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The first paragraph (144 words). 

Glycosphingolipids (GSLs) synthesized in Golgi apparatus by sequential transfer of 

sugar residues to a ceramide lipid anchor are ubiquitously distributing on vertebrate 

plasma membranes.  Standardized method allowing for high throughput structural 

profiling and functional characterization of living cell surface GSLs is of growing 

importance because they function as crucial signal transduction molecules in various 

processes of dynamic cellular recognitions.  However, methods are not available for 

amplification of GSLs, while the genomic scale PCR amplification permits large-scale 

mammalian genomics and proteomics. Here we communicate such an approach to a 

novel “omics”, namely glycosphingolipidomics based on the glycoblotting method.  

The method, which involves selective ozonolysis of the C-C double bond in ceramide 

moiety and subsequent enrichment of generated GSL-aldehydes by chemical ligation 

using aminooxy-functionalized gold nanoparticle (aoGNP) should be of widespread 

utility for structural identification and functional characterization of whole GSLs present 

in the living cells/tissues.  

 



 3

Main text (1424 words). 

Cell surface GSLs exhibit various and crucial functions in cell growth, differentiation, 

adhesion, and malignant alteration1.  It has been documented that dramatic changes in 

GSL composition and metabolism are strongly associated with oncogenic 

transformation2,3.  Therefore, identification of disease-related structural alteration of 

cell surface GSLs will become a key to develop diagnostic biomarkers and therapeutic 

anticancer vaccines.  However, purification and structural characterization of cellular 

GSLs have not been routinely possible to date, typically requiring tedious and 

time-consuming extraction/purification steps of GSLs of interest from extremely 

complex mixtures before analysis.  In general, protocols for the isolation of GSLs would 

vary depending upon the analytical methods as well as chemical properties of individual 

GSLs and would need specialized expertise at step-by-step/case-by-case handling for 

separation.  These crucial problems in the enrichment of whole GSLs make it difficult to 

achieve high throughput structural and functional analyses of biologically important 

GSLs.  In addition, we should pay attention to the fact that cell surface GSLs often 

exhibit specific biological functions through dynamic mechanism such as clustering or 
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self-assembling in order to amplify the affinity with partner molecules.  For example, 

it was suggested that tumor-associated GSLs are locating at high density in tumor cells 

and may be organized in microdomains at the tumor cell surface4,5.  It seems that self- 

assembly of GSLs might become an essential mechanism to serve their immunogenicity 

and antigenicity1.  We thought that a practical method allowing both for structural 

profiling and for functional analysis of GSLs as key component of cell surface 

microdomain is now strongly expected. 

We have demonstrated the versatility of chemical ligation of reactive carbonyl 

groups by means of aminooxy- or hydrazine-functionalized polymers in selective 

enrichment analysis of whole N-glycans6-12 and some kinds of glycopeptides8,13 derived 

from human serum, cellular glycoproteins, and biopharmaceuticals.  The new concept 

of “glycoblotting”, a glycan enrichment technology based on the above chemical 

ligation, greatly facilitated further quantitative and large-scale glycomics and 

glycoproteomics using general mass spectrometry-based analyses for the purpose of 

exploring clinically potential biomarkers11-13.   

On the other hand, it is well known that metal and semi-conducting nanoparticles 
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are nice tools of the scaffold materials displaying various biomolecules through the 

specific Au-S bonding14.  Since these nanoparticles conjugated with biomolecules are 

soluble or well dispersed in aqueous solution and stable under physiological conditions, 

they have been widely applied in broad scientific fields of biochemistry and chemical 

biology for the molecular recognition assay15,16.  Metal nanoparticles have also been 

used as a matrix for LDI-MS analysis, where the metal particles serve as a reservoir for 

photon energy deposition17,18.  Advantages of the use of gold nanoparticle (GNP) in 

MALDI-TOFMS based structural characterization may be summarized as follows: (a) 

GNP exhibits much greater ionization efficiency than common organic matrices due to 

the quantum coefficient effect19, (b) self assembled monolayer (SAM) of thiol 

compound chemisorbed onto the Au surface can be ionized efficiently to cleave the 

Au-S bond by laser irradiation in the MALDI process20, and (c) conjugating 

mass-limited small molecules onto the colloidal Au surface makes it possible to 

sequester and transfer small quantities of analytes with high efficiency21.  Recent our 

results revealed that ionization of analytes is highly enhanced by specific 

laser-scattering or diffused reflection on the extremely increased surface area of metal 
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nanoparticles, which may greatly accelerate the ionization of chemisorbed small 

molecules from GNP22,23.  We hypothesized that a streamlined protocol by integrating 

above two technologies, “glycoblotting and GNP-assisted MALDI-TOFMS”, makes an 

enrichment analysis of living cell surface glycosphingolipids possible.  Here we 

communicate for the first time a comprehensive approach of structural and functional 

glycosphingolipidomics based on glycoblotting method.   

