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Introduction
‘A picture is worth a thousand words’ is an idiom from
the English language (‘borrowed’ from on old Chinese
proverb) that conveys the notion that a complex idea
can be succinctly and fully described by a single image.
Never has this expression been truer than in the clinical
and pharmaceutical arenas. Enormous strides have been
made by the scientific community in the evolving field
of biomedical imaging with the aim of representing and/
or quantifying aspects of disease and drug action by
using tools such as radiography [1], MRI [2, 3] PET [4],
and ultrasound [5]. Yet linking the phenotypical data
generated by these systems to the genome is a challen-
ging task. Identifying the link between the mechanism of
disease or failed drug response to the genome of an indi-
vidual is difficult, because central pieces of information
are missing. However, imaging mass spectrometry (IMS)
can overcome this issue. IMS aims to detect the molecu-
lar constituents of the tissue; these can then be corre-
lated with genome-related characteristics, such as gene
expression patterns and possible mutations, and ultim-
ately provide a phenotypic molecular link to the com-
plex disease biology. The big data technology of IMS can
generate spatial information of thousands of metabolites
and proteins from within a tissue, facilitating a deeper
understanding of the connections between the genome,
phenotypic characteristics and the biological response. It
is a technology that has the potential to serve as a segue
between gene expression and observed biological signal.

Image analysis has been a focus of mass spectrometry
for more than 40 years since early studies using secondary
ion mass spectrometry (SIMS) [6]. Among the several
ionization techniques, matrix-assisted laser desorption
ionization (MALDI) imaging mass spectrometry is the
leader for analyzing molecular distributions within tissues
[7]. MALDI IMS is capable of mapping biomolecules of
interest at high spatial resolution (~ 1 μm), and high sensi-
tivity. It can be employed to image a broad variety of
molecular classes, from low-molecular-weight metabo-
lites, lipids (> 1 kDa) and proteins [8, 9]. The unique
ability of this technique to reveal these ionized molecular
entities, while retaining the spatial information for
multiple molecules in one measurement, makes histology-
directed MALDI IMS a powerful tool for clinical applica-
tions and genome-based personalized medicine [10].
Furthermore, desorption electrospray ionization (DESI)
[11] is an ionization technique that has the capability of
direct solid surface sampling under open ambient condi-
tions. DESI has the advantages of ambient ionization
methods and combined with MALDI, hundreds-to-
thousands of molecules can be evaluated simultaneously
and their spatial distribution can be visualized from within
the same tissue section (Table 1). Consequently, the
molecular changes in a tissue can be accurately studied,
correlated to images and cellular features generated by
traditional histology, and the pathogenic mechanisms of a
certain disease can be visualized and identified, leading to
the potential discovery of new biomarkers [8].
The pharmaceutical industry has taken advantage of

the development of IMS to enable an array of high-
throughput screening modalities for pharmaceutical as-
sessments [12]. IMS can provide reliable, label-free
qualitative and quantitative distribution information for
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a drug of interest and its subsequent biotransformed
metabolites [13]. This information can be used to deter-
mine and understand the pharmacokinetic (PK) proper-
ties of a drug, its penetration into tissue, and to assess
drug efficacy and potential toxicity [14]. This makes
IMS a powerful, yet cost-effective technology because
distribution studies can be performed earlier in the
drug discovery process without any requirement for
radiolabeled standards. Of critical importance, IMS
separately maps and differentiates drug from its
metabolites, rather than tracking just a radiolabeled
parent drug [14–16].
At this 1-day symposium, the Department of

