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Abstract

Computer vision is full of problems that are elegantly expressed in terms of mathematical
optimization, or energy minimization. This is particularly true of “low-level” inference prob-
lems such as cleaning up noisy signals, clustering and classifying data, or estimating 3D points
from images. Energies let us state each problem as a clear, precise objective function. Min-
imizing the correct energy would, hypothetically, yield a good solution to the corresponding
problem. Unfortunately, even for low-level problems we are confronted by energies that are
computationally hard—often NP-hard—to minimize. As a consequence, a rather large portion
of computer vision research is dedicated to proposing better energies and better algorithms for
energies. This dissertation presents work along the same line, specifically new energies and
algorithms based on graph cuts.

We present three distinct contributions. First we consider biomedical segmentation where
the object of interest comprises multiple distinct regions of uncertain shape (e.g. blood vessels,
airways, bone tissue). We show that this common yet difficult scenario can be modeled as an
energy over multiple interacting surfaces, and can be globally optimized by a single graph cut.
Second, we introduce multi-label energies with label costs and provide algorithms to minimize
them. We show how label costs are useful for clustering and robust estimation problems in
vision. Third, we characterize a class of energies with hierarchical costs and propose a novel
hierarchical fusion algorithm with improved approximation guarantees. Hierarchical costs are
natural for modeling an array of difficult problems, e.g. segmentation with hierarchical context,
simultaneous estimation of motions and homographies, or detecting hierarchies of patterns.

Keywords: Energy minimization, graph cuts, discrete optimization, metric labeling, min-
imum description length, segmentation, biomedical imaging, robust estimation, multi-view
reconstruction.
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Chapter 1
Energy Minimization in Vision

Broadly speaking, this dissertation is about energy minimization in computer vision. In com-
puter vision an energy is simply a mathematical objective function that we wish to extremize.
For example, the energy F(x) = (z — 5)* + (z — 3)? has a minimum value of 2 at z* = 4.
The specific use of the word ‘energy’ suggests an objective function that has its origins in sta-
tistical physics—typically an unconstrained objective function where variables ‘interact’—but
this connotation is not essential to our work. Rather, the important thing to understand is that
a huge number of problems in vision are inference problems where the most likely explana-
tion for the data can be found by minimizing a corresponding energy. For example, if we
assume 5 and 3 are samples from a normal distribution, then the z* that minimizes F(z) is a
maximum-likelihood estimate of the distribution’s mean parameter.

Of course, the inference problems in vision tend to be very complex and involve hundreds
or even millions of inter-dependent variables. Some energies precisely model the desired in-
ference problem, while others are merely a coarse approximation. Some energies are easy to
optimize (e.g. convex functions) while others are known to be NP-hard. Once an accurate
energy and a satisfying algorithm are both available, the associated inference problem is es-
sentially solved. Researchers can then either improve the model or move on to other, more
difficult problems.

Many of the most important developments in computer vision began with a proposal for
a better energy, a better algorithm for an energy, or a combination of both. Good examples
are [110, 132, 24, 83]. This dissertation is a small contribution in the same vein: we describe
new energies that have useful interpretations, along with algorithms that are both effective in
theory and fast in practice. We specifically focus on discrete labeling problems of the kind
described in the following section.

1.1 Labeling Problems

A labeling problem is, roughly speaking, the task of assigning an explanatory ‘label” to each
element in a set of observations. Many classical clustering problems are also labeling problems
because each data point is assigned a cluster label. To describe a labeling problem one needs
a set of observations (the data) and a set of possible explanations (the labels). A discrete
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cloud of points partially-labeled data faces of 3D mesh

] Mhead
o’ neck
(Y Mtorso
* Mleg
...’ M tail
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line learned labels tissue labeled parts

Figure 1.1: Example labeling problems. Given some input data, the goal is to assign an explanatory
label to each input element. For example, if the data are 2D points then we may wish to classify them
according to geometric models (points belonging to the same line). If the data comes partially-labeled,
we can infer the remaining labels as in semi-supervised learning. (yinyang from [42], horse from [76].)

labeling problem associates one discrete variable with each datum, and the goal is to find
the best overall assignment to these variables (a ‘labeling’) according to some criteria. In
computer vision, the observations can be things like pixels in an image, salient points within
an image, depth measurements from a range-scanner, or intensity measurements from CT/MRI.
The labels are typically either semantic (car, pedestrian, street) or related to scene geometry
(depth, orientation, shape, texture). Figure 1.1 depicts a few such possibilities.

We use the following notation for labeling problems throughout the dissertation. The set
‘P indexes the observations, and the label set £ indexes the explanations. The set of discrete
variables is {f,},ep Where each f, is allowed to take one value from the set £. A discrete
labeling is the complete map f : P — L that assigns to each element p € P a corresponding
label f,,. For example, if P = {p, ¢} and £ = {{1, {5, (5}, then labeling f = ({3, (1) says that
fp = {3 and f, = {;. If we instead let P index the pixels of a 100 x 100 image and there are two
labels £ = {object, background}, then this is a standard “binary segmentation” scenario with
210000 possible labelings. In general we have |£|'”! possible labelings (configurations of f),
and we prefer one labeling over another based on some application-specific criteria.

Data-driven criteria In computer vision we try to make sense of the input data. This means
that every labeling problem must be formulated so that the data influences the outcome. For
example, if our 100 x 100 image is an X-ray and a particular pixel p € P is brightly coloured,
then our labeling problem should prefer a labeling with f,, = bone over one with f, = tissue.
If the image were of an outdoor scene instead, then we would expect blue pixels to prefer
labels like sky or water and green pixels to prefer labels like grass or leaves. This is the most
rudimentary kind of data-driven criterion possible, where each discrete variable f, derives its
preferences based solely on the data at observation p. By now it is common to derive these
preferences from machine-learning techniques, but the output is fundamentally the same.
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355

bad labeling “smooth” good labeling

Figure 1.2: Suppose we want to isolate a bright object on a dark background. The simplest approach is
to choose a labeling based on data-driven pixel preferences, i.e. bright pixels choose object, dark pixels
choose background. However, the resulting contour will often be complex and noisy (left). When we
know a priori that the object’s shape should have a smooth, *blobby’ contour (cars, people, buildings)
then we should prefer a labeling that satisfies this assumption (right). Each pixel in a smooth labeling
is highly correlated with its nearest neighbours in the spatial grid, e.g. the magnified regions contain 15
transitions versus only 5 transitions.

Regularization criteria Some labelings are more likely to be correct a priori. When we
explicitly prefer some kinds of labelings over others, irrespective of the data, these criteria
are called regularizers. The most prominent example in computer vision is a preference for
spatially coherent labelings. The idea is that, for most computer vision problems, coherent
(“smooth”) labelings are much more likely to be a correct explanation of the data than are
incoherent (“noisy”’) labelings. For example, consider the binary image labelings below.

smooth / coherent semi-coherent incoherent / noisy
-

A

(car? bed? heart?) (tree? rivers? arteries?) random noise? snow?)

We know from experience that objects in photographs and in medical data correspond to coher-
ent labelings more often than not; the truth of this claim varies from application to application,
but in computer vision it has become a rule of thumb. It holds true because data in computer
vision tends to be highly correlated in space. For example if p, ¢ € P are adjacent pixels in an
X-ray image then one can expect f, = bone < f, = bone with high probability, regardless of
the data. The same cannot be said if p and ¢ are very far apart in the image, because such pixels
are not directly correlated in practice. It turns out that such a priori assumptions, or priors, are
very important—often crucial—in many vision applications [54, 103].

Figure 1.2 shows a real image and two possible binary segmentations. The noisy labeling
is based on individual pixel preferences, whereas in the smooth labeling some pixels sacri-
ficed their individual preference so that the spatial coherence criterion is better satisfied. The
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partially-labeled data computed neighbours A/ optimal clustering

Figure 1.3: Given a set of points, some of which are labeled, semi-supervised learning asks us to choose
the most probable label for each unlabeled point. Above we see 4 pre-labeled points (2 white, 2 black).
To cluster the points, Blum & Chawla [17] compute a neighbour graph (e.g. nearest-neighbour, De-
launay triangulation) and then find a labeling that is smooth with respect to that connectivity. In other
words, constrained clustering problems can be solved using the same criterion as for image segmenta-
tion [42].

close-up of the pixel grid also suggests a way to make the notion of smoothness more precise:
smoothness implies fewer label transitions between neighbouring variables. This characteri-
zation of smoothness is standard in computer vision and we formalize it in the next section.
Figure 1.3 explains how this same smoothness criterion can be used in semi-supervised learn-
ing [17, 140, 167]—an important labeling problem that, on the surface, seems entirely different
from segmentation [42].

1.2 Labeling Problems as Energy Minimization

We now express some standard data-driven and regularization criteria as concrete energy
terms. An energy term is an expression, dependent on labeling f, that is added linearly in
the energy. Breaking an energy into terms means expressing it in the form

E(f) = term1(f) 4+ term2(f) + ...

Each energy term basically votes on how much it likes labeling f or some subset of its variables.
If a particular term evaluates to a small numerical value, then this means f reasonably satisfies
the corresponding criterion. Minimizing F/( f) thus finds a compromise among all the labeling
criteria in the energy.

For example, suppose we have P = {p, ¢, 7} and two possible labels £ = {{, (5}. If we
say D, () is the cost of assigning f, = ¢ based on the data, then we insert expression D,(f,)
as a term in the energy. Assume our energy contains only the data terms shown below, where
the table gives individual assignment costs based on the data.

data costs
NP g T
E(f) = Dy(f,) + Dylfa) + D) IR
2

The minimum value for this binary energy is achieved at f* = ({1,05,¢;) with E(f*) =
5. Clearly such an energy is trivial to minimize in ©(|P||L]|) time since each term D,(f,)
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can be minimized independently. (Minimizing such an energy is equivalent to “thresholding”
techniques from the early days of image processing.)

Now suppose we wish to incorporate the prior knowledge that some of the observations are
directly correlated with each other; specifically we want p correlated with ¢ and ¢ correlated
with 7. We can incorporate this ‘coupling’ of variables by adding energy terms that explicitly
encourage f, = f, and f, = f,. We refer to these as smooth terms and denote them by V.