Naturally occurring GSLs commonly involve a trans-double bond at C-4,5 position 

of the sphingosine base moiety, which can be cleaved quantitatively by simple 

ozonolysis to generate aldehyde derivatives of the parent GSLs (Figure 1).  This 

characteristic feature of GSLs prompted us to establish novel and standardized method 

allowing for structural and functional glycosphingolipidomics concurrently.  Figure 

2(a) illustrates a general strategy for the selective enrichment of cellular GSLs onto 

GNP surface by applying the concept of glycoblotting.  We devised high performance 

and well dispersed GNP having aminooxy functional groups (aoGNP) by reduction of 

Au3+ ion (KAuCl4) with NaBH4 in the mixed solution of methanol and water in the 

presence of stabilizing reagents 11,11'-dithio bis[(undec-11-yl)- 
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12-(N-{tert-butoxycarbonyl}aminooxyacetyl)amino hexa(ethyleneglycol)] (1) and 

1,1’-dithio bis[undec-11-yl hexa(ethylene glycol)] (2).  The average diameter of 

aoGNP was estimated to be 1.3 nm, indicating that an aoGNP is composed of 79 Au 

atoms and covered with 38 thiol molecules (The synthesis of compounds 1, 2, and 

MS-based characterization of aoGNP are described in the Supplementary 

Information).  It was revealed that the oxime bonds formed between GSL-aldehydes 

and aminooxy groups of aoGNP can be readily cleaved by laser irradiation under 

common MALDI condition to afford highly sensitive iminoalcohol ions [Figure 2(b)].  

To illustrate the new method, crude lipids fraction24 of C57BL/6JJcl adult (7 weeks) and 

embryonic (13.5 days) mouse brains were subjected directly to “ozonolysis” and 

“glycoblotting” protocol.  Reaction of GSL-aldehydes with aoGNPs proceeded 

smoothly under mild condition without any special reagent.  After simple purification 

GSLs transferred onto aoGNPs (GSLs-GNPs) were employed directly for further 

structural characterization.  The merit of this method is evident because whole 

procedure from GSLs enrichment to mass spectrometry-based structural profiling can 

be performed within 3~4 hours by employing approximately 100 mg (wet weight) of 
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mouse brain.  As anticipated, MALDI-TOFMS showed that aoGNP captures four 

major gangliosides such as GM1 (m/z 1411.5), GD1a/GD1b (m/z 1702.6), and GT1b 

(m/z 1993.6) found in general adult mouse brain and GD3 (m/z 1272.6) found mainly in 

embryonic mouse brain [Figure 3(a)-(c)]25.  When GSLs enriched similarly on aoGNP 

from mouse B16 melanoma cells (1.7 x 107 cells) were subjected to MALDI-TOFMS, 

multiple ion peaks corresponding to GM3 analogs having various long acyl chains were 

detected at m/z 1037.9 (h18:0), 1065.9 (21:0 or h20:0), 1081.9 (h21:0), 1093.4 (23:0 or 

h22:0), 1110.0 (h23:0), 1124.1 (h24:0), and 1140.1 (2h24:0) [Figure 4(a)].  This result 

clearly indicates that the present protocol greatly facilitated analysis of the molecular 

diversity (microheterogeneity) of GSLs in terms of alterations in N-acyl groups as well 

as glycoforms [Figure 4(b)].  

    Next, our interest was focused on the feasibility of aoGNPs as a platform for the 

characterization of carbohydrate-carbohydrate interaction conducted by cell surface 

glycosphingolipids26.  It seems that whole GSLs enriched on the GNPs might become 

a plausible model of the living cell “microdomain” involving high-density GSLs and 

serves as nice tools for investigating specific functions of self-assembled GSLs under a 
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similar topology to the intact plasma membrane.  Here we examined the feasibility of 

aoGNPs for functional analysis of above mentioned B16 cell surface GSLs because it 

was documented that GM3 is identified as the melanoma-associated antigen in mice, 

hamsters and humans27 and microdomain composed of highly expressed GM3 in mouse 

melanoma B16 cells28 intermediates cancer metastasis through the specific adhesion 

with Gg3Cer29,30.  In addition to GSLs(B16)-GNPs [whole GSLs on aoGNP enriched 

from mouse B16 melanoma cells described in the above MS analyses (Figure 4)], we 

prepared GSLs-GNPs displaying pure GalCer, LacCer, GM1, and GM3 as controls.  

