3 research outputs found

    A decentralized framework for multi-agent robotic systems

    Get PDF
    Over the past few years, decentralization of multi-agent robotic systems has become an important research area. These systems do not depend on a central control unit, which enables the control and assignment of distributed, asynchronous and robust tasks. However, in some cases, the network communication process between robotic agents is overlooked, and this creates a dependency for each agent to maintain a permanent link with nearby units to be able to fulfill its goals. This article describes a communication framework, where each agent in the system can leave the network or accept new connections, sending its information based on the transfer history of all nodes in the network. To this end, each agent needs to comply with four processes to participate in the system, plus a fifth process for data transfer to the nearest nodes that is based on Received Signal Strength Indicator (RSSI) and data history. To validate this framework, we use differential robotic agents and a monitoring agent to generate a topological map of an environment with the presence of obstacles

    Routing and privacy protection in human associated delay tolerant networks

    Full text link
    This thesis proposes Human Associated Delay Tolerant Networks, where data communications among mobile nodes are determined by human social behaviours. Three models are proposed to handle the social attributes effect on data forwarding, the time impact on nodes’ movement and the privacy protection issue when social attributes are introduced
    corecore