E(f) = Dy(fp) + Dy(fo) + Dr(fr) + V Sy fo) +V (o, fr)

In the simplest case we use the delta function V' (¢, ¢') = 6(¢ # (') where 0 is 1 if its condition
is true, and 0 otherwise. The old optimum of f = ({1, {5, ¢;) now evaluates to E(f) = 7,
whereas the new optimum f* = (¢1, {1, 1) evaluates to E(f*) = 6. The smooth terms encour-
aged the labeling to be coherent (consistent) so that fluctuations caused by noisy data costs are
smoothed out. Note that the the optimal label assignments can no longer be solved indepen-
dently, and must somehow be minimized jointly. It is not entirely obvious how to minimize
such energies in general. For problems with thousands of inter-dependent variables we will
need fast, specialized algorithms to compute f*, or at least an approximation thereof.

Let NV denote the pairs of observations we know a priori to be correlated, for example in
our 3-variable problem we used N = {{p,q},{q,7}}. We refer to N as the neighbour set
throughout. Common neighbour sets in vision are depicted as graph edges below.

4-connected grid 8-connected grid non-uniform, distance-based

Further assume that each unordered pair pg € N interacts using its own smooth term where,
for example, V), might be a different strength than V,,. We can write this class of energies as

E(f) = ZDp(fp) + vaq(fpafq)- (1.1)

pEP pgeEN

In the last decades, energies of the form (1.1) have proven indispensable for many problems
in computer vision. They were first proposed for inference problems associated with Markov
random fields (MRFs), a powerful class of statistical models in physics and pattern recogni-
tion [54, 103]. Despite the modeling power of MRFs, they saw limited use in computer vision
until practical algorithms were finally introduced much later [23, 24].

As of this writing, energy (1.1) is the starting point for dozens of specialized formulations
in vision [159, 80], machine learning [17], and even bioinformatics [161, 149, 131]. Minimiz-
ing (1.1) is known as the MAP-MRF problem [103, 158], owing to its statistical interpretation
and ubiquity. This dissertation proposes useful generalizations of (1.1). For example, Chapter 4
introduces energies of the form

E(f) = > Dp(fy) + Y Voglfor f2) +IL(S)] (1.2)

pEP pgeN
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where L(f) C L is the set of labels used by f. That is, we penalize the number of unique
labels appearing in the solution. We also provide effective algorithms to minimize a more
general class of energies, of which (1.2) is a special case.

1.3 Energy Minimization: Algorithms and Special Cases

Some energy minimization problems can be solved in polynomial-time, whereas many are
known to be NP-complete or NP-hard and must be approximated (at best). Energy (1.1) is
NP-hard to minimize in general [24] but there are many special cases to consider, some per-
mitting specialized algorithms that run in polynomial time. We noted that energies of the form
E(f) = >_,cp Dy(fp) are trivial to minimize in ©(|P||L[) time. As one considers energies of
increasing generality, the array of corresponding algorithms grows more diverse and sophisti-
cated. Chapter 2 reviews algorithms relevant to this dissertation, but it helps to understand the
situation more broadly. Here we give a high-level overview of important special cases of (1.1),
their difficulty, and some applicable minimization techniques. There are two main factors to
consider: structural restrictions (special neighbour sets \), or functional restrictions (special
cost functions D, and V},;). We review the some basic and well-known examples of each kind.

1.3.1 Tree-structured neighbour sets

A simple but useful structural restriction is a neighbour set AV that defines an acyclic graph, i.e.
N defines a chain, a tree, or a forest structure.

cycles no cycles

B B s e

Any energy of the form (1.1) with no cycles can be minimized in O(|P||L£|?) time via dy-
namic programming (DP) [12, 28] or, equivalently, message-passing algorithms [115, 162].
A 4-connected grid graph clearly has cycles, so image segmentation does not fall within this
special case, but there are many tree-structured inference problems in computer vision [53,
44, 150] and in inference more broadly such as hidden Markov models (HMMs) [120] and
graphical models [74].

The reason dynamic programming works in this case is because we can express a minimum
of E(f) recursively so as to take advantage of overlapping subproblems. The simplest case is
a chain, where we can order the variables as fy, ..., f, so that N' = {(p — 1,p)}"_,. Now,
consider those terms of E involving only variables f,, ..., f,; we let E[p, ] be the minimal
possible sum of those terms when we force f, = (. Clearly E[¢,n] = D,,(¢) and, because N/
forms a chain, for any p < n the value Ep, £] can be expressed recursively as

Elp,{] = Dy(¢) + min ( Vo1 (6,0) + E[p+1,0] ) (1.3)
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0 1 2 3 2 1 0 1

o000 O—0O0—0O-0 OO0

D) 2 1 3|1 Eltp] 5, 4 4<1 E[l,p] 2 ,2-6<1

03 05 @52, 5 0°3 4.5

X N, A

5 0 11 7T<2<2<1 5 19@«1
data cost table DP on a chain DP on tree rooted at r

Figure 1.4: A 3-label energy of the form (1.1). D,(-) is defined by the table at left, and V' (¢, ¢') penalizes
any ¢ # ¢’ by cost 1. If we order the four variables from left to right, dynamic programming (DP) will
compute columns E[-, p] from right-to-left (center). For arbitrary root » DP will compute, for example,
columns E[-, p| at right. A red arrow [q, '] — [p, ¢] indicates that F[q, ¢'] was directly used to compute
E|[p, ¢] within (1.3) and (1.4).

The optimal energy is then E(f*) = min, F[0,¢] and can be found by tabulating E[p, ¢],
starting at p = n and applying (1.3) to work backwards. Figure 1.4 (center) shows a numerical
example of dynamic programming on a chain-structured neighbour set V.

Dynamic programming extends easily from chains to trees. Simply designate an arbitrary
node to be the roof r € P and, for each node p € P, let Z(p) denote its children with respect to
that rooted tree. We now let E[p, ¢] be the minimal possible sum of all energy terms involving
only descendants of p when we force f, = ¢. We can then write E[p, ¢] more generally as

Ep.f] = Dy(0)+ 3 <1%;nvp,q(£,1z’)+E[q,£’]). (1.4)

q€Z(p)

The optimal energy is now E(f*) = min, E[r, ¢] and can be found by tabulating E/[p, ¢], start-
ing at the leaves of the tree and applying (1.4) as needed to work from the ‘furthest’ nodes
inwards to the root. Figure 1.4 (right) repeats our numerical example for what is essentially
a tree (root r has degree > 1). Notice that in both cases the optimal value is E(f*) = 3
and we can recover labeling f* = ({s, (3, (3, {3) by simply remembering the red arrows when
computing each E/[p, /] and tracing back our steps.

A cycle in the neighbour set means that such recursive expressions cannot work—a cycle
creates a dependency that cannot be ‘unwrapped’ symbolically. Recently it was shown that
neighbour sets defining outer-planar graphs can also be minimized efficiently [11]. Outer-
planar graphs include trees as a special case, but they are still very far from general graphs; for
example, the 4-connected grid is a basic planar graph used in many vision problems, but it is
not outer-planar.

1.3.2 Binary energies with coherence

We describe a special case of energy (1.1) that has, in the last decade, exploded in popularity.
If the energy is binary (|£| = 2), and the smoothness terms encourage coherence (as opposed
to explicitly discouraging it), then the energy can be minimized in polynomial time. We can
see what this means, visually, by contrasting the characteristics of the two labelings below.
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can explicitly encourage this cannot explicitly encourage this
.,1._. A T I

In other words, if we want to solve the problem in polynomial time, we can encourage smooth
labelings, we can be indifferent to smoothness (N = {}), but we cannot actively discourage
smoothness. In terms of our energy (1.1), encouraging coherence means each V,,,(f,, f,) term
should assign lower cost to configurations with f, = f, than to configurations with f, # f,.
Encouraging incoherent labelings, i.e. preferring f, # f,, makes minimization NP-hard! The
precise mathematical property that makes the former problems tractable is called submodular-
ity, and is reviewed in Chapter 2.

This special case was first studied in combinatorial optimization [116, 32], in image restora-
tion [62], and was finally popularized in computer vision through the early works of Boykov
et al. [19, 20, 21, 22]. Note that cycles in N are permitted in this special case. By con-
straining V},, we gain flexibility in N while still minimizing the energy in polynomial time.
So how is this minimization carried out in practice? We obviously cannot use dynamic pro-
gramming, so what is the algorithm? It turns out that this class of binary energies can be
reformulated as a standard s-t minimum cut problem for which efficient algorithms have long
existed [47, 41, 58, 114] and are still being developed for problems in vision [22, 35, 135].
A wide array of energy-minimization techniques now use s-¢ min-cut as the core subproblem;
such techniques are referred to as graph cut methods. The algorithms in this dissertation are
all based on graph cuts, and Chapter 2 reviews the relevant prior art in some detail.

1.3.3 Table of special cases and algorithms

Minimizing energy (1.1), also called the MAP-MRF problem, is known to be NP-hard to solve
exactly [133, 24]. In fact, without any assumptions at all, MAP-MRF cannot be meaning-
fully approximated in polynomial time [1, 73]. The problem remains NP-hard to approximate
within a constant factor for all but the most severe assumptions, such as V' being “metric”
(Section 2.2.2) or that |£| < 3; even in this case the problem remains max-SNP-hard [31]. Ta-
ble 1.1 provides a high-level overview of a number of tractable special cases, as well as some
approximation algorithms that can be applied in the general case. Note that exact optimization
is not always necessary. In fact Szeliski et al. [139] observed that, for many applications, the
energy value of the human-selected solution is often higher than the globally optimal solution
to our energy! In other words, seeking a global optimum is not always worth the computational
effort, especially if our energy does not accurately model the problem.

