61,316 research outputs found

    Pushing Drugs: Genomics and Genetics, the Pharmaceutical Industry, and the Law of Negligence

    Get PDF
    This article presents a piece of a larger, ongoing project on the phenomenon of market-driven manufacturing (MDM) and how tort law should address it. In contrast to the larger project, this article provides a relatively brief overview of the general phenomenon of MDM, but zeros in on how pharmaceutical manufacturers specifically practice MDM. MDM is a well-documented, much practiced activity, although American courts do not recognize MDM as a discrete category of conduct. The basic idea of MDM is that marketing considerations should continuously control every aspect and stage of a product\u27s lifecycle. When a company engages in MDM, it completely inverts the conception of product design, development, and dissemination that seems natural to those unfamiliar with modern producer practices

    Testing MONDian Dark Matter with Galactic Rotation Curves

    Get PDF
    MONDian dark matter (MDM) is a new form of dark matter quantum that naturally accounts for Milgrom's scaling, usually associated with modified Newtonian dynamics (MOND), and theoretically behaves like cold dark matter (CDM) at cluster and cosmic scales. In this paper, we provide the first observational test of MDM by fitting rotation curves to a sample of 30 local spiral galaxies (z approximately 0.003). For comparison, we also fit the galactic rotation curves using MOND, and CDM. We find that all three models fit the data well. The rotation curves predicted by MDM and MOND are virtually indistinguishable over the range of observed radii (~1 to 30 kpc). The best-fit MDM and CDM density profiles are compared. We also compare with MDM the dark matter density profiles arising from MOND if Milgrom's formula is interpreted as Newtonian gravity with an extra source term instead of as a modification of inertia. We find that discrepancies between MDM and MOND will occur near the center of a typical spiral galaxy. In these regions, instead of continuing to rise sharply, the MDM mass density turns over and drops as we approach the center of the galaxy. Our results show that MDM, which restricts the nature of the dark matter quantum by accounting for Milgrom's scaling, accurately reproduces observed rotation curves.Comment: Preprint number IPMU13-0147. Accepted for publication in Ap

    Modified Dark Matter: Relating Dark Energy, Dark Matter and Baryonic Matter

    Get PDF
    Modified dark matter (MDM) is a phenomenological model of dark matter, inspired by gravitational thermodynamics. For an accelerating Universe with positive cosmological constant (Λ\Lambda), such phenomenological considerations lead to the emergence of a critical acceleration parameter related to Λ\Lambda. Such a critical acceleration is an effective phenomenological manifestation of MDM, and it is found in correlations between dark matter and baryonic matter in galaxy rotation curves. The resulting MDM mass profiles, which are sensitive to Λ\Lambda, are consistent with observational data at both the galactic and cluster scales. In particular, the same critical acceleration appears both in the galactic and cluster data fits based on MDM. Furthermore, using some robust qualitative arguments, MDM appears to work well on cosmological scales, even though quantitative studies are still lacking. Finally, we comment on certain non-local aspects of the quanta of modified dark matter, which may lead to novel non-particle phenomenology and which may explain why, so far, dark matter detection experiments have failed to detect dark matter particles

    The Modified Direct Method: an Approach for Smoothing Planar and Surface Meshes

    Get PDF
    The Modified Direct Method (MDM) is an iterative mesh smoothing method for smoothing planar and surface meshes, which is developed from the non-iterative smoothing method originated by Balendran [1]. When smooth planar meshes, the performance of the MDM is effectively identical to that of Laplacian smoothing, for triangular and quadrilateral meshes; however, the MDM outperforms Laplacian smoothing for tri-quad meshes. When smooth surface meshes, for trian-gular, quadrilateral and quad-dominant mixed meshes, the mean quality(MQ) of all mesh elements always increases and the mean square error (MSE) decreases during smoothing; For tri-dominant mixed mesh, the quality of triangles always descends while that of quads ascends. Test examples show that the MDM is convergent for both planar and surface triangular, quadrilateral and tri-quad meshes.Comment: 18 page

    Magnetic Properties of Scalar Particles --The Scalar Aharonov-Casher Effect and Supersymmetry

    Get PDF
    The original topological Aharonov-Casher (AC) effect is due to the interaction of the anomalous magnetic dipole moment (MDM) with certain configurations of electric field. Naively one would not expect an AC effect for a scalar particle for which no anomalous MDM can be defined in the usual sense. In this letter we study the AC effect in supersymmetric systems. In this framework there is the possibility of deducing the AC effect of a scalar particle from the corresponding effect for a spinor particle. In 3+1 dimensions such a connection is not possible because the anomalous MDM is zero if supersymmetry is an exact symmetry. However, in 2+1 dimensions it is possible to have an anomalous MDM even with exact supersymmetry. Having demonstrated the relationship between the spinor and the scalar MDM, we proceed to show that the scalar AC effect is uniquely defined. We then compute the anomalous MDM at the one loop level, showing how the scalar form arises in 2+1 dimensions from the coupling of the scalar to spinors. This model shows how an AC effect for a scalar can be generated for non-supersymmetric theories, and we construct such a model to illustrate the mechanism.Comment: RevTex 13 pages including one Figure. New Discussions adde
    • …
    corecore