10 research outputs found

    Free vibrations of laminated composite elliptic plates

    Get PDF
    The free vibrations are studied of laminated anisotropic elliptic plates with clamped edges. The analytical formulation is based on a Mindlin-Reissner type plate theory with the effects of transverse shear deformation, rotary inertia, and bending-extensional coupling included. The frequencies and mode shapes are obtained by using the Rayleigh-Ritz technique in conjunction with Hamilton's principle. A computerized symbolic integration approach is used to develop analytic expressions for the stiffness and mass coefficients and is shown to be particularly useful in evaluating the derivatives of the eigenvalues with respect to certain geometric and material parameters. Numerical results are presented for the case of angle-ply composite plates with skew-symmetric lamination

    Macsyma: A personal history

    Get PDF
    AbstractThe Macsyma system arose out of research on mathematical software in the AI group at MIT in the 1960s. Algorithm development in symbolic integration and simplification arose out of the interest of people, such as the author, who were also mathematics students. The later development of algorithms for the GCD of sparse polynomials, for example, arose out of the needs of our user community. During various times in the 1970s the computer on which Macsyma ran was one of the most popular nodes on the ARPANET. We discuss the attempts in the late 70s and the 80s to develop Macsyma systems that ran on popular computer architectures. Finally, we discuss the impact of the fundamental ideas in Macsyma on the author鈥檚 current research on large scale engineering and socio-technical systems

    A computerized symbolic integration technique for development of triangular and quadrilateral composite shallow-shell finite elements

    Get PDF
    Computerized symbolic integration was used in conjunction with group-theoretic techniques to obtain analytic expressions for the stiffness, geometric stiffness, consistent mass, and consistent load matrices of composite shallow shell structural elements. The elements are shear flexible and have variable curvature. A stiffness (displacement) formulation was used with the fundamental unknowns consisting of both the displacement and rotation components of the reference surface of the shell. The triangular elements have six and ten nodes; the quadrilateral elements have four and eight nodes and can have internal degrees of freedom associated with displacement modes which vanish along the edges of the element (bubble modes). The stiffness, geometric stiffness, consistent mass, and consistent load coefficients are expressed as linear combinations of integrals (over the element domain) whose integrands are products of shape functions and their derivatives. The evaluation of the elemental matrices is divided into two separate problems - determination of the coefficients in the linear combination and evaluation of the integrals. The integrals are performed symbolically by using the symbolic-and-algebraic-manipulation language MACSYMA. The efficiency of using symbolic integration in the element development is demonstrated by comparing the number of floating-point arithmetic operations required in this approach with those required by a commonly used numerical quadrature technique

    A computer program for anisotropic shallow-shell finite elements using symbolic integration

    Get PDF
    A FORTRAN computer program for anisotropic shallow-shell finite elements with variable curvature is described. A listing of the program is presented together with printed output for a sample case. Computation times and central memory requirements are given for several different elements. The program is based on a stiffness (displacement) finite-element model in which the fundamental unknowns consist of both the displacement and the rotation components of the reference surface of the shell. Two triangular and four quadrilateral elements are implemented in the program. The triangular elements have 6 or 10 nodes, and the quadrilateral elements have 4 or 8 nodes. Two of the quadrilateral elements have internal degrees of freedom associated with displacement modes which vanish along the edges of the elements (bubble modes). The triangular elements and the remaining two quadrilateral elements do not have bubble modes. The output from the program consists of arrays corresponding to the