Note that Table 1.1 is about energy (1.1) only, and that many generalizations of this energy
to “high-order terms” have been proposed, e.g. [159, 80, 38]. The known approximation ratios
for minimizing such energies are typically worse than for the pairwise case [60] or in many
cases not even understood.
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Table 1.1: Some special cases of energy (1.1) that result in minimization problems of varying difficulty.
This table is incomplete and is intended to give a sense for the kinds of special cases that may make
minimization easier. Not all of the “approximate methods” are approximation algorithms in the strict
sense, e.g. [115, 83, 85, 158] provide no a priori approximation bounds whatsoever.

special case algorithms notes / applications
template matching [53, 44],
) dyn. programming [28, 44], | HMMs [120], stereo [150];
N acyclic graph message passing [115, 90, 162] | decomposition methods[157,
83]
segmentation [20], machine
3 learning [17], multi-view re-
8 V' submodular, | £|=2 graph cut [20, 87] construction [88, 154, 99].
% move-making algorithms[24]
E V' convex transform [71] + graph cut
;) V' permuted submodular | transform [127] + graph cut
E D convex, V' convex parametric graph cut [65, 86] denoising / image restoration
D special, N planar planar min-cut [108, 128] D s1ngle source/sml.<; shape
matching, segmentation
D = 0, N'=planar, |£|=2 | max-weight matching [129]
A" perfect graph trans'form [72, 48] + message
passing
N outerplanar graph junction tree [11] decomposition methods[11]
a-expansion and exten- | approximation bounds;
pansion [24] and pproximation bound
V metric sions [4], LP rounding [78], r- | stereo, segmentation, model-
A HST metrics [92] fitting [70]
o _ - -
E V' semi-metric Zf q s[\;v;]p [24], r-HST et approximation bound [92]
=
= | V truncated convex range moves [151, 93] approximation bound
E approximation bound [122]
%ﬂ £]=2 QPBO [18, 85], QPBO-1[124], | log(#non-submodular
2 - bipartite multi-cut [122] terms); QPBO gives partial
2 labelings
% mess. passing [115, 56, 142],
) decomposition 'r.nethods 1831 NP-hard to approximate by
arbitrary energy dual decomposition [89, 11],
. ) constant factor [133, 1]
max-sum diffusion [158],
local search [75], ...
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1.4 Chapter Outlines

The remainder of this dissertation can be summarized as follows.

Chapter 2 reviews graph cut methods that are essential to the development of this disser-
tation. This includes the binary graph cut reduction, submodular functions, and the iterative
move-making algorithms “a-expansion” and “a-swap.” The review of graph cuts and sub-
modularity is essential to this entire dissertation, and the iterative algorithms are the heart of
Chapters 4 and 5.

Chapter 3 presents a segmentation technique based on a special “multi-surface” graph cut
construction. Our binary construction induces a multi-label segmentation where the interfaces
between regions (boundaries/surfaces) have preferred distances from one another. Specifically,
our construction has the following properties:

1. regions can have nesting constraints (e.g. soft bone must be surrounded by hard bone),

2. surfaces can have preferred distances (e.g. hard bone should be > S5mm thick), and

3. the globally optimal multi-region segmentation can be computed by a single graph cut.

The content is based directly on my joint publication with Yuri Boykov at the 2009 Interna-
tional Conference on Computer Vision (ICCV) [36].

Chapter 4 extends the classic MAP-MRF energy to include “label costs™ as a regularizer.
In their simplest form, label costs penalize the number of unique labels used to explain the
observations. In other words, why use 6 labels to explain the data if 5 will do just as well. In
general we define a new class of energies with label subset costs and extend the a-expansion
and af-swap algorithms to handle this regularizer. We also characterize the effect on algo-
rithm’s optimality guarantees with a tight bound, and establish connections to related problems
in operations research and in computer vision. This work was initially published in the 2010
Conference on Computer Vision and Pattern Recognition (CVPR) [38] and subsequently ex-
panded in the International Journal of Computer Vision (IJCV) [39].

Chapter 5 defines a new characteristic of energies, as having hierarchical costs, and de-
scribes a novel hierarchical fusion algorithm to minimize such energies. This fusion algo-
rithm is a strict generalization of a-expansion yet provides significantly tighter approximation
bounds in many useful cases. Hierarchical costs are natural for modeling an array of difficult
problems, e.g. segmentation with hierarchical context, simultaneous estimation of motions and
homographies, or detecting hierarchies of patterns. This work was submitted to the Interna-
tional Journal of Computer Vision (1JCV) as [37].



Chapter 2

Review: Energies and Algorithms

This chapter reviews well-known concepts upon which subsequent chapters are developed.
All contributions in this dissertation are based on graph cuts and on related move-making
algorithms.

Section 2.1 explains the basic idea of reducing a binary energy minimization problem to
that of computing an s-¢t min-cut [62, 20, 87]; this reduction is the starting point for Chapter 3.
Section 2.2 explains the popular move-making algorithms “a-expansion” and “«/3-swap” for
minimizing multi-label energies [24]. These algorithms find local minima of NP-hard energies
by constructing a particular sequence of graph cut subproblems. These move-making algo-
rithms are essential to Chapters 4 and 5.

2.1 Binary Energies Reducible to a Graph Cut

The special case of “binary energies with coherence” (Section 1.3.2) has proven extremely
valuable in computer vision because

a) itis a good model for a wide variety of binary labeling problems,
b) itis a powerful subproblem for local search in labeling problems (Section 2.2), and
c¢) there exist fast minimization algorithms for large-scale problems.

The key insight that lets us solve problems efficiently is reducing the binary energy mini-
mization problem to the well-known s-t min-cut problem. Furthermore, empirical tests have
shown [22, 57] that the fastest method to compute the an s-t min-cut is to solve the dual s-¢
maximum flow problem using specialized algorithms. The s-t min-cut and s-t max-flow prob-
lems have long been studied in operations research, and it took many insights by different
individuals before reduction from binary energy minimization became well-known in com-
puter vision. This reduction combines early work on the duality between min-cut and max-
flow [47, 130], work on submodular functions [32, 52, 87], pseudo-boolean functions [18],
and MAP-MRF formulations in computer vision [62, 20]. Efficient s-¢ max-flow algorithms
include [58, 22, 35, 135], but we will not discuss min-cut / max-flow duality in detail. Instead
we explain s-t min-cut and assume it is sufficiently instructive. Readers interested in max-flow
may consult [130] for discussion of how it relates to min-cut.

11
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a directed graph w({s,p,q}) =5 w({s,p}) =6 w({s,q}) =8 w({s})=5

Figure 2.1: A simple s-t min-cut problem with six weighted arcs. There are four possible s-¢ cuts:
S = {s,p,q},{s,p}, {s,q}, or {s}. Since two of the cuts have minimal cost w(S) = 5 the optimum
solution is not unique. General s-t min-cut problems can contain thousands or millions of vertices.

2.1.1 The s-t min-cut problem

To understand the binary energy — s-t min-cut reduction, one must first understand the basics
of the s-t min-cut problem. Defining an instance of s-t min-cut is very simple. We require a
directed graph G = (V,.A), a cost w(u,v) > 0 for arc each (u,v) € A, and two designated
terminals s,t € V. The aim of s-t min-cut is to remove the cheapest subset of arcs so that
there is no path from s to ¢ in the graph. Rather than define a ‘cut’ directly in terms of arcs, the
selected arcs are implied by definition based on vertices.

Definition 2.1. A subset S CV such that s € S and t ¢ S is called an s-t cut. The cost w(S)
of an s-t cut S is defined as
w(S) Z w(u,v)

(u,v)eA

ueSveS
In other words, the cost of an s-¢ cut S is the total cost of arcs leaving set S. Figure 2.1 shows
a small min-cut problem instance.

The s-t min-cut problem is to find the s-¢ cut S* of minimal total cost. An optimal cut can

be computed in polynomial time by a number of classical s-t maximum flow algorithms [41,
58] but, in computer vision, more specialized algorithms are typically used, in particular the
method of Boykov & Kolmogorov [22] and recent extensions, e.g. [82, 57]. The specialized
algorithms are fast enough that, in practice, a non-negligible fraction of running time goes
towards merely constructing the initial graph structure inside the computer.

2.1.2 Reduction of second-order energies

We now review how to transform the binary energy minimization problem into an s-¢ min-cut
problem from Section 2.1.1. We will use the notation x = (x, ..., ;) to denote an n-variable
labeling for binary energy F/(x). Begin with a straight-forward observation.

Observation 2.2. In a digraph with V = {s,t,vy,...,v,} there are 2" possible s-t cuts.
There is thus a one-to-one correspondence between cuts and configurations of binary vector

x € {0,1}"
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In this dissertation we arbitrarily define correspondence v; € S < z; = 0. Let Sy denote
the cut corresponding to binary vector x. If we construct a digraph such that w(Sx) = E(x)
for all configurations then we reduce minimizing £(x) to the s-¢ min-cut problem.

Example 2.3. Consider the binary energy function below with P = {p, q} and L = {0, 1}.

D p 4 vV 0 1
E(xp, xq) = Dp(xq) + Dy() + V(p, 24) 0.2 3 0 0 3
14 1 1.1 0

We can also define this energy by enumerating all its possible values

E(0,0) = 24340 = 5
E(0,1) = 24143 =6
E(1,0) = 44341 = 8
E(1,1) = 44140 = 5

Verify by inspection that minimizing E(x,, x,) over x,,x, € {0,1} is equivalent to the s-t
min-cut problem shown in Figure 2.1.

After looking at energy F from Example 2.3 it is informative to consider the following,
equivalent binary energy:

D p vV 0 1
E'(zp,2y) =4+ Dy(xy) + Dy(xy) + V(xp, x4) (1) (1) 1 (1) (2) :

Clearly E(z,,z,) = E'(x,, z,) for all z,,z, € {0,1}. One can view E’ as a reparameteriza-
tion of energy E where 4 is an additive constant and therefore irrelevant to the minimization
problem itself. We can alter the s-t min-cut problem from Figure 2.1 to correspond directly to
the reparameterization E’ using the graph below.

The examples so far involved only two variables p and q. However, since the energy terms
are added linearly, by the additivity property of this reduction [87] we can reduce each en-
ergy term one-by-one, and simply superimpose all the arcs. This is particularly trivial for the
standard MAP-MRF energy (1.1) because it is of the second-order, i.e. each individual D,(-)
and V,,(-, -) term is a function of at most two variables (of ‘degree’ at most two). A complete
sequence of steps for reducing each D, and V,, term was given in [87].
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2.1.3 Which energies can be reduced to graph cut? (submodularity)

There is an important question regarding the binary energy — s-t min-cut reduction. The
MAP-MREF energy (1.1) is NP-hard to minimize even in the binary case [133], and yet we
know from example that reduction to s-t min-cut is sometimes feasible. Clearly there must be
some property that distinguishes ‘easy’ binary energies from hard ones. It is thus natural to
ask: precisely which binary energy functions are reducible to a graph cut?