Environmental Health Sciences (DEHS) at the Yale
School of Public Health brought together leaders in
IMS to discuss recent developments, limitations, and
future needs, and to increase awareness of this grow-
ing and important field. During his opening remarks,
Dr. Vasiliou highlighted the potential of IMS to define
the molecular basis of diseases, to provide insights
into mechanisms, and to integrate tissue morphology
at the molecular level. Thereafter, talks by an impres-
sive assembly of thought-leaders in IMS illustrated the
potential of unbiased tissue imaging to deliver a new
level of understanding of pathophysiological processes
at the molecular level. The symposium concluded with
a round-table discussion, chaired by Dr. Mark Dun-
can, on some of the more practical issues in IMS such
as current bottlenecks and future opportunities. The
presentations and discussions at the symposium
underscored the great potential of IMS. With the
intention of bringing IMS to the larger scientific com-
munity, the DEHS has committed significant resources
to the acquisition of equipment and expertise that will
allow the further development and application of IMS
techniques.

MALDI imaging mass spectrometry (IMS): recent
technological advances
The first talk of the symposium was given by a pioneer of
the field, Dr. Richard Caprioli, Professor of Biochemistry
and Director of the Mass Spectrometry Research Center
at Vanderbilt University. His opening remarks gave a his-
torical overview of MALDI IMS technology and empha-
sized its advantages. Dr. Caprioli explained how MALDI
IMS employs desorption of molecules by direct laser
irradiation to map the location of specific molecules from
fresh frozen or formalin-fixed tissue sections without the
need to target specific reagents, such as antibodies [17].
Dr. Caprioli championed the major benefits of the
histology-directed approach (that has been developed by
his group) over conventional staining and microscopic
methods. This technology is an addition to the histologist’s
toolbox, not a replacement. By integrating microscopy
with MALDI IMS, this application is almost limitless and
could be used in a variety of biologically and medically
relevant research projects. Dr. Caprioli highlighted studies
in diabetic nephropathy involving both proteins and lipids
and the differentiation of benign skin lesions from
melanomas [17, 18]. In addition, Dr. Caprioli’s group has
applied IMS to drug targeting and metabolic studies in
specific organs and in intact whole animal sections follow-
ing drug administration [19]. Recent technological
advances were also described for sample preparation to
improve metabolite extraction and instrument perform-
ance to achieve images at high spatial resolution (1–
10 μm) and at high speeds so that a typical sample tissue,
once prepared, can be imaged in minutes [20]. Instrumen-
tation used in these studies included both MALDI fourier
transform ion cyclotron resonance (FTICR) and MALDI
time-of-flight (TOF) mass spectrometers. Applications
utilize tandem mass spectrometry (MS/MS), ultra-high
mass resolution, and ion accumulation devices for IMS

Table 1 Imaging mass spectrometry ionization techniques: application, advantages, and disadvantages [8, 9, 11].

Application Ionization Advantages Disadvantages

Tissue molecular imaging MALDI • Label-free analysis
• High-sensitivity
• Use over a broad mass range
• High-spatial resolution (≤ 1 μm)
• Application on both formalin-fixed
paraffin-embedded (FFPE) tissue
microarrays and on fresh tissue samples.

• Low throughput
• Sample preparation can lead to spatial
dislocation or chemical modifications

• Matrix dependent analysis

DESI • Label-free analysis
• Ambient ionization method
• Direct solid surface sampling
• Multiple charged ions
• Minimal sample preparation
• Soft ionization method
• Generally less costly upon comparison
to MALDI

• Imaging in the low-mass region—limited
use for proteins

• Poorer spatial resolution compared
to MALDI

• Solvent dependent
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studies. Finally, new biocomputational approaches were
discussed that are required to handle the high-data dimen-
sionality of IMS, and also ‘image fusion’ for predictive
integration of mass spectrometry (MS) images with mi-
croscopy and other imaging modalities [21].
Dr. Kevin Schey, Professor of Biochemistry, Ophthal-

