4 research outputs found

    Interpretable Visual Understanding with Cognitive Attention Network

    Full text link
    While image understanding on recognition-level has achieved remarkable advancements, reliable visual scene understanding requires comprehensive image understanding on recognition-level but also cognition-level, which calls for exploiting the multi-source information as well as learning different levels of understanding and extensive commonsense knowledge. In this paper, we propose a novel Cognitive Attention Network (CAN) for visual commonsense reasoning to achieve interpretable visual understanding. Specifically, we first introduce an image-text fusion module to fuse information from images and text collectively. Second, a novel inference module is designed to encode commonsense among image, query and response. Extensive experiments on large-scale Visual Commonsense Reasoning (VCR) benchmark dataset demonstrate the effectiveness of our approach. The implementation is publicly available at https://github.com/tanjatang/CANComment: ICANN2

    Analysis of VANET Standard IEEE 1609.4 Mac Layer Multi-Channel Operations Using OMNeT++ and Veins

    Get PDF
    VANETS is an ad hoc network in vehicles with wireless communication capability. The network utilizes a system to relay data from one vehicle to another vehicle or to a Road Side Unit (RSU). This communication is also known as Vehicle to Vehicle (V2V) [31] and Vehicle to Infrastructure (V2I) [31]. The communication protocol for Wireless Access in Vehicular Environment (WAVE) [10], is the industry standard IEEE 802.11p to communicate between vehicles. This thesis examines the Medium Access Control (MAC) layer of this IEEE 1609.4 multi-channel communication protocol. In Dedicated Short Range Communications, the core of the WAVE protocol, there is an allocated spectrum in the frequency area of 5.9-GHz [20]. In the U.S, the allocated spectrum of 75 MHz was split into seven channels. A channel is defined as a frequency range of 10 MHz for a radio to tune into [28]. There is a control channel to relay safety messages and six service channels to relay non-safety messages, giving us two types of channels to choose from when in message transmission. Both the type and priority of the message are the factors considered. Many existing studies illustrate the impact of multi- channel and single-channel switching for non-safety and safety message transmissions. Most studies focus on optimizing the usability of the service channels. This thesis aims to determine the best use of the single radio in a vehicle i.e. to best utilize the Control Channel (CCH) and Service Channels (SCHs) in a Single Radio Multi-Channel (SR-MC) system [20]. We analyze the channel utilization, beacon transmission, and packet transmission of IEEE 1609.4 multi-channel operations in CCH and SCH. Some of the parameters used for comparison are the number of collisions, channel utilization, packet transmissions, and beacon transmissions. We investigate the scenario with density of n vehicles in a real world map, using safety (beacons) and non-safety (data) messages. The technologies used are Instant Veins 4.6, OMNET++ 5.2.1, SUMO 0.30, Debian GNU/Linux 9 (stretch) 64-bit, VMware Fusion (Professional Version 10.1.4) and an open street map from Northampton. The advantage of using OMNeT++ and Simulation Urban Mobility (SUMO) framework is the thorough implementation of IEEE 1609.4 DSRC/ WAVE and IEEE 802.11p in the framework [29]. Additionally, important feature of realistic traffic along with factual map can be generated with SUMO [21]. The contributions provided in this thesis include the integration of the testing framework Catch, randomizing the SCH, adding beacon transmission to the MAC layer, tracking of vehicle neighbors, tracking of collisions, and channel utilization. Plus an analysis on multi-channel switching. In our results we found that the CCH is highly overloaded both with beacon and channel switching management, which has a strong impact on the switching operation with a high number of collisions. Furthermore we also found that as the number of beacons generated increased, there was an increase in lost frames independent of the channel . Lastly there was little fluctuation in the number of collisions with a higher “n” of vehicles

    Contribution to the design of VANET routing protocols for realistic urban environments