In Section 1.3.2 we claimed, vaguely, that a binary energy must “encourage coherence”
in order to be tractable. Notice in Example 2.3 that positive arc weights w(p, ¢) and w(q, p)
encourage p and ¢ to belong to the same side of the cut, i.e. configurations with x, = x, are
cheaper than configurations with z,, # z,. If these arc weights were negative, they would have
the opposite effect. However, in the s-t min-cut problem, the arc weights cannot be negative
due to the assumption that w(u,v) > 0. If we were to omit this restriction from the definition
of s-t min-cut, it would be NP-complete via reduction to/from the MAX-CUT problem!

Again, a binary energy is representable by s-t cuts if there exists a digraph with w(u, v) > 0
such that w(Sx) = F(x) for each x. By the additivity property [87] we need only ask whether
each individual D, (-) term and individual V,,,(-, -) term can be represented by weighted arcs.

Each D, (+) is trivial to represent by breaking it into the two cases shown below:

if D,(0) > D,(1): if D,(0) < D,(1):
w(s,p) = Dp(1) = Dy(0)
D,(1) + (p) D,(0) + (p)
w(p,t) = Dp(0) = Dy(1)

] [£]

Though D, (1) might be negative, if D,(0) > D,(1) then we treat it as an additive constant
and so the arc weight w(p,t) is guaranteed to be non-negative. Likewise for the opposite
case. Since we can represent arbitrary D, (-) in the digraph, then these terms do not affect the
‘hardness’ of the binary energy—there will always exist a reduction for such terms.

Much more interesting are the second-order terms V,,, (-, -), or simply V' for brevity. Each
term is defined by the four constants V(0,0),V(0,1),V(1,0), and V' (1,1). For a digraph to
represent V' and be a valid s-t min-cut problem instance, the arc weights w(u, v) must satisfy
the following linear constraints:

( (0,0)
K+w({s,p}) =V(0,1)
K+w({s,q}) =V(1,0) 2.1)
K +w({s}) =V(1,1)

w(u,v) >0 V(u,v) €

where K € R is needed to account for any additive constant irrelevant to the minimization.
The question “which V' are representable as an s-¢ cut?” can now be stated as “for which V' is
system (2.1) feasible in K and w?” We can answer this question either by careful proof [87] or
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by automatic quantifier elimination [34] (eliminate 3K, Jw) using a symbolic algebra package.
Either way, we find system (2.1) is feasible in /K and w if and only if V' satisfies

V(0,0)+ V(1,1) < V(0,1)+ V(1,0). (2.2)

Theorem 2.4 ([87]). A second-order potential V,,(-,-) is representable as an s-t cut if and
only if it satisfies inequality (2.2).

In other words, the average cost of taking different labels must be at least the average cost of
taking the same label. If a binary energy E satisfies (2.2) for every V,,, term, then E(x) is said
to be submodular or a submodular function.

Theorem 2.5 ([32, 87]). Minimizing a second-order binary energy E is reducible to an s-t
min-cut if and only if E(x) is a submodular function.

This result completely characterizes the class of second-order binary energies reducible
to a graph cut, and therefore answers our original question. If an energy is submodular, it is
fundamentally easier to minimize, much as convex functions are. In fact submodular functions
are often referred to as “a discrete analog of convex functions” and are actively studied in
mathematical optimization [52, 156], machine learning [8], and computer vision [87, 49, 113].

2.2 Local Search for Multi-Label Energies

An energy is considered ‘multi-label’ if its label set has cardinality |£| > 3. The s-t cut reduc-
tion in Section 2.1 is inherently binary because there are two terminals s and ¢. So then, how
can we minimize a multi-label energy? For some special V), it is possible to reduce the min-
imization problem to a multi-terminal min-cut [24] and simply apply a known algorithm [33].
However, it turns out that one can do much better, in general, by designing special local search
algorithms for direct energy minimization, also called move-making algorithms in the computer
vision literature. There are many strong approaches besides local search, e.g. LP-relaxation or
message passing algorithms, but they are outside the scope of this dissertation; see Table 1.1
on page 9 for an overview.

Local search is the most basic kind of iterative improvement. Given a current solution f ,
we are permitted to move to a better solution f if it belongs to some set of neighbouring!
solutions M (f). The set of labelings M (f) can be thought of as the available moves from f.
The high-level local search algorithm is given below.

LOCALSEARCH(E, M)

1 f := arbitrary labeling
2 while exists f € M(f) such that E(f) < E(f)
3 f = f

4 return f

"Two labelings are ‘neighbours’ if they are similar according to M; note that this use of the word ‘neighbour’
has nothing to do with neighbouring variables defined by N.
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The key to effective local search is a good class of moves M. If M is too broad, then
finding the best move f can become NP-hard. If M is too restrictive, then f will get stuck at
poor local minima. For example, the simplest class of moves is to allow one variable to change

at a time, . .
,/\/l(f) = {f : f']’)\{p} = fp\{p} for some p € P } (2.3)

The quality of each move can be evaluated by scanning each fp over all labels while holding
the other variables fixed.

The simple search neighbourhood (2.3) corresponds to the classic iterated conditional
modes (ICM) [103, 13] algorithm for energy minimization. The ICM algorithm is essentially
coordinate descent for the MAP-MRF problem, with one variable allowed to vary while the
remaining variables stay fixed. ICM is wholly inadequate for the kind of energies we are inter-
ested in. To see why, consider a 3-variable, 3-label energy defined by the parameters below.

D p q r Vol 4y 4 N

6 22 2 6012 -
61 1 1 6101 )—0—)
G0 0 0 6210

The globally optimal labeling is clearly f* = ({3, (5, ¢3) with E(f*) = 0. However, if our
initial labeling is f = ({1, {1, ¢1) then the possible moves are

M(f) = {(fl,fl,&%
(€27£17€1)7(€17€27€1>7(61761762)7 (24)
(637 617 61)7 (617 637 61)7 (617 617 63)}

Evaluating the energy on each of these moves gives &/ = 6,7,7,7,8, 8, 8 respectively, and so

N

E(f) = 6 is a local minimum with respect to this class of moves. Even if we expand the move
space M to change two variables at a time, no neighbouring solution in M( f ) has energy
lower than 6 and so f would still be a local minimum.

ICM-style local moves are straight-forward, but require polynomial time to explore only a
polynomial number of alternative labelings. It turns out that for some important special cases
one can do better—much better in fact. By careful choice of move space M one can explore
an exponential number of alternative labelings in only polynomial time. Such local search
algorithms are called very-large search neighbourhood (VLSN) techniques [2].

We explain two VLSN techniques where the local moves are computed by a graph cut: the
af-swap algorithm and the a-expansion algorithm [24]. The a5-swap algorithm is applicable
to a slightly wider class of energies but the a-expansion algorithm, when applicable, is more

effective both in theory [24] and in practice [139].

2.2.1 «f-swap for semi-metrics

The af-swap algorithm [24] performs local search on multi-label energies. Given current
labeling f , the idea of a swap move is as follows. Choose any two labels «, 5 € £ and allow
all variables with f, € {a, 8} to simultaneously choose a new label in {c, 3}. Figure 2.2
shows some examples of swap moves. Intuitively, each variable currently labeled either « or 3
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« I6] « I6] b Q 15}
o) (o)
(D (3 7
current labeling f an af-swap other af-swap a yB-swap

Figure 2.2: Examples swap moves, all with respect to the current 2D labeling f is shown at left. An
a/3-swap move is made from binary choices: each f,, involved can only choose either o or 3.

is allowed to either keep its current label or ‘swap’ to the other label. If there are & variables
with a current label in {«, 3}, then there are 2* possible a3-swap moves available.

We can define the full search neighbourhood of «5-swap as the set of all possible swap
moves with respect to current labeling f :

M(f)y=|J MP(f) where M*(fy={f: f,#fo = fpfoc{aB}} @5

a,BeL

The local search algorithm using swap moves can still get stuck at a local minimum, but the
move space M is exponential in size (a VLSN).

If a swap move f € M(f) such that E(f) < E(f) exists, then we must find it in poly-
nomial time. Fortunately, for any particular o, 5 € L an optimal «/3-swap can be computed
efficiently by a single binary graph cut. This reduction is straight-forward because an a3-swap
move is fundamentally binary: each variable can only choose either a or 8. This binary energy

will take the standard form

E'(x) = Y Dyx,) + > Vil ) (2.6)

pEP pgeEN

where each configuration x corresponds to an a3-swap move f via the relation

a ifz,=0
fp:{ P

[ otherwise.

The specific costs for data terms D, and smooth terms V), are determined by the D), and V;,
of the original multi-label energy E'(f). Specifically, we set

D;,(0) := Dy(av) V5q(0,0) := Viy(av, )

D) =D8) VA0 = hular ) .
Via(1,0) := Ve (B, @)
Voa(1,1) := V(8. B)

Minimizing £'(x) implicitly solves the problem argmin .\ as 5 £(f), thereby finding the
best move from among an exponential number of possibilities. The afS-swap algorithm is
generally implemented using the pseudocode below.
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af-SWAP(E) — local search using af-swap moves

1 f := arbitrary labeling

2 repeat

3 foreach o, 5 € L

4 f= Argmin e \ o5 f) E(f)

5 if E(f) < E(f)

6 f=f

7 until converged /1 stop if energy cannot decrease for any {«, 5}
8 return f

The key step of aF-swap is minimizing binary energy E’ efficiently (line 4). This subprob-
lem can be reduced to a single s-t min-cut if and only if E’ is submodular (Section 2.1.3).
For a second-order swap term V,, to be submodular, the multi-label term V},, must satisfy a
corresponding condition:

V;q(O, 0) + Vp'q(l, 1)
= %Q(a7 Oé) + ‘/17(1(57 6)

< Voa(0,1) +V5,(1,0)
< Vogla, B) + Vig(8, ) (2.8)
By Theorem 2.5 we have the following consequence.

Corollary 2.6. The af-swap algorithm is applicable for the MAP-MRF energy (1.1) if and
only if each second-order term V (-, -) satisfies

Via,a) +V(8,5) < V(a,B)+V(B,a) Va,B€L (2.9)

The original paper that introduced «3-swap defined semi-metrics as an intuitive yet suffi-
cient condition for the algorithm to be applicable [24].

