333 research outputs found

    Advances in Graph-Cut Optimization: Multi-Surface Models, Label Costs, and Hierarchical Costs

    Get PDF
    Computer vision is full of problems that are elegantly expressed in terms of mathematical optimization, or energy minimization. This is particularly true of low-level inference problems such as cleaning up noisy signals, clustering and classifying data, or estimating 3D points from images. Energies let us state each problem as a clear, precise objective function. Minimizing the correct energy would, hypothetically, yield a good solution to the corresponding problem. Unfortunately, even for low-level problems we are confronted by energies that are computationally hard—often NP-hard—to minimize. As a consequence, a rather large portion of computer vision research is dedicated to proposing better energies and better algorithms for energies. This dissertation presents work along the same line, specifically new energies and algorithms based on graph cuts. We present three distinct contributions. First we consider biomedical segmentation where the object of interest comprises multiple distinct regions of uncertain shape (e.g. blood vessels, airways, bone tissue). We show that this common yet difficult scenario can be modeled as an energy over multiple interacting surfaces, and can be globally optimized by a single graph cut. Second, we introduce multi-label energies with label costs and provide algorithms to minimize them. We show how label costs are useful for clustering and robust estimation problems in vision. Third, we characterize a class of energies with hierarchical costs and propose a novel hierarchical fusion algorithm with improved approximation guarantees. Hierarchical costs are natural for modeling an array of difficult problems, e.g. segmentation with hierarchical context, simultaneous estimation of motions and homographies, or detecting hierarchies of patterns

    Submodular relaxation for inference in Markov random fields

    Full text link
    In this paper we address the problem of finding the most probable state of a discrete Markov random field (MRF), also known as the MRF energy minimization problem. The task is known to be NP-hard in general and its practical importance motivates numerous approximate algorithms. We propose a submodular relaxation approach (SMR) based on a Lagrangian relaxation of the initial problem. Unlike the dual decomposition approach of Komodakis et al., 2011 SMR does not decompose the graph structure of the initial problem but constructs a submodular energy that is minimized within the Lagrangian relaxation. Our approach is applicable to both pairwise and high-order MRFs and allows to take into account global potentials of certain types. We study theoretical properties of the proposed approach and evaluate it experimentally.Comment: This paper is accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligenc

    Inference by Learning: Speeding-up Graphical Model Optimization via a Coarse-to-Fine Cascade of Pruning Classifiers

    Get PDF
    We propose a general and versatile framework that significantly speeds-up graphical model optimization while maintaining an excellent solution accuracy. The proposed approach, refereed as Inference by Learning or in short as IbyL, relies on a multi-scale pruning scheme that progressively reduces the solution space by use of a coarse-to-fine cascade of learnt classifiers. We thoroughly experiment with classic computer vision related MRF problems, where our novel framework constantly yields a significant time speed-up (with respect to the most efficient inference methods) and obtains a more accurate solution than directly optimizing the MRF. We make our code available on-line [4]

    Rich probabilistic models for semantic labeling

    Get PDF
    Das Ziel dieser Monographie ist es die Methoden und Anwendungen des semantischen Labelings zu erforschen. Unsere Beiträge zu diesem sich rasch entwickelten Thema sind bestimmte Aspekte der Modellierung und der Inferenz in probabilistischen Modellen und ihre Anwendungen in den interdisziplinären Bereichen der Computer Vision sowie medizinischer Bildverarbeitung und Fernerkundung

    Higher-order inference in conditional random fields using submodular functions

    Get PDF
    Higher-order and dense conditional random fields (CRFs) are expressive graphical models which have been very successful in low-level computer vision applications such as semantic segmentation, and stereo matching. These models are able to capture long-range interactions and higher-order image statistics much better than pairwise CRFs. This expressive power comes at a price though - inference problems in these models are computationally very demanding. This is a particular challenge in computer vision, where fast inference is important and the problem involves millions of pixels. In this thesis, we look at how submodular functions can help us designing efficient inference methods for higher-order and dense CRFs. Submodular functions are special discrete functions that have important properties from an optimisation perspective, and are closely related to convex functions. We use submodularity in a two-fold manner: (a) to design efficient MAP inference algorithm for a robust higher-order model that generalises the widely-used truncated convex models, and (b) to glean insights into a recently proposed variational inference algorithm which give us a principled approach for applying it efficiently to higher-order and dense CRFs
    • …
    corecore