mology and Visual Sciences, at Vanderbilt University,
discussed the application of IMS to study a range of mo-
lecular classes, such as proteins, lipids, and metabolites
in ocular tissues. Ocular tissues provide an ideal medium
to demonstrate the utility of the technique where mor-
phological features are on the scale of single cells. For
example, molecular profiles can be produced in retina
pigment epithelium. Moreover, a range of diseases affect
the various ocular tissues, including glaucoma, age-
related macular degeneration, cataract, and corneal cata-
ract. Dr. Schey illustrated how IMS is being actively ap-
plied to derive mechanistic information that enhances
understanding about the molecular underpinnings of
disease in these tissues as well as aging mechanisms.
IMS data from optic nerve, retina, lens, and cornea were
presented with special attention to diseases affecting
these tissues [22]. Data from both animal models of dis-
ease and human tissues were discussed, as well as key
methodological details for successful imaging ocular tis-
sues [23–25]. Dr. Schey’s work, in collaboration with Dr.
Vasiliou, on a corneal haze phenotype in Aldh3a1-null
mice presented the first genetic animal model of
cellular-induced corneal haze due to the loss of a corneal
crystallin [24]. This work clearly showed how IMS can
provide deeper understanding for the genome, linking
the disease phenotype with genetic changes.
The broad range of IMS applications was reinforced

even more by Dr. Andrén, Professor at Uppsala Univer-
sity, who showed novel ways to interrogate the actions
of neurotransmitters, their precursors and metabolites,
in the brain chemical network and neuronal signal trans-
mission [26]. Changes in neurotransmitter concentra-
tions are associated with numerous normal neuronal
processes, such as sleep and aging, and in several disease
states, including neurological disorders (e.g., Parkinson’s
and Alzheimer’s disease), depression, and drug addiction.
Dr. Andrén uses knowledge about the relative abun-
dance and spatial distribution of neurotransmitters in
the brain to provide insights into these complex neuro-
logical processes and disorders. At present, researchers
rely on indirect histochemical, immunohistochemical,
and ligand-based assays to detect small-molecule trans-
mitter substances or on tissue homogenates analyzed by
high-performance liquid chromatography analysis.
Current neuroimaging techniques have very limited cap-
acities to directly identify and quantify neurotransmitters
from brain sections. MALDI IMS can perform analyses
directly on the surface of a tissue section, establishing

itself as a powerful in situ visualization tool for measuring
abundance and spatial distribution of endogenous and
pharmaceutical compounds, lipids, peptides, and small pro-
teins. A novel reactive MALDI matrix, recently developed
by Dr. Andrén’s group, selectively targets the primary amine
group on neurotransmitters, metabolites, and neuroactive
substances while also functioning as a matrix to enable
ionization [27]. However, the limitation of using such a re-
active matrix to study the full molecular pathways of, for
example, dopaminergic or serotonergic biosynthesis and
metabolism is its limitation to target all downstream dopa-
mine metabolites derived from monoamine oxidase (MAO)
or catechol-O-methyltransferase (COMT) enzymes. The
majority of small molecule neurotransmitters, such as cate-
cholamines, amino acids, and trace amines, possess phen-
olic hydroxyl and/or primary or secondary amines which
are strong nucleophilic groups. Dr. Andrén’s laboratory has
therefore developed a new reactive matrix that can select-
ively target and charge-tag both phenolic and primary
amine groups, thus enabling MALDI IMS of both MAO
and COMT downstream metabolites, focusing on a nucleo-
philic aromatic substitution reaction with such functional
groups. Using this new reactive matrix, they were able to
detect and map the localization of most of the neurotrans-
mitters and metabolites involved in the dopaminergic and
serotonergic network in a single brain tissue section. This
work showed a novel methodology that assists with metab-
olite identification through the selectivity of the reaction.
The sensitivity and specificity of this imaging approach to
neurochemicals has great potential for many diverse appli-
cations in neuroscience, pharmacology, drug discovery,
neurochemistry, and medicine.