Definition 2.7 ([24]). A second-order term V (-, -) is said to be a semi-metric if it satisfies

V(a,3)=V(B,a) >0 Va,B€L

If V is a semi-metric then clearly it satisfies (2.9) and the «v-swap algorithm is applicable.

2.2.2 «-expansion for metrics

The a-expansion algorithm [24] performs local search using a different class of moves than
the aS-swap algorithm. Given a current labeling f , an a-expansion move gives each variable
the following choice: either keep the current assignment fp, or switch to a particular label «a.
All variables make this choice simultaneously, so there are an exponential number of possible
moves with respect to any particular o. Figure 2.3 illustrates some possible expansion moves.
The name ‘a-expansion’ suggests that the label o can grow or ‘expand’ its territory in the
current labeling, but cannot contract.

If we can find the best move efficiently, then we again have a powerful VLSN technique.
In fact, it turns out that a-expansion is more effective than a/3-swap both in theory [24] and in
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« I6] « I6] Q I6] Q
g
@ T~ ;
current labeling f an a-expansion other a-expansion a y-expansion

Figure 2.3: Example expansion moves, all with respect to the current 2D labeling f is shown at left. An
a-expansion move is made from binary choices: « can either ‘expand’ to pixel p, or leave f, as is.

practice [139]. The a-expansion algorithm is the basis for technical contributions in Chapters
4 and 5 of this dissertation.

We can define the full search neighbourhood of a-expansion as the set of all possible ex-
pansion moves with respect to current labeling f :

M(f) = JM(f) where M (f)={f:f,#f = fr=a}. (2.10)

ael

In one sense the move space M® seems more restrictive than that of swap moves M®?, but in
another sense it is more powerful. For an a-expansion move, all variables with label fp # «
can change their labels, whereas an a/3-swap move can only change the variables with current
fp € {a,B}. Surprisingly, local search with expansion moves will find a labeling f within
a constant factor from the globally optimal labeling f* [24]. Section 2.2.3 explains these
approximation guarantees, and Chapters 4 and 5 extend the bound to even harder energies. The
a-expansion algorithm is generally implemented as shown below.

a-EXPANSION(E) — local search using a-expansion moves

1 f := arbitrary labeling

2 repeat

3 foreacha e L

4 f= Argmin . o f) E(f)
s ifE(f) < B(f)

6 f=F

7 until converged
8 return f

For a particular label o € L, we need an efficient way to find the a-expansion move

f € M*(f) with minimal E(f) on line 4. Expansion moves are fundamentally binary so we
can encode a move f by a binary vector x as

ﬁ:{ﬁ)ﬁ%zo

« otherwise.

We can construct a binary energy £’ of the form (2.6) but with data terms D, and smooth terms
V,, now defined according to expansion moves:
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D;(O) = Dp(fp) ‘/;q(()?()) = V;?q(fpa 2)

D;<1) = DP(O‘) Vp/q(O, 1):= qu(fpa ?‘) @.11)
Via(1,0) == Vig(ev, fo)
V(L 1) = Vigla )

where D,, and V,,, are the terms of the original multi-label energy E( f).

We know that minimizing E’ is efficient if F’(x) is a submodular function, so finally we
must ask for which multi-label energies does (2.11) result in submodular E'? Using the defi-
nition of second-order submodular functions we have

V;J’q(O, 0) + V;q(l, 1) <V (0,1) + V;q(l,O)

pq

~ ~ ~ ~

= Vpg(fp, fo) + Vig(a, ) < Vig(fp, @) + Vigla, f4) (2.12)

By Theorem 2.5 we have the following consequence.

Corollary 2.8. The a-expansion algorithm is applicable to the MAP-MRF energy (1.1) if and
only if each second-order term V (-, -) satisfies

Vi,a) +V(B,7) < V(a,y)+V(B,a) Ya,B,7€L (2.13)

Again, the original paper that introduced the algorithm defined metrics as a simpler yet
sufficient condition for a-expansion to be applicable [24].

Definition 2.9 ([24]). A second-order term V (-, -) is said to be a metric if it is a semi-metric
and additionally satisfies

V(B,v) < Viy)+V(B,a) Va,B,7v€L

If V' is a metric then clearly it satisfies (2.13) and the a-expansion algorithm is applicable.

2.2.3 Approximation bounds of a-expansion

A surprising result from the original c-expansion paper [24] is that local search with expansion
moves will terminate at a solution that is guaranteed to have a low energy, and is therefore
‘approximately’ optimal in a theoretical sense. Good approximation guarantees are highly
valued because we know a priori that, no matter where we begin our search, we will arrive at a
solution that is in some sense reasonable. For NP-hard minimization problems this is the best
we can expect in theory and in practice.

Understanding the approximation bound of a-expansion will be helpful for reading Chap-
ters 4 and 5 of this dissertation. Without loss of generality, we assume all second-order terms
Vg are the same cost function denoted simply by V. The quality of the approximation guaran-
tee depends on the range of costs in terms V', and so the bound is parameterized accordingly.
The following theorem holds for any energy with D, (-) > 0 and metric V,,(-,-) > 0.
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Theorem 2.10 ([24]). If f* is a global minimum of the MAP-MRF energy (1.1), and f is a
local minimum w.r.t. expansion moves, then

A " _ MaXa£ger V(Oz,ﬂ)
E(f) < 2¢E(f*) where c¢= i scer V(7,0) (2.14)

In other words, a-expansion is a 2c-approximation algorithm where ¢ > 1 depends on
the ratio of largest to smallest costs in V. Below are some 5-label examples of second-order
potentials V', shown in matrix form, that are commonly used in vision.

Potts [119] linear truncated linear

01111 012 3 4 01222
10111 10123 1012 2
11011 21012 21012
11101 312101 22101
11110 43210 22210
c=1 c=4 c=2

Underneath we see the coefficient ¢ corresponding to each case. The simplest potential (Potts)
simply penalizes f, # f, equally, and gives the best approximation bound. When the range
of values is large, e.g. for “linear” smooth costs, the bound (2.14) gets worse. Chapter 5
introduces a new algorithm that can beat this bound for a wide class of second-order potentials.



Chapter 3

Global Optimization of Multi-Surface
Interactions

Many objects contain spatially distinct regions, each with a unique colour/texture model. Mix-
ture models ignore the spatial distribution of colours within an object, and thus cannot distin-
guish between coherent parts versus randomly distributed colours. We show how to encode
geometric interactions between distinct region+boundary models, such as regions being inte-
rior/exterior to each other along with preferred distances between their boundaries. This is
similar to the work of Li, Wu, Chen & Sonka [102], except in our construction we do not need
“domain unwrapping” nor do we have topological limits on shapes.

With a single graph cut, our method extracts only those multi-region objects that satisfy
such a combined model. We show applications in medical segmentation and scene layout
estimation. This chapter is based directly on my joint publication with Yuri Boykov at the
2009 International Conference on Computer Vision (ICCV) [36]. The work has since been
used as the basis for state-of-the-art cardiac segmentation tool [148] and extended with new
optimization techniques.

3.1 Overview and Related work

State-of-the-art segmentation methods benefit from an appearance model of the object’s inte-
rior and its boundary. Such methods include active contours, level sets, graph cuts, and random
walker. With binary segmentation, the object’s entire appearance must be incorporated into
a single mixed model. Most real-world objects are better described by a combination of re-
gions with distinct appearance models, and attempts to use multi-label segmentation reflect
this, e.g. [61, 125]. Our new multi-region segmentation framework maintains a separate re-
gion+boundary model for each part of an object, and allows these parts to interact spatially.

Figure 3.1 shows the most basic type of object that we can deal with effectively, and sug-
gests the main advantage we have over standard binary or Pott’s-like models.

Our work is a few short steps from a number of existing techniques either from a conceptual
or technical point of view. For example, what we call a multi-region model is ultimately a

22
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multi-label model, though we add simple yet important geometric constraints and then optimize
with a single graph cut!. To help make our contribution clear, we begin by situating our work
relative to other methods.

Pictorial structures We briefly juxtapose our work with the well-known pictorial struc-
tures [44], not because our work is directly related, but because we address an analogous
problem for objects of a completely different sort. Like [44], our models guarantee optimality

only under certain conditions. The table below contrasts our works.

pictorial struct. [44]

this work

shape of each part

fixed template

arbitrary region

spatial prior

relative part positions

boundary distances

optimization

dynamic programming

single graph cut

optimum guaranteed

if tree connectivity

if no “frustrated cycles”

Here “arbitrary region” means that each region does not itself have a specific preferred
shape. Such part models can be good, or very bad, depending on the application. One can
think of this work as introducing basic distance priors between shapes in a globally optimal
way, though incorporating shape priors [155] themselves could be powerful.

Multi-label segmentation Our multi-region models are, generally speaking, a type of multi-
label model. One superficial distinction is that an n-region model potentially has 2" corre-
sponding labels. The reason will be apparent from our graph construction, and we discuss a
related idea called log transformation [121] toward the end of the chapter.

Our first contribution, stated in terms of multi-label models, is to introduce priors on the
distance between pairs of discontinuities (or “region boundaries” as we call them). This is
achieved by certain long-range interactions between pixels, and stands in contrast to Pott’s or
random walk models, applied for example in [125] and [61] respectively.

Second, multi-label models often require approximate methods such as a-expansion [24].
We strive for an intuitive characterization of the conditions under which our models can be
optimized by a single graph cut. A fully general characterization of when multi-label global

'Our ideas may also apply in other optimization settings, e.g. [5, 118].

3-label Pott’s model

»

multi-region model

F

multi-region object mixed object model

(bone) ¢ ’

trabecular
bone

y,

o

compact
bone q

single graph cut o-expansion single graph cut
Figure 3.1: Our simplest motivating example. Standard binary [20, 123] and multi-label [24, 125]
models fail because object/background colours are hard to separate. In the absence of user localization,
above at center is the best result we can expect from such models. Now we can design multi-region

models with geometric interactions to segment such objects more robustly in a single graph cut.
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segment unwrapped image

Figure 3.2: To segment an image, Li et al. [102] must work within a band that already follows the
object’s rough shape by estimating from a center-line/point. They then ‘unwrap’ the band into polar
coordinates because their construction (Figure 3.3) requires it.

optima are guaranteed [127] does not have a meaningful interpretation for specific problems.
Elegant interpretations do exist for special cases however, such as Ishikawa’s convex charac-
terization [71]. Rather than testing multi-label models against abstract criteria [121, 127], we
describe one way to design easy-to-optimize models in an intuitive piecewise manner.