    Get PDF
    One of the main concerns of the cities' administration is mobility management. In Intelligent Transportation Systems (ITS), pedestrians, vehicles and public transportation systems could share information and react to any situation in the city. The information sensed by vehicles could be useful for other vehicles and for the mobility authorities. Vehicular Ad hoc Networks (VANETs) make possible the communication between vehicles (V2I) and also between vehicles and fixed infrastructure (V2I) managed by the city's authorities. In addition, VANET routing protocols minimize the use of fixed infrastructure since they employ multi-hop V2V communication to reach reporting access points of the city. This thesis aims to contribute in the design of VANET routing protocols to enable reporting services (e.g., vehicular traffic notifications) in urban environments. The first step to achieve this global objective has been the study of components and tools to mimic a realistic VANET scenario. Moreover, we have analyzed the impact of the realism of each one of those components in the simulation results. Then, we have improved the Address Resolution procedure in VANETs by including it in the routing signaling messages. Our approach simplifies the VANET operation and increases the packet delivery ratio as consequence. Afterwards, we have tackled the issue of having duplicate packets in unicast communications and we have proposed routing filters to lower their presence. This way we have been able to increase the available bandwidth and reduce the average packet delay with a slight increase of the packet losses. Besides, we have proposed a Multi-Metric Map aware routing protocol (MMMR) that incorporates four routing metrics (distance, trajectory, vehicle density and available bandwidth) to take the forwarding decisions. With the aim of increasing the number of delivered packets in MMMR, we have developed a Geographical Heuristic Routing (GHR) algorithm. GHR integrates Tabu and Simulated Annealing heuristic optimization techniques to adapt its behavior to the specific scenario characteristics. GHR is generic because it could use any geographical routing protocol to take the forwarding decisions. Additionally, we have designed an easy to implement forwarding strategy based on an extended topology information area of two hops, called 2-hops Geographical Anycast Routing (2hGAR) protocol. Results show that controlled randomness introduced by GHR improves the default operation of MMMR. On the other hand, 2hGAR presents lower delays than GHR and higher packet delivery ratio, especially in high density scenarios. Finally, we have proposed two mixed (integer and linear) optimization models to detect the best positions in the city to locate the Road Side Units (RSUs) which are in charge of gathering all the reporting information generated by vehicles.Una de las principales preocupaciones en la administración de las ciudades es la gestión de la movilidad de sus vehículos, debido a los problemas de tráfico como atascos y accidentes. En los sistemas inteligentes de transporte (SIT), peatones, vehículos y transporte público podrán compartir información y adaptarse a cualquier situación que suceda en la ciudad. La información obtenida por los sensores de los vehículos puede ser útil para otros vehículos y para las autoridades de movilidad. Las redes ad hoc vehiculares (VANETs) hacen posible la comunicación entre los propios vehículos (V2V) y entre vehículos y la infraestructura fija de la red de la ciudad (V2I). Asimismo, los protocolos de encaminamiento para redes vehiculares minimizan el uso de infraestructura fija de red, ya que los protocolos de encaminamiento VANET emplean comunicaciones multisalto entre vehículos para encaminar los mensajes hasta los puntos de acceso de la red en la ciudad. El objetivo de esta tesis doctoral es contribuir en el diseño de protocolos de encaminamiento en redes ad hoc vehiculares para servicios de notificaciones (p.ej. reportes del estado del tráfico) en entornos urbanos. El primer paso para alcanzar este objetivo general ha sido el estudio de componentes y herramientas para simular un escenario realista de red ad hoc vehicular. Además, se ha analizado el impacto del nivel de realismo de cada uno de los componentes de simulación en los resultados obtenidos. Así también, se ha propuesto un mecanismo de resolución de direcciones automático y coherente para redes VANET a través del uso de los propios mensajes de señalización de los protocolos de encaminamiento. Esta mejora simplifica la operación de una red ad hoc vehicular y como consecuencia aumenta la tasa de recepción de paquetes. A continuación, se ha abordado el problema de la aparición inesperada de paquetes de datos duplicados en una comunicación punto a punto. Para ello, se ha propuesto el filtrado de paquetes duplicados a nivel del protocolo de encaminamiento. Esto ha producido un incremento del ancho disponible en el canal y una reducción del retardo medio en la trasmisión de un paquete, a costa de un mínimo aumento de la pérdida de paquetes. Por otra parte, hemos propuesto un protocolo de encaminamiento multi-métrica MMMR (Multi-Metric Map-aware Routing protocol), el cual incorpora cuatro métricas (distancia al destino, trayectoria, densidad de vehículos y ancho de banda) en las decisiones de encaminamiento. Con el objetivo de aumentar la tasa de entrega de paquetes en MMMR, hemos desarrollado un algoritmo heurístico de encaminamiento geográfico denominado GHR (Geographical Heuristic Routing). Esta propuesta integra las técnicas de optimización Tabu y Simulated Annealing, que permiten a GHR adaptarse a las características específicas del escenario. Adicionalmente, hemos propuesto 2hGAR (2-hops Geographical Anycast Routing), un protocolo de encaminamiento anycast que emplea información de la topología de red a dos saltos de distancia para tomar la decisión de encaminamiento de los mensajes. Los resultados muestran que la aleatoriedad controlada de GHR en su operación mejora el rendimiento de MMMR. Asimismo, 2hGAR presenta retardos de paquete menores a los obtenidos por GHR y una mayor tasa de paquetes entregados, especialmente en escenarios con alta densidad de vehículos. Finalmente, se han propuesto dos modelos de optimización mixtos (enteros y lineales) para detectar los mejores lugares de la ciudad donde ubicar los puntos de acceso de la red, los cuales se encargan de recolectar los reportes generados por los vehículos.Postprint (published version
    corecore