54,823 research outputs found

    Structure analysis of biologically important prokaryotic glycopolymers

    Get PDF
    Of the many post-translational modifications organisms can undertake, glycosylation is the most prevalent and the most diverse. The research in this thesis focuses on the structural characterisation of glycosylation in two classes of glycopolymer (lipopolysaccharide (LPS) and glycoprotein) in two domains of life (bacteria and archaea). The common theme linking these subprojects is the development and application of high sensitivity analytical techniques, primarily mass spectrometry (MS), for studying prokaryotic glycosylation. Many prokaryotes produce glycan arrangements with extraordinary variety in composition and structure. A further challenge is posed by additional functionalities such as lipids whose characterisation is not always straightforward. Glycosylation in prokaryotes has a variety of different biological functions, including their important roles in the mediation of interactions between pathogens and hosts. Thus enhanced knowledge of bacterial glycosylation may be of therapeutic value, whilst a better understanding of archaeal protein glycosylation will provide further targets for industrial applications, as well as insight into this post- translational modification across evolution and protein processing under extreme conditions. The first sub-project focused on the S-layer glycoprotein of the halophilic archeaon Haloferax volcanii, which has been reported to be modified by both glycans and lipids. Glycoproteomic and associated MS technologies were employed to characterise the N- and O-linked glycosylation and to explore putative lipid modifications. Approximately 90% of the S-layer was mapped and N-glycans were identified at all the mapped consensus sites, decorated with a pentasaccharide consisting of two hexoses, two hexuronic acids and a methylated hexuronic acid. The O-glycans are homogeneously identified as a disaccharide consisting of galactose and glucose. Unexpectedly it was found that membrane-derived lipids were present in the S- layer samples despite extensive purification, calling into question the predicted presence of covalently linked lipid. The H. volcanii N-glycosylation is mediated by the products of the agl gene cluster and the functional characterisation of members of the agl gene cluster was investigated by MS analysis of agl-mutant strains of the S-layer. Burkholderia pseudomallei is the causative agent of melioidosis, a serious and often fatal disease in humans which is endemic in South-East Asia and other equatorial regions. Its LPS is vital for serum resistance and the O-antigen repeat structures are of interest as vaccine targets. B. pseudomallei is reported to produce several polysaccharides, amongst which the already characterised ‘typical’ O-antigen of K96243 represents 97% of the strains. The serologically distinct ‘atypical’ strain 576 produces a different LPS, whose characterisation is the subject of this research project. MS strategies coupled with various hydrolytic and chemical derivatisation methodologies were employed to define the composition and potential sequences of the O-antigen repeat unit. These MS strategies were complemented by a novel NMR technique involving embedding of the LPS into micelles. Taken together the MS and NMR data have revealed a highly unusual O-antigen structure for atypical LPS which is remarkably different from the typical O-antigen. The development of structural analysis tools in MS and NMR applicable to the illustrated types of glycosylation in these prokaryotes will give a more consistent approach to sugar characterisation and their modifications thus providing more informative results for pathogenicity and immunological studies as well as pathway comparisons.Open Acces

    Structural and functional glycosphingolipidomics by glycoblotting with aminooxy-functionalized gold nanoparticle

    Get PDF
    Glycosphingolipids (GSLs) synthesized in Golgi apparatus by sequential transfer of sugar residues to a ceramide lipid anchor are ubiquitously distributing on vertebrate plasma membranes. Standardized method allowing for high throughput structural profiling and functional characterization of living cell surface GSLs is of growing importance because they function as crucial signal transduction molecules in various processes of dynamic cellular recognitions. However, methods are not available for amplification of GSLs, while the genomic scale PCR amplification permits large-scale mammalian proteomic analysis. Here we communicate such an approach to a novel "omics", namely glycosphingolipidomics based on the glycoblotting method. The method, which involves selective ozonolysis of the C-C double bond in ceramide moiety and subsequent enrichment of generated GSL-aldehydes by chemical ligation using aminooxy-functionalized gold nanoparticle (aoGNP) should be of widespread utility for identifying and characterizing whole GSLs present in the living cell surfaces. The present protocol using glycoblotting permitted MALDI-TOFMS-based high throughput structural profiling of mouse brain gangliosides such as GM1, GD1a/GD1b, and GT1b for adult or GD3 in case for embryonic mouse. When mouse melanoma B16 cells were subjected to this protocol, it was demonstrated that gangliosides enriched from the plasma membranes are only GM3 bearing microheteogeneity in the structure of N-acyl chain. Surface plasmon resonance analysis revealed that aoGNP displaying whole GSLs blotted from mouse B16 melanoma cell surfaces can be used directly for monitoring specific interaction with self-assembled monolayer (SAM) of Gg3Cer (gangliotriaosylceramide). Our results indicate that GSL-selective enrichment onto aoGNP from living cell surfaces allows for rapid reconstruction of plasma membrane models mimicking intact GSL-microdomain feasible for further structural and functional characterization

    Compositional Analysis of the High Molecular Weight Ethylene Oxide Propylene Oxide Copolymer by MALDI Mass Spectrometry

    Full text link
    The composition of narrow distribution poly ethylene oxide-propylene oxide copolymer (Mw ~ 8700 Da) was studied using matrix assisted laser desorption ionization (MALDI) mass spectrometry. The ethylene oxide-propylene oxide copolymer produced oligomers separated by 14 Da. The average resolving power over the entire spectrum was 28,000. Approximately 448 isotopically resolved peaks representing about 56 oligomers are identified. Although agreement between experimental and calculated isotopic distributions was strong, the compositional assignment was difficult. This is due to the large number of possible isobaric components. The purpose of this research is to resolve and study the composition of high mass copolymer such as ethylene oxide-propylene oxide