Optimal polar surfaces Li, Wu, Chen & Sonka [102] proposed a multi-surface segmentation
technique that inspired our work. The main drawback of their method is that it is hard to use on
anything except cylindrical objects; topological changes, bifurcations, or even strong curvature
all require careful pre-segmentation. Figure 3.2 shows the underlying problem: their need for
a polar representation of the image domain from which they can unwrap and optimize only
along columns.

They start by assuming that a center-point (center-line) of an object in 2D (3D) is given.
After casting outward rays and unwrapping them to obtain a polar representation of the image,
they can segment multiple nested surfaces along the resulting columns. They model the seg-
mentation as a closure set problem on a special graph, but our Figure 3.3 suggests an equivalent
s-t min cut construction for the simplest case. They can encode a minimum and maximum dis-
tance constraint between consecutive surfaces. This all assumes that each surface intersects
each ray at only one location. Their construction should also allow for soft spring-like forces,
although they do not state this.

Our graph construction sidesteps the unwrapping issue entirely. We do not need center-
lines, have no topological constraints, and do not suffer from geometric distortion introduced
by unwrapping. Briefly, our construction represents a multi-region object by a directed graph
comprising an unordered set of layers, with one layer per region. Each layer has one vertex per
image pixel?. Each layer by itself is just an independent binary graph cut problem familiar in
binary segmentation [20]. We introduce inter-layer arcs in the graph that give effects analogous
to [102] yet are easier to implement and useful in more general settings.

The chapter is organized as follows. Section 3.2 introduces our multi-region segmenta-
tion framework, describing our energy, geometric interaction terms, and our regional terms.

2This assumption serves to make our notation more bearable. In general, the layers may represent an image at
different resolution, matching the scale at which the corresponding part’s features appear in the data.



3.2. OUR MULTI-REGION FRAMEWORK 25

Section 3.3 demonstrates two applications: medical segmentation and scene layout estima-
tion. Certain combinations of geometric interactions cannot be optimized by graph cuts, and
Section 3.4 discusses ways to handle these cases. Section 3.5 concludes and suggests further
applications.

3.2 Our Multi-Region Framework

We begin by describing three intuitive geometric interactions in their simplest form:

Containment. Region B must be inside region A, perhaps with repulsion force between
boundaries.

Exclusion. Regions A and B cannot overlap at any pixel, perhaps with repulsion force be-
tween boundaries.

Attraction. Penalize the area A — B, exterior to B, by some cost & > 0 per unit area. Thus
A will prefer not to grow too far beyond the boundary of B.

As suggested above, we can introduce a distance prior between region boundaries in the
form of a hard or soft margin. The prior is enforced in the graph construction by an inter-layer
neighbourhood at each pixel p. The local weight and shape for this neighbourhood can vary at
each pixel. Figure 3.4 shows how these interactions combine to add discriminative power to
object models in segmentation.

3.2.1 Multi-region energy

We define P to be the set of pixel indices and L to be the set of region indices. Our binary
variables are z € B“*” which we index as x; over pixels p € P and over regions ¢ € L. The
set L is not ordered. For now we interpret x; = 1 to mean that pixel p is interior to region .
The notation x,, denotes a vector of all variables that correspond to pixel p, one for each of the

single-
surface
graph

Figure 3.3: LEFT: s-t min cut construction corresponding to [102]; any cut must separate top row from
bottom row. RIGHT: Basic idea from [102]. Each column separates top from bottom at two distinct
locations, one forced to be strictly above the other.
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Likelihood

distance prior

Figure 3.4: LEFT: Mixed colour model corresponding to Figure 3.1. The vertical axis indicates how
likely we are to observe a colour for the given class (Bg/Object). RIGHT: Two-region model corre-
sponding to the final result in Figure 3.1. Trabecular bone (B) is forced to be inside a band of compact
bone (A) of some estimated thickness.

|L| regions. If z, = O then pixel p is considered “background.” The notation 2! refers to all
variables of a particular region i € L.

To express our multi-region energy, we start with two familiar components: data terms and
regularization terms. Each pixel p has associated function D, that defines a cost for every
combination of regions. Each region ¢ is regularized independently in a standard way by a
collection of smoothness terms V' defined as

sz al,a! (3.1

PgEN

where each neighbourhood A/ typically defines nearest-neighbour grid connectivity.

Ideally each data cost D,,(z,) could be arbitrary but, because D, is a function of |£| binary
variables, graph cuts requires that D, be submodular [87]. Ramifications of this are discussed
in Section 3.2.3. Each V" plays the same surface-regularization role as in standard binary
segmentation. For the case |£|=1 our D, and V" obviously describe a standard binary energy,
solvable by graph cut [20].

When £ indexes multiple regions, we can add a new category of energy terms to encode
inter-region interactions. Our multi-region energy takes the overall form

interaction terms

E(x) =Y _Dy(z,) + Y _Vi(z') +> W9(a'a?). (3.2)
peEP ieL ijeL
i#]
where each W% encodes all geometric interactions between regions ¢ and 7.
To understand how our interaction terms W% are indexed over both region pairs (7, j) and
pixel pairs (p, q), it helps to consider Figure 3.5 along with the definition for one particular pair
of regions

W' ad) =Y Wi(al, o). (3.3)

PgENY
The inter-region neighbourhood N is the set of all pixels pairs (p,q) at which region i is
assigned some geometric interaction with region j. We allow (p,p) € N because they refer
to separate variables, unlike in V. Note that TW* and V* would describe the same set of energy
terms, but the conceptual distinction is just as important as the distinction between V, and D),
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b
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i - . | t
R LA NE
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Figure 3.5: LEFT: Graph construction for region layers i, € L showing a subset of inter-region
connectivity N/, The oo-cost arcs, shown emanating only from 3, enforce a 1-pixel margin between
region boundaries. RIGHT: The a-cost arcs attract the outer boundary by penalizing only the area A— B.

Section 3.2.2 details the energy terms and corresponding graph construction for our con-
tainment, exclusion, and attraction interactions. Section 3.2.3 then discusses limitations of our
higher-order data terms.

3.2.2 Geometric interactions

We now describe how our geometric interactions can be implemented with a single graph cut.
The basic “i contains j” interaction is simplest, so we start there. All we do is introduce a term
W;g((), 1) = oo at every pixel p € P. Those familiar with graph constructions may prefer to
think of it as an oo-cost arc from vertex z, to x,,, thus prohibiting any cut that labels them 1 and
0 respectively. More generally we can add similar terms W2 for p # q. For example, to add
a hard uniform margin to our containment constraint, we set W;7(0,1) = oo for all ¢ within
some radius of p.

The tables below list energy terms corresponding to our three main interactions.

1 contains j 1 excludes j 1 attracts

x;, x Wég :1:; xl Wéé x; ) WI%

0 0|0 0 0| O 0 0O a>0 (3.4)
0 1| o0 01,0 01|10

1 0 0 1 0 O 1 0|

1 1] 0 1 1| o0 1 110

Figure 3.5 shows the graph construction corresponding to the containment and attraction
interactions. A soft containment cost W;ZI'(O, 1) > 0 for p # q creates a spring-like repulsion
force between the inner and outer boundaries. Note that our distinction between “containment”
and “attraction” is largely artificial since they are the same type of constraint but with opposite
orientation.

The exclusion interaction is more difficult because it cannot be optimized by graph cuts
until we perform a simple transformation. The reason is because graph cuts can only optimize
certain submodular functions (see Section 2.1.3 for review). As shown in [87], a second-order
energy F/(x) over binary x is submodular if and only if it can be expressed as a sum of pairwise
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functions

E(x) = Z Ei(zi) + Z Eij(xi, z;) (3.5)
i ij
where each second-order term satisfies
E;;(0,0) + Ei;(1,1) < Ei;(0,1) + Ej(1,0). (3.6)

Our containment and attraction interactions are submodular, but for our exclusion terms W%
in (3.4) clearly the reverse inequality holds, so exclusion is supermodular. Because exclusion
is everywhere supermodular, we can flip the meaning of layer j’s variables so that xf) =0
designates the region’s interior. Our exclusion terms W% (2% 77) thus become submodular, so
long as we can flip the variables.

The idea of flipping variable meanings among supermodular terms is not a new idea. It
lies at the heart of roof-duality methods in quadratic pseudo-boolean optimization (QPBO)
[18, 85, 124]. These methods are more sophisticated than graph cuts, consuming more time
and memory, so we prefer not to rely on them unless necessary (Section 3.4).

Let us now explore the overall geometric interactions permitted by combining the three
basic ones in (3.4). To aid the discussion, we introduce graphical depictions of each interaction
between two objects ¢ and j.

(submodular) (supermodular) (submodular)

We can allow more sophisticated interactions, such as a hierarchy of nested regions or re-
gions excluded from one another. The example below models two mutually exclusive regions,
each with an interior part. A black circle indicates that the region’s label is complemented in
order for the overall problem to remain submodular.

excludes
contains contains : ”

@ e object interaction (3.7)

There are many useful interactions that we cannot model with graph cuts. The example
below describes two mutually exclusive regions, both contained within another region.

Oy o G

contains contains
@'“"@ non-submodular

excludes object interaction (3.8)

The above configuration cannot be trivially converted to a submodular energy. It introduces
what is called a frustrated cycle among the overall pairwise energy terms. A cycle is called



3.2. OUR MULTI-REGION FRAMEWORK 29

frustrated if it contains an odd number of non-submodular terms (see P3, P4 in [124]). This
means that with graph cuts we can only model interactions that are bipartite with respect to
exclusion, and submodular interactions cannot be added between layers that use opposite 0/1
labels. If we step outside these constraints then global optima are no longer guaranteed, but
approximations such as QPBO-I [124] or aS-swap [24] may still be effective. (Section 3.4
explains why a-expansion often cannot be applied.)

3.2.3 Regional data terms

We begin by showing how the likelihoods in Figure 3.4 are used to drive the segmentation in
Figure 3.1. We have £ = {A, B} so each data term D,, defines up to 4 costs. Given image
data J with individual pixel intensities /,,, each function D, is naturally described by the table
below.

