarily books and catalogues. loosely

arranged. The bottom drawer of file F contains information on freight

and commodities. arranged by subject. Information to be files here is

also stacked in pile I and tray E. The desk file drawer includes more

product information, administrative memos. and blank forms - again

arranged by subject. Michael sometimes uses his blackboard to list

important things to remember to do. and he has a bulletin board that

contains some telephone numbers and address lists." (Malone, 1983:

101-102)

C.2.2. A Messy Office

Malone offers as an example of a messy office that of 'Kenneth', saying:

"As a research scientist. Kenneth has very little routine paper flow.

Most of the information in his office consists of books, papers,

magazines. personal notes, and computer listings. In contrast to

321

. j

Michael's fairly neat and narrowly defined piles, Kenneth's office is

filled with loosely stacked piles of mixed content. For example, here

is how Kenneth describes the contents of piles A, B, C, D and E.

Kenneth: Beside my terminal [piles A and B] are basically piles

of stuff about what I need in hacking in the recent past. The

deeper you go, the further back it is. Off to the right [gestures to

piles C, D, and E] is stuff that I've shoved to the right when the

pile beside my terminal got too high. But I've periodically

pruned it so it's no longer useful; it's just a pile of junk

Interviewer: ... But these things [gestures to piles A and B] - you

know pretty well what's in these piles?

Kenneth: Vh .. there's probably one or two copies of the paper

David and I have been working on, piles of notes on [two

projects], and there's probably some other random things -

documentation for computers ... Here's [pulls document out of

pile B and reads its ,title]. Actually I have a ne\ver one 'sitting in

the - I know there's a newer one sitting in the pile [looks through

the pile A]..and I don't know where it is. Ah! here's a good one -

the new one.

A similar lack of clear organisation prevails on the desk as well:

Kenneth: The desk is sort of random. It's sort of mostly recent

stuff, because I periodically do clean off my desk. For about 30

seconds it's clean. I usually separate it into piles that have to be

instantly answered, should be answered in a week, or whatever

has appropriate places. That pile there is mostly stuff that should

be dealt with in a \veek .. And it's been sitting for months.

The desk mostly has right now sort of - I get infinite junk mail,

subscribe to too many magazines. So a lot of that is magazine

reading I haven't caught up on. And there's a few piles of critical

322

stuff in there. I don't know . .I'm sure when I find them.

somebody will be mad at me for not answering their letter. I

have a letter from Baker hidden someplace in here complaining

about one of my papers. It's been here for a year and a half and I

haven't answered it. (K. H. 10/16/81)

The rest of the office has other piles of books and papers on the floor

as well as on tables and shelves. The bookshelves include binders of

computer documentation. technical reports. and back -issues of

journals. some of which are filed with cardboard dividers. There are

two bulletin boards containing assorted items such as letters. phone

messages. research notes. and a raffle ticket The blackboard

contains. among other things. remnants of several conversations and

two partially redundant lists of things to do." (Malone. 1983: 103-

104)

The two case studies that Malone details. which are quoted from above. differ in

their use of piles .• In both cases. though. the exact roles of piles in the temporal

order and time scales in which tasks must be performed (and in the success with

which deadlines are met) are similar. Also similar are the language and metaphors

used by Malone. 'Kenneth'. and 'Michael' to describe interaction with piles. These

metaphors will be examined in the following section.

C.3 A Logic of Piling

A fundamental image schema that describes much bodily experience. 10 the

Lakoffllohnson view, is the CONTAINER schema. lohnson (1987) observes that

human beings constantly experience their bodies as containers and as things in

323

. !

containers (for example, rooms). The notion of containment, as is captured in an

image schema, is depicted in Figure C.l.

o
Figure e.l A containment schema (Johnson, 1987: 23)

The container schema, in Lakofrs (1987) description has the structural elements of

an interior, a boundary and an exterior, and like many image schemas its internal

structure yields a basic "logic". This logic is described by Lakoff (1987: 272) as

follo\vs:

"Everything is either inside a container or out of it - P or not P. If

container A is in container B and X is in A, then X is in B - which is

the basis for modus ponens: If all A's are B's and X is an A, then X is

aB."