    Conversión hidrotermal de biomasa en bioproductos valiosos

    Get PDF
    Los procesos hidrotérmicos son una excelente alternativa para convertir desechos de biomasa en productos de alto valor energético. El alcance de este proyecto ofrece el estudio de 5 tipos de biomasa distintos: café, madera blanca, arroz, lignina y madera negra (Zilkha). La reacción se llevó a cabo en un reactor continúo cambiando las condiciones de presión y temperatura. El café demostró ser la materia primar de mayor rendimiento, alcanzando valores de hasta el 70% y, por el contrario, la lignina alcanzó muy bajos rendimientos, no sobrepasando el 13%. Para analizar el bioproducto solido obtenido se realizó un análisis termogravimétrico. A partir de estos datos, se propuso un nuevo método denominado ‘desplazamiento’ que refleja las diferencias entre los perfiles del producto sólido logrado y la biomasa no tratada. También se utilizaron técnicas de HPLC y MALDI-TOF-MS que demostraron mayores concentraciones en los bioproductos líquidos obtenidos según aumentaba la temperatura de reacción.University of NottinghamGrado en Ingeniería Químic

    Candida antarctica lipase-catalyzed synthesis and characterization of novel acrylic teroligomers

    Get PDF
    The synthesis of three novel low molecular weight acrylic terpolymers, containing at random sequences of ethyl acrylate, acrylic acid and N-(2-hydroxyethyl)acrylamide, catalyzed by Candida antarctica lipase was successfully conducted in organic media. For the first time, these products have been enzymatically synthesized using ethyl acrylate as the only monomer starting material and taking advantage of a triple activity displayed by the lipase. In the presence of ethanolamine, the enzyme not only catalyzes the chain polymerization of ethyl acrylate but also the aminolysis and hydrolysis of the pendant ester groups affording the terpolymers. The products were characterized by 1H and 13C NMR and UV-MALDI-TOF-MS.Fil: Baldessari, Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; ArgentinaFil: Fatema, M. Kaniz. Ehime University; JapónFil: Nonami, Hiroshi. Ehime University; JapónFil: Erra Balsells, Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; ArgentinaFil: Rustoy, Eduardo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; Argentin

    Yale School of Public Health Symposium on tissue imaging mass spectrometry: illuminating phenotypic heterogeneity and drug disposition at the molecular level.

    Get PDF
    ‘A picture is worth a thousand words’ is an idiom from the English language (‘borrowed’ from on old Chinese proverb) that conveys the notion that a complex idea can be succinctly and fully described by a single image. Never has this expression been truer than in the clinical and pharmaceutical arenas. Enormous strides have been made by the scientific community in the evolving field of biomedical imaging with the aim of representing and/or quantifying aspects of disease and drug action by using tools such as radiography, MRI, PET, and ultrasound. Yet linking the phenotypical data generated by these systems to the genome is a challenging task. Identifying the link between the mechanism of disease or failed drug response to the genome of an individual is difficult, because central pieces of information are missing. However, imaging mass spectrometry (IMS) can overcome this issue. IMS aims to detect the molecular constituents of the tissue; these can then be correlated with genome-related characteristics, such as gene expression patterns and possible mutations, and ultimately provide a phenotypic molecular link to the complex disease biology. The big data technology of IMS can generate spatial information of thousands of metabolites and proteins from within a tissue, facilitating a deeper understanding of the connections between the genome, phenotypic characteristics and the biological response. It is a technology that has the potential to serve as a segue between gene expression and observed biological signal

    Probing the mechanism of electron capture and electron transfer dissociation using tags with variable electron affinity

    Get PDF
    Electron capture dissociation (ECD) and electron transfer dissociation (ETD) of doubly protonated electron affinity (EA)-tuned peptides were studied to further illuminate the mechanism of these processes. The model peptide FQpSEEQQQTEDELQDK, containing a phosphoserine residue, was converted to EA-tuned peptides via β-elimination and Michael addition of various thiol compounds. These include propanyl, benzyl, 4-cyanobenzyl, perfluorobenzyl, 3,5-dicyanobenzyl, 3-nitrobenzyl, and 3,5-dinitrobenzyl structural moieties, having a range of EA from −1.15 to +1.65 eV, excluding the propanyl group. Typical ECD or ETD backbone fragmentations are completely inhibited in peptides with substituent tags having EA over 1.00 eV, which are referred to as electron predators in this work. Nearly identical rates of electron capture by the dications substituted by the benzyl (EA = −1.15 eV) and 3-nitrobenzyl (EA = 1.00 eV) moieties are observed, which indicates the similarity of electron capture cross sections for the two derivatized peptides. This observation leads to the inference that electron capture kinetics are governed by the long-range electron−dication interaction and are not affected by side chain derivatives with positive EA. Once an electron is captured to high-n Rydberg states, however, through-space or through-bond electron transfer to the EA-tuning tags or low-n Rydberg states via potential curve crossing occurs in competition with transfer to the amide π* orbital. The energetics of these processes are evaluated using time-dependent density functional theory with a series of reduced model systems. The intramolecular electron transfer process is modulated by structure-dependent hydrogen bonds and is heavily affected by the presence and type of electron-withdrawing groups in the EA-tuning tag. The anion radicals formed by electron predators have high proton affinities (approximately 1400 kJ/mol for the 3-nitrobenzyl anion radical) in comparison to other basic sites in the model peptide dication, facilitating exothermic proton transfer from one of the two sites of protonation. This interrupts the normal sequence of events in ECD or ETD, leading to backbone fragmentation by forming a stable radical intermediate. The implications which these results have for previously proposed ECD and ETD mechanisms are discussed
    corecore