:B]‘;‘ mf D,

0 0 | —logPr(Bg|lp)

0 1 K (3.9)
1 0 | —logPr(A|l,)

1 1 | —logPr(B|I,)

The unspecified cost K brings us to an important point. The cost K is not driven by the image
data itself, because the “A contains B” object model prohibits this configuration. For this par-
ticular model, each D, () is added alongside pairwise term W* having cost W;,7(0,1) =
oo. The three likelihoods (3.9) can therefore be arbitrary for this object model, without con-
cern for K or for submodularity. Submodularity of our overall energy (3.2) thus depends on a
combination of data terms and interaction terms.

Suppose however that there were no geometric constraints between two layers ¢ and j. The
data terms D, (x,) must then be submodular (or supermodular if the label for j is flipped). To
understand what this means intuitively, consider two regions ¢ and j that represent subtractive

colours.
7/
00 m cyan & el

Here, submodularity requires that each data term satisfy

(3.10)

D,(0,0) + D,(1,1) < D,(0,1) + D,(1,0). (3.11)

One symmetric way to satisfy (3.11) is to say, for example, that D,, for a cyan pixel I, does not
simply encourage region ¢, but also discourages region j by an equal amount.

For models with strong geometric interactions, such as containment and exclusion, these
constraints on D, are usually satisfied for reasons suggested by (3.9).

Higher-order data terms A data term 1), may model three or more regions with dependent
data costs, but graph cuts can only encode pairwise energy terms directly. Any function of three
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or more variables can be transformed into a combination of pairwise and unary terms in polyno-
mial time [18]. Transforming a submodular 3™-order term preserves submodularity among the
resulting pairwise terms [87]. For a 4"-order term or higher there are submodularity-preserving
transformations only for certain cases [49, 156]. To solve the resulting pairwise problem with a
single graph cut, one must truncate the non-submodular data terms to approximate the desired
energy. (None of our medical examples needed truncation.) An alternative is to use QPBO
[18] and its extensions [124] directly on the non-submodular energy.

3.3 Applications

We choose two problems that we hope demonstrate the diverse applications of our framework.
Section 3.3.1 shows how our multi-region energy (3.2) helps to model many objects in medi-
cal image segmentation. Section 3.3.2 proposes a novel way to regularize basic scene layout
estimation using Hoiem-style® data terms [66].

3.3.1 Medical segmentation

Medical image segmentation is a domain full of multi-part objects that are hard to detect with
rigid part-models such as [44]. This is why so many state-of-the-art algorithms [5, 20, 61, 102]
rely on region+boundary models over arbitrary shapes using mainly length/area priors. Of
these techniques, only the recent work of Li, Wu, Chen & Sonka [102] attempts to globally
optimize priors on the distance between multiple surfaces. As shown in Figures 3.2 and 3.3,
they rely on accurate center-line estimation (a difficult problem in itself) and cannot handle
complex topologies.

Figures 3.1, 3.6, 3.7 and 3.8 show experimental results of our multi-region framework using
class-specific models (bone, knee, heart, kidney). The heart result was computed using QPBO-
I, and the rest were computed in a single graph cut. Our early experiments are all 2D but
they extend to N-D in a straight-forward manner. Using the Boykov-Kolmogorov max-flow
algorithm [22] our running times are longer than binary graph cut in roughly linear proportion
to the number of vertices and arcs added to the graph.

3.3.2 Scene layout estimation

Given a photograph of a scene, we wish to break the image into rough geometric labels “bot-
tom” (B), “top” (1"), “left wall” (L), right wall” (1) and “front-facing” (F'). This application
is described by Hoiem et al. [66], and we actually use data terms based on their local geometric
class estimators. See Figure 3.9 for an example result. Instead of using a-expansion to find
a local minimum of a Pott’s energy, we design a set of interactions between class regions that
can be optimized by a single graph cut.

In our setup, we let regions £ = {B, L, T, R} and treat F' as background. Ideally we want
every pixel p € P to be assigned a unique region, but adding this constraint introduces frus-

3We thank Derek Hoiem so, so much for making code [66] available.
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Figure 3.6: User-driven segmentation of knee joint, measuring thickness of cartilage. Above uses the 4-
part submodular interaction portrayed in (3.7), and was computed by a single graph cut. Given the some
pixels manually classified by the user (dark regions), bone and cartilage are segmented automatically
using a combination of image gradients and anisotropic distance prior (margin) between surfaces. A
two-part model, using these same user input for either tibia or femur, gives poor results.

Figure 3.7: User-driven heart segmentation using the non-submodular interaction portrayed in (3.8),
solved by QPBO-I. The user first marks a part of the right ventricle (a), but the sampled colour model
is attracted to both ventricles. The user then marks the left ventricle as a separate region (b). The outer
wall is segmented automatically by compromising between image gradients and distance prior (margin).
This model cannot be handled by Li et al. [102], and was the starting point for the cardiac segmentation
model of Ulén et al. [148].
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(c) (d)

Figure 3.8: Kidney segmentation (a) is very difficult to automate due to low contrast and complex topol-
ogy. Binary graph cuts simply cannot get reasonable results without heavy user interaction, and even
multi-label methods need some form of localization [125, 61]. In (b—c) we model the kidney as medulla
surrounded by a slightly brighter cortex of minimum thickness. On this challenging example our method
is very sensitive to colour/geometric parameters, e.g. (b), but has discriminative power to extract only
the correct object (c) without any localization. We also show an alternate 3-region object model (d) that
eliminates the unwanted margin between medulla and collection cavity (dark/bright interior). This kind
of topology would be impossible to segment using Li et al. [102] due to the unwrapping requirement.
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Figure 3.9: Scene layout estimation. Given a scene (a) we first generate data terms from local surface
class confidences given by Hoiem et al. [66]. The maximum likelihood solution is shown in (b). With a
single graph cut, our multi-region framework regularizes noise/gaps in the data (c) while keeping most
important geometric classes (B, L, T, R, F') mutually exclusive throughout the image.

trated cycles (Section 3.2.2). We propose the subset of interactions and data terms portrayed in
Figure 3.10.

To encourage the “box” layout seen in Figure 3.10 we borrow an idea from [105] and bias
region B against cutting underneath itself using length terms V2, and likewise for orienta-
tions L, T, R. Unlike [105] we do this with a soft penalty so that strong local data terms can
override the prior, such as the front-facing sign in Figure 3.9c.

We still have two unwanted configurations B7" and LR that have no corresponding like-
lihood. To discourage these labels we want to maximize corresponding D,,, but higher-order

BLTR|Dy(-)
i prelude 1010(D,(F)
@- @ 0010|Dy(B)
L| "R 1110[Dy(L)
g @ 1000|D,(T)
B ——
1011|Dy(R)
our ‘objects’ their interactions 0000 Dp(BT)
1111|{D,(LR)

Figure 3.10: Our scene object interactions and corresponding higher-order data terms. Two unwanted
labels are due to limitations imposed by frustrated cycles (Section 3.2.2). The configurations not listed
have cost > oo due to the four exclusion constraints above.
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submodularity requires

D,(BT) < D,(B)+ D,(T) — D,(F), and

D,(LR) < Dy(L) + Dy(R) — D,(F). (3.12)

We truncate these terms to retain submodularity, potentially allowing either B to overlap 7', or
L to overlap R. Experimental results are shown in Figure 3.11.

Note that even if we did prohibit labels B7" and LR, we would not be minimizing a Pott’s
energy. Instead, the equivalent multi-label formulation has labels £ = {ly, [y, ...,l,} where
we designate [y the null label, corresponding to region F' in our scene layout formulation. In
this type of multi-label model, all pixel label pairs f,, f, # [y have

qu(fm fq) = V;?q(fp’ l@) + qu(l@a fq)' (3.13)

Because this model always penalizes (I;,;) transitions more than ([;,[y) transitions, over-
smoothing creates gaps between [; and /; in regions with weak data, unlike [66, 105].

3.4 Discussion

Given one of our multi-region models, one could apply a5-swap to the corresponding multi-
label energy. Unfortunately this provides no optimality guarantees, and Figure 3.12 suggests
how our distance priors create local minima for a3-swap. Often the a-expansion algorithm
cannot even be applied because the equivalent multi-label energy is not a metric [24] and
would create non-submodular terms at the expansion step. Specifically, let V,,,(f,, f,) denote
the pairwise cost corresponding to Figure 3.12. The costs here do not satisfy the triangle
inequality because

Vog(B,0) £ Vig(B, A) + Viy(A, 0). (3.14)

The Pott’s-like model suggested by (3.13) is a metric, however, and can be optimized effec-
tively with a-expansion. On the few scene layout examples we tried, a-expansion either found
or came close to the global optimum.

Multi-label constructions Recall that our set of regions L is not ordered in any way. We are
thus not building a ‘layer cake’ construction typical of discrete and continuous total-variation
methods in multi-label optimization [71, 117, 118]. A special case of our multi-region energy
(3.2) does coincide with a particular Ishikawa construction [71]. To construct a total-variation
(Vg o | fp — f,]) Ishikawa graph for n labels, order n — 1 regions as £ = {1,...,n — 1} and
introduce hard ‘7 contains ¢ + 17 constraints between subsequent layers.

Also recall that an n-region model represents up to 2" corresponding labels, which is the
ultimate objective of the log transformation [121]. They start with an energy over discrete
variables z; € {1...m} and try to represent each z; using as close to log,m binary variables
as possible. Their approach is much more general because they start from a multi-label energy
and test it against a criterion for transformation to submodular binary encoding. The criterion
itself is clear but it is not always obvious how to satisfy it when designing an energy for a
particular application. In contrast, we start with binary variables and build up our multi-region
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Figure 3.11: Scene layout results using our proposed interactions in Section 3.3.2, showing estimates
for indoor (a) and outdoor (b—d) scenes. Smoothness parameters were tuned for each image. Diagonal
shading on the Flatiron image (d) indicates that scene classes L and R overlap. This may happen when
certain data terms conflict because our graph cut construction cannot simultaneously prohibit all classes

from overlapping. Section 3.4 discusses ways to resolve this. See Figure 3.9b for an example of the data
terms that drive this segmentation.
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1 1 costs Dy (+) labeling f  E(f)
ANNIE olo]o]0][3]
Alafofofe]  [A]A]A]0][4]
0 [3]o]o]0 B[B[0]0][6]

Figure 3.12: Example of how our interaction terms cause a3-swap to get stuck in local minima. The
graph and D), encode a 4-pixel segmentation with “A contains B” constraint. Diagonal arcs encourage
a 1-pixel margin between boundaries of B and A. Our s-t min cut construction finds global optimum
f*=(B, B, A, () with E(f*)=0, but the corresponding 3-label energy is hard for «S-swap to optimize.
The labeling f= (0,0, 0, ) is already a local minimum regardless of which labels are swapped (right).

models from intuitive pairwise interactions. We show that there are applications where such
models are useful, without the need for an explicit transformation from multi-label.