Visualizing drug disposition in tissue
A major focus of the symposium was the application of
MALDI IMS to map the distribution of a variety of
therapeutic molecules across a tissue section of interest
and to assess their biological impact.
Current president of the Imaging Mass Spectrometry

Society and director of US Imaging MS, at GlaxoS-
mithKline (GSK), Dr. Castellino, discussed how MALDI
IMS technology has taken their research beyond
“plasma-centric” studies and allowed for direct mapping
of molecular changes in tissue associated with drug
pharmacology, disposition, and disease pathogenesis.
Delivering safe and efficacious drugs is tied to the ability
to understand complex mechanistic relationships be-
tween molecular initiation events of pharmacologically
active compounds and the cascade of subsequent bio-
logical consequences. Because the delivery of drugs to
their intended target, and avoidance of unintended
targets, is a critical first step, IMS can directly guide
improvements and innovation in delivery strategies by
mapping the target tissue selectivity [28]. Furthermore,
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tissue correlations can be directly made to plasma PK or
lead to improved pharmacodynamic understanding. Dr.
Castellino’s group has explored the use of MALDI IMS
to investigate the distribution of drugs and their metabo-
lites, as well as endogenous compounds, in a wide
variety of target tissues in support of numerous thera-
peutic areas and in all drug discovery and development
stages [29, 30]. The IMS methodology allows for the
co-registration of drug analytes in tissue distributions
with histology images, thereby integrating chemical
structures with tissue morphology. Furthermore, this im-
aging modality offers the potential to further our mech-
anistic understanding of drug disposition, disease
progression, and pharmacology (including toxicology) by
providing snap shots of temporal and causal changes
[31]. Dr. Castellino continued, that while MALDI IMS is
primarily being employed to determine the tissue distri-
bution of drugs and their metabolites, it has become
evident that more detailed understanding of biological
systems can be gained by including the changes in
endogenous compound distribution as a function of
disease and pharmacology. Closing his presentation, Dr.
Castellino discussed the importance of suitable software
tools and improved data handling methods needing to
be developed alongside analytical progress in order for
the full potential of MALDI IMS to be realized.
Dr. Richard Goodwin, a principal scientist for Drug

Safety and Metabolism at AstraZeneca (AZ) and head of
mass spectrometry imaging, presented the challenges
faced for drug discovery and development; it is a
lengthy, high risk, and competitive business that can
take a decade to progress; moreover, billions of dollars
are required to move a new medicine to market. Dr.
Goodwin discussed how IMS could help mitigate some
of the primary reasons for drug attrition, specifically
around lack of efficacy and toxicological or clinical safety
risk. IMS is now demonstrating impact on drug discov-
ery programs and helping reduce later stage compound
attrition. It provides insights into the biodistribution of
compounds, while simultaneously generating data on
pharmacodynamic biomarkers. Dr. Goodwin presented
data from AZ that showed how the use of a range of
multimodal imaging techniques improves understanding
about compound efficacy, safety, and targeted drug
delivery [32, 33]. Investigating histopathological-targeted
drug-induced toxicity is now readily achieved using
high-spatial resolution and high-mass resolution IMS.
Dr. Goodwin outlined how a Cancer Research UK Grand
Challenge consortium are seeking to use multimodal
IMS to offer new insights into tumor metabolism and to
help develop new, more effective medicines and therapy
combinations. The $20 million project led by Professor
Bunch at the National Physical Laboratory UK (in col-
laboration with world leading oncology biologists, IMS

technologists, and AZ) will utilize data similar to that
shared at the symposium. IMS can help identify metab-
olite changes consistent with the biomarker changes in
the tumor and show changes in metabolites as PD bio-
markers, hence providing valuable new insights into the
pathway and drug combinations. The next hurdle is how
to effectively mine multimodal imaging data. Recent
strategies on data processing and visualization as well as
data mining algorithms were outlined [34]. In his closing
remarks, Dr. Goodwin highlighted the challenges and
opportunities arising from the significant quantities of
molecular imaging data generated, from a cellular to
patient level.
Dr. Sheerin Shahidi-Latham, Head of Metabolomics