10hnson (1987: 22) identifies a number of consequences of the structure of in-out

schemata of the sort that will ground understanding of actions that bring about or

change instances of containment, these consequences being:

"(i) The experience of containment typically involves protection

from, or resistance to, external forces ...

(ii) Containment also limits and restricts forces within the

container ...

(iii) Because of this restraint of forces, the constrained object gets

a relative fixity of location ...

324

(iv) This relative fixing of location within the container means that

the contained object becomes either accessible or inaccessible

to the view of some observer. It is either held so that it can be

observed, or else the container itself blocks or hides the object

from view.

(v) Finally, we experience transitivity of containment. If B is in

A, then whatever is in B is also in A.II

We can reveal the user's work language and the metaphors that ground

understanding of a domain by applying the methods suggested by the few metaphor

based design approaches that exist. The method used by Lakoff and Johnson

(Lakoff and Johnson, 1980; Lakoff, 1987; Johnson, 1987) is to catalogue actual

speech production in order to highlight metaphors and to link speech to the concepts

underlying it. The method is similar to that of the textual analysis used in object

oriented design, we identify metaphors by highlighting (by underlining) verbs and

nouns that describe piles and interaction with them. It is possible, by examining the

ways that Malone and his subjects talk about pile organisation and the gestures

observed by Malone as his subjects describe their information resource organisation,

to conclude that understanding of piles is based on the PILE IS CONTAINER

metaphor. The first Medusa system, described in Chapter 6, examined the

consequences of the FOLDER IS CONTAINER metaphor underlying document

organisation in systems that implement the desktop user interface metaphor. Also in

Chapter 9, the question raised by Mander, Salomon and Wong (1992) as to how

their pile metaphor fitted in with the Apple implementation of the desktop metaphor

as a whole was considered. As piles and folders are understood in terms of the same

image schemata, one can question whether the pile is much of an advance over the

traditional folder. One is able to understand users' confusion over the behaviour of

piles and folders being used in the same desktop environment when files pass over,

or are dropped onto, piles and folders. The image schemata that ground

325

understanding of both piles and folders are the same. We can suggest, therefore, that

a user confronted by a folder on the top of a pile is likely to conclude that a file

dropped ont~ the pile will be placed in the folder, the folder being the apparent target

for the file when dropped. Means of overcoming this ambiguity within the second

version of the Medusa system were discussed previously in Chapter 9.