Constructions along ‘rays’ On page 25 we described a related construction by Li, Wu,
Chen & Sonka [102] that optimizes along columns sampled from the image domain. Notice
that because their columns are known a priori they can encode both a min and max distance
prior, whereas our framework assumes rays are not known and can only encode a min distance®.
Thus there is an advantage to their method when a good pre-segmentation is available.

On the subject of paper [102], we mention two connections between their work and existing
works in vision. First, it is standard to convert their closure set problem into an equivalent s-¢
min cut, and we note that the corresponding min cut graph in their single-surface case happens
to be a particular Ishikawa construction [71]. Their innovation can be thought of as building
parallel Ishikawa constructions that influence one another. Second, there is a binary segmen-
tation paper [152] that takes similar advantage of rays embedded in the image domain. Rather
than unwrap the image domain and introduce geometric distortion of length/area, Veksler dis-
cretizes the rays and embeds them directly in the neighbourhood of a grid graph. One could
implement multi-surface priors like Li et al. by extending Veksler’s grid framework instead.

QPBO and approximations There are many multi-region models that are useful yet contain
frustrated cycles. Even the simple 3-region interaction portrayed in (3.8) and the scene layout
application are two examples where the ideal set of interactions cannot be optimized with a
single graph cut. We can still formulate the (potentially NP-hard) energy and apply global
methods like QPBO-P [18] or a reasonably fast approximation like QPBO-I [124]. QPBO-I
can give good results on examples like Figures 3.7 and 3.11d, in only 1-5 subsequent ‘improve’
attempts. Figure 3.13 shows how QPBO-I succeeded in resolving the violated constraints from
on the ‘flatiron’ image.

“In our framework, it is actually possible to create a spring-like attraction force between boundaries of i
and j via opposing “¢ attracts 5~ and “‘j attracts ¢” interactions of large radius. However, the strength of this
attraction is unfortunately coupled with surface regularization strength, leading to unwanted oversmoothing for
most applications.
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Figure 3.13: LEFT: Failure case from Figure 3.11d. RIGHT: Solution by QPBO-I where unwanted class
labels BT, LR are prohibited.

Local search with multi-label moves Given a model that contains frustrated cycles among
region layers, it may also be possible to design move-making algorithms that operate on subsets
of regions, rather than relying on QPBO. This is in the spirit of “range-moves” [93, 151] where
at each iteration we choose a large subset of interactions that can be trivially converted to
submodular. Care must be taken to ensure that the energy of the labeling never increases, but
large moves can be developed in this way. For example, we have verified that we can implement
the vertical/horizontal moves in [105] using a simple “I" excludes B’ construction with special
D, and V" based on the current labeling.

More generally we can minimize a multi-label energy E(f) by defining a move space for
the local search algorithm in Section 2.2. The main novelty over range-moves [151] will be (1)
the geometric interpretation of long-range interactions and (2) our attempt to flip the meaning
of binary variables to eliminate non-submodular interactions, resulting in a larger move space.
Let us define the region subsets upon which submodular moves can be made:

S ={L C L : Lis free of frustrated cycles and no

superset of L is free of frustrated cycles }.

The set of all possible moves with respect to current labeling f can be defined as

M(f) =M (f) where M“(f)={f:fo#fo = fnfoeL}. (3.15)

LeS

Each set of regions L. € S has no frustrated cycles among its interactions. This means
we can always find a binary ‘flipping’ such that there is a one-to-one correspondence between
elements of L = {/1,...,(;} and feasible binary assignments x,, = (z,,...,zk) where k =
|L|. The flipping allows interaction terms W;Z are submodular, and so we can compute an
optimal move on subset L in a single graph cut using the constructions found throughout this

chapter.
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3.5 Conclusions and Future Work

With our multi-region framework, not only can more difficult objects now be segmented, but
designing tractable models is also quite easy. The main ideas were to keep a separate appear-
ance model for each spatially distinct region, and to allow geometric priors between region
boundaries. Along the way, we discussed many parallels between the works of Li et al. [102],
Ishikawa [71] and Veksler [152], and we hope these comments were helpful. Our experiments
suggest that more robust medical segmentation tools could be designed around these ideas.

There are many other applications that can potential be revisited with these ideas in mind.
Particularly promising are a more sophisticated concept of shape priors [50, 155] and topo-
logical constraints [153], but also ratio minimization [84], EM-style algorithms like Grab-
Cuts [123], and combining pictorial structures with segmentation [44, 81]. Complex objects
can be modeled by a hierarchy of nested regions that interact, with each region potentially
driven by different data.

Finally, we note that there has been much past success in transferring ideas from discrete
optimization into continuous settings, e.g. [118, 112]. We hypothesize that some of the ideas
discussed in this chapter may also apply in continuous settings.



Chapter 4

Energies with Label Costs

In a labeling problem we are given a set of observations P (pixels, features, data points) and
a finite set of labels £ (categories, geometric models, disparities). The goal is to assign each
observation p € P a label f, € £ such that the joint labeling f minimizes some objective
function E(f).

In computer vision and machine learning the available data is usually ambiguous, unreli-
able, or simply insufficient as to make direct inference possible. To explain such data we must
incorporate biases and assumptions into our models, ideally a form of high-level reasoning or,
more commonly, low-level regularization such as those discussed in Chapter 1. However, even
low-level regularizers (biases) often make the corresponding inference problem NP-hard. Our
work is about how to effectively optimize energies with two such regularizers: a preference
for fewer unique labels in the solution (label costs), and a preference for spatial smoothness
(smooth costs). Figures 4.1, 4.2, and 4.3 suggest how these criteria cooperate to give clean
results.

The work in this chapter was initially published in the 2010 Conference on Computer Vision
and Pattern Recognition (CVPR) [38] and subsequently expanded in the International Journal
of Computer Vision (IJCV) [39].

4.1 Some Useful Regularizers

Regularization combining smoothness and label costs has a long history in vision going back
to well known papers by Leclerc [98], Zhu & Yuille [166], and many others. Until recently,
however, label costs could not be optimized by the powerful combinatorial algorithms popular
in computer vision. The main contributions of our work (originally reported in [38]) are as
follows. We are first to describe a general label cost functional () that depends on a specific
subset of used labels, rather than on a number of labels. Moreover, we propose several com-
binatorial optimization algorithms with guaranteed optimality bounds for minimizing energies
combining data costs, smooth costs, and label costs.

Label costs  Start by considering a basic (unregularized) energy E(f) =>_ D,(f,), where
optimal f,, can be determined trivially by minimizing over independent ‘data costs’. Suppose,
however, that we wish to explain the observations using as few unique labels as necessary. We

39
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Figure 4.1: Motion segmentation on the IRT2RCR sequence [145]. Energy (4.1) finds 3 dominant

motions (a) but labels many points incorrectly. Energy (4.2) gives coherent segmentations (b) but finds
redundant motions. Our energy combines the best of both (c).

Figure 4.2: Planar homography detection on VGG (Oxford) Merton College 1 image (right view). En-
ergy (4.1) finds reasonable parameters for only the strongest 3 models shown in (a), and still assigns
a few incorrect labels. Energy (4.2) finds reasonable clusters (b) but fits 9 models, some of which are
redundant (nearly co-planar). Our energy (x) finds both good parameters and labels (c) for 7 models.
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Figure 4.3: Unsupervised segmentation using histogram models. Energy (4.1) clusters in colour
space, so segments (a) are incoherent. Energy (4.2) clusters over pixels and must either over-segment
or over-smooth (b), just as in [164]. Our energy (%) balances these criteria (c) and corresponds to
Zhu & Yuille [166] for segmentation.

can introduce label costs into E( f) to penalize each unique label that appears in f:

E(f) =) Dy(f,) +>_ H(1)-6(f) 4.1)

peEP lel

where H(l) is the non-negative label cost of label [, and ¢;(-) is the corresponding indicator

function
a(pe § LIl =
! B 0 otherwise.

Again, energy (4.1) balances the individual preferences of variables (the data costs) against
the global preference to have rely on fewer unique labels (the label costs). It turns out that this
formulation is equivalent to the well-studied uncapacitated facility location (UFL) problem,
which we review in Section 4.3.5. For example, in computer vision, Li [101] recently posed
multi-body motion estimation in terms of UFL. For multi-model fitting, each label corresponds
to a candidate model and label costs penalize overly-complex models, preferring to explain the
data with fewer, cheaper labels (see Figure 4.1a).

Smooth costs Spatial smoothness is a standard regularizer in computer vision. The idea here
is that groups of observations are often known a priori to be positively correlated, and should
thus be encouraged to have similar labels. Neighbouring image pixels are a classic example of
this. Such pairwise priors can be expressed by the energy

E(f) =Y _Dy(f) + > Vialfor fo) (4.2)

pEP pgeN
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where each V), penalizes f, # f, in some manner. If each V), defines a metric, then mini-
mizing (4.2) is known as the metric labeling problem [24, 78] and can be optimized effectively
with the a-expansion algorithm.

This regularizer prefers spatially coherent segmentations, but has no incentive to combine
non-adjacent segments and thus a tendency to suggest redundant labels in multi-model fitting
(see Figure 4.1b). Still, spatial smoothness priors are important for a wide array of vision
applications.

Our combined energy We propose a discrete energy that essentially combines the UFL and
metric labeling problems.

datzi\cost smoojtl: cost labe}\cost
E(f) =) Dy(fo) + Y Vialfoi fo) + > H(L)-0c(f) (%)
peEP pgeEN LCL

where the indicato