and Imaging MS, Department of Drug Metabolism and
Pharmacokinetics at Genentech Inc., also discussed the
advantages of the applied use of MALDI IMS. In the
pharmaceutical industry, obtaining information about
the absorption, distribution, metabolism, and elimination
(ADME) of a new chemical entity via a PK study in a
preclinical animal model is often the first step towards
understanding the in vivo properties of a drug-like
molecule in humans. Traditionally, much of this ADME
work has been supported by liquid-chromatography
coupled to mass spectrometry. In the case of tissue
distribution, the organs are excised and homogenized in
order to accommodate this analytical workflow, thereby
effectively eliminating any spatial information. Dr.
Shahidi-Latham emphasized that MALDI IMS has
gained prominence since it provides a robust, label-free
detection of drug and metabolites while preserving
spatial localization within tissue sections of interest.
Additionally, the use of high-resolution mass spectrome-
ters has provided the opportunity for simultaneous de-
tection of subsequent pharmacodynamic (PD) responses
within a single image acquisition. Dr. Shahidi-Latham
discussed how the ability to assess PK/PD relationships
in a label-free, in situ context has proven invaluable to
the early lead optimization efforts that take place in the
drug discovery setting. Similarly, uncovering the perpet-
rator of adverse effects often associated with histopatho-
logical assessments in the preclinical development phase
has also improved their understanding about the mecha-
nisms of toxicity and can provide useful information for
the redesign of a back-up molecule. The presentation
provided a synopsis of the advantages of IMS, as well as
the technical challenges and opportunities in the context
of the pharmaceutical industry. Dr. Shahidi-Latham
presented data from her work at Genentech, which in-
cluded MALDI IMS of dosed tissues in support of drug
efficacy, PK/PD, and effective delivery evaluations, and
highlighted the simultaneous detection of drug, metabo-
lites, and endogenous components attainable from a sin-
gle imaging run [35–39]. Moreover, examples
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demonstrating the utility of imaging MALDI IMS for
toxicity screening were presented. Its complementary
use with autoradiography analyses were discussed, in-
cluding ocular drug distribution and whole-body drug
disposition studies [15].

Bioinformatics platform for large-scale mass
spectrometry imaging data
The constant drive towards integrating complex and large-
scale datasets has generated the need to develop new tools
to process this information [40]. Dr. Kirill Veselkov, Lec-
turer at Imperial College London, discussed how managing,
analyzing, and interpreting these data are a challenge and a
major barrier to their clinical translation. IMS augments
digital pathologic analysis with highly robust big data on
cellular metabolic and proteomic molecular content, gener-
ating a staggering amount of unrefined data (tens to hun-
dreds of gigabytes of data per tissue section). Existing data
analysis solutions for IMS rely on a set of heterogeneous
bioinformatics packages that are not scalable for the repro-
ducible processing of large-scale (hundreds to thousands)
biological sample sets. In this talk, Dr. Veselkov presented a
computational platform (pyBASIS) capable of optimized
and scalable processing of IMS data for improved informa-
tion recovery and comparative analysis across tissue speci-
mens using machine learning and related pattern
recognition approaches. The proposed solution also
provides a means of seamlessly integrating experimental
laboratory data with downstream bioinformatics interpret-
ation and analyses, resulting in a truly high-throughput
system for translational IMS.
The symposium concluded with a round-table discus-

sion, chaired by Dr. Mark Duncan, where the attendees
discussed the practical challenges and future directions of
IMS. The attendees not only agreed on the potential of
IMS to provide previously inaccessible insights into mo-
lecular events at the tissue level, but also highlighted the
cost and complexity of both the science and the technol-
ogy that underpins these studies. Rather than a routine
core service, it was agreed that designing meaningful stud-
ies, performing exacting sample handling, generating and
interpreting complex data, and maintaining high-end in-
strumentation requires a substantial, highly collaborative
interaction between all stakeholders.
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