326

	270030_001
	270030_002
	270030_003
	270030_004
	270030_005
	270030_006
	270030_007
	270030_008
	270030_009
	270030_010
	270030_011
	270030_012
	270030_013
	270030_014
	270030_015
	270030_016
	270030_017
	270030_018
	270030_019
	270030_020
	270030_021
	270030_022
	270030_023
	270030_024
	270030_025
	270030_026
	270030_027
	270030_028
	270030_029
	270030_030
	270030_031
	270030_032
	270030_033
	270030_034
	270030_035
	270030_036
	270030_037
	270030_038
	270030_039
	270030_040
	270030_041
	270030_042
	270030_043
	270030_044
	270030_045
	270030_046
	270030_047
	270030_048
	270030_049
	270030_050
	270030_051
	270030_052
	270030_053
	270030_054
	270030_055
	270030_056
	270030_057
	270030_058
	270030_059
	270030_060
	270030_061
	270030_062
	270030_063
	270030_064
	270030_065
	270030_066
	270030_067
	270030_068
	270030_069
	270030_070
	270030_071
	270030_072
	270030_073
	270030_074
	270030_075
	270030_076
	270030_077
	270030_078
	270030_079
	270030_080
	270030_081
	270030_082
	270030_083
	270030_084
	270030_085
	270030_086
	270030_087
	270030_088
	270030_089
	270030_090
	270030_091
	270030_092
	270030_093
	270030_094
	270030_095
	270030_096
	270030_097
	270030_098
	270030_099
	270030_100
	270030_101
	270030_102
	270030_103
	270030_104
	270030_105
	270030_106
	270030_107
	270030_108
	270030_109
	270030_110
	270030_111
	270030_112
	270030_113
	270030_114
	270030_115
	270030_116
	270030_117
	270030_118
	270030_119
	270030_120
	270030_121
	270030_122
	270030_123
	270030_124
	270030_125
	270030_126
	270030_127
	270030_128
	270030_129
	270030_130
	270030_131
	270030_132
	270030_133
	270030_134
	270030_135
	270030_136
	270030_137
	270030_138
	270030_139
	270030_140
	270030_141
	270030_142
	270030_143
	270030_144
	270030_145
	270030_146
	270030_147
	270030_148
	270030_149
	270030_150
	270030_151
	270030_152
	270030_153
	270030_154
	270030_155
	270030_156
	270030_157
	270030_158
	270030_159
	270030_160
	270030_161
	270030_162
	270030_163
	270030_164
	270030_165
	270030_166
	270030_167
	270030_168
	270030_169
	270030_170
	270030_171
	270030_172
	270030_173
	270030_174
	270030_175
	270030_176
	270030_177
	270030_178
	270030_179
	270030_180
	270030_181
	270030_182
	270030_183
	270030_184
	270030_185
	270030_186
	270030_187
	270030_188
	270030_189
	270030_190
	270030_191
	270030_192
	270030_193
	270030_194
	270030_195
	270030_196
	270030_197
	270030_198
	270030_199
	270030_200
	270030_201
	270030_202
	270030_203
	270030_204
	270030_205
	270030_206
	270030_207
	270030_208
	270030_209
	270030_210
	270030_211
	270030_212
	270030_213
	270030_214
	270030_215
	270030_216
	270030_217
	270030_218
	270030_219
	270030_220
	270030_221
	270030_222
	270030_223
	270030_224
	270030_225
	270030_226
	270030_227
	270030_228
	270030_229
	270030_230
	270030_231
	270030_232
	270030_233
	270030_234
	270030_235
	270030_236
	270030_237
	270030_238
	270030_239
	270030_240
	270030_241
	270030_242
	270030_243
	270030_244
	270030_245
	270030_246
	270030_247
	270030_248
	270030_249
	270030_250
	270030_251
	270030_252
	270030_253
	270030_254
	270030_255
	270030_256
	270030_257
	270030_258
	270030_259
	270030_260
	270030_261
	270030_262
	270030_263
	270030_264
	270030_265
	270030_266
	270030_267
	270030_268
	270030_269
	270030_270
	270030_271
	270030_272
	270030_273
	270030_274
	270030_275
	270030_276
	270030_277
	270030_278
	270030_279
	270030_280
	270030_281
	270030_282
	270030_283
	270030_284
	270030_285
	270030_286
	270030_287
	270030_288
	270030_289
	270030_290
	270030_291
	270030_292
	270030_293
	270030_294
	270030_295
	270030_296
	270030_297
	270030_298
	270030_299
	270030_300
	270030_301
	270030_302
	270030_303
	270030_304
	270030_305
	270030_306
	270030_307
	270030_308
	270030_309
	270030_310
	270030_311
	270030_312
	270030_313
	270030_314
	270030_315
	270030_316
	270030_317
	270030_318
	270030_319
	270030_320
	270030_321
	270030_322
	270030_323
	270030_324
	270030_325
	270030_326
	270030_327
	270030_328
	270030_329
	270030_330
	270030_331
	270030_332
	270030_333
	270030_334
	270030_335
	270030_336
	270030_337
	270030_338
	270030_339