The calibration curves were also made by using these authentic GSLs-GNPs to 

determine the amount of total GSLs enriched from B16 cells on the GNPs.  The 

concentration of GSLs-GNPs was estimated by means of pulsed amperometric analysis 

using high-pH anion-exchange column chromatography (HPAE-PAD, Supplementary 

Methods).  The results indicated that approximately 7~16 molecules of GSLs are 

captured on the surface of the single aoGNP, respectively (the average surface area of 

the single GNP = 5.3 nm2).  Thus, well-characterized GSLs-GNPs were employed for 

further binding assay using surface plasmon resonance (SPR) with LB-membrane of 
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gangliotriaosylceramide (Gg3Cer) immobilized on gold substrate.  It was revealed that 

the binding profile of GSLs(B16)-GNPs seems to be quite similar to that of GM3-GNPs 

and the affinity constants (Ka) were calculated by applying above equation to be 4.35 × 

105 M-1 for GSLs(B16)-GNPs and 3.64 × 105 M-1 for GM3-GNPs, respectively (Figure 

5).  On the other hand, the binding curves of other GSLs-GNPs such as GalCer-GNPs, 

LacCer-GNPs, and GM1-GNPs did not fit to above Langmuir-type isothermal 

adsorption equation, indicating that they are non-specific binding.  These results 

clearly suggest that the binding of GM3-GNPs or GSLs(B16)-GNPs with Gg3Cer 

monolayer is a specific and high affinity interaction30.   

In conclusion, we demonstrated that aoGNPs are suited scaffold material for the 

chemical enrichment (glycoblotting) and subsequent MALDI-TOFMS-based structural 

characterization of naturally occurring GSLs.  Conceptually, this is the first approach 

to permit high throughput structural profiling of living cell/tissue GSLs.  This new 

protocol, in combination with nanoparticles-based molecular imaging/sensing 

technology, should help to expedite a novel class glycosphingolipidomics and discovery 

research of disease-related biomarkers.   
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METHODS (114 words). 

Ozonolysis and enrichment of mouse brain GSLs. Crude lipids fraction of 

C57BL/6JJcl adult (7 weeks) and embryonic (13.5 days) mouse brain extracted by using 

Ladisch solvent24 [diisopropyl ether/1-butanol/50 mM NaCl aq. (6/4/5, v/v/v)] was 

subjected directly to the treatment with O3 for 30 min and quenched with 

triphenylphosphine.  The solution containing GSL-aldehydes was washed with 

diisopropyl ether/1-butanol (3/2, v/v) to remove simple alkyl aldehyde as by-product.  

Then, the mixture was allowed to react with aoGNPs in 50 mM sodium acetate buffer 

(pH 4.0 at ambient temperature).  After evaporating to complete oxime-bond formation, 

GSLs-GNPs were collected, washed thoroughly by using simple ultrafiltration, and 

employed directly for MALDI-TOFMS.  For the full protocols see the Supplementary 

Information. 
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Figure and Scheme Legend 

Figure 1. Chemical structures of major glycosphingolipids used in this study. 

Figure 2. (a) A general strategy for structural and functional glycosphingolipidomics 

based on the selective enrichment of cellular GSLs onto aoGNP surface by applying the 

concept of glycoblotting. (b) Oxime bonds formed between GSL-aldehydes and 

aoGNPs are digested selectively by laser irradiation on MALDI process to afford highly 

sensitive iminoalcohol ions. 

Figure 3. Profiling mouse brain glycosphingolipids by glycoblotting and subsequent 

MALDI-TOFMS. (a) GSLs identified in adult mouse brain (upper panel) and 

embryonic mouse (bottom panel). (b) MALDI-TOF/TOFMS analysis of the selected 

peak at m/z 1411.5 (GM1), 1702.6 (GD1a/GD1b), and 1993.6 (GT1b) observed in adult 

mouse brain. (c) MALDI-TOF/TOFMS of a precursor ion at m/z 1272.6 corresponding 

to GD3 detected in embryonic mouse brain.   

Figure 4. Profiling whole GSLs enriched from mouse B16 melanoma cells (C57BL/6). 

(a) MALDI-TOFMS exhibited multiple ion peaks due to GSLs mixture observed in a 

range from m/z 1037.9 to 1140.1. (b) MALDI-TOF/TOFMS of a selected peak at m/z 
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1093.4 revealed that these GSLs are GM3 analogs having various N-acyl chains. 

Figure 5. SPR analysis of GSL-GSL interaction on the basis of aoGNPs as a platform 

for displaying high-density GSLs (microdomains). GSLs-GNPs displaying whole GSLs 

from B16 mouse melanoma cells (-●-) or authentic (purified) GSLs such as GalCer 

(-◆-), LacCer (-■-), GM1 (-☓-), and GM3 (-▲-) were employed as analytes for 

SPR-based binding assay with LB-membrane of Gg3Cer. Affinity constants (Ka) were 

calculated by using a common Langmuir-type equation: [GSLs]/ΔRU = [GSLs]/ΔRUmax 

+ 1/ΔRUmaxKa.  Here, ΔRUmax means the maximal changes in the SPR upon the 

injection of the GSLs-GNPs.  [GSLs] is the concentration of GSLs-GNPs and adjusted 

to be 0.01, 0.1, 0.5, 1.0, 2.5, 5.0, 7.5, and 10 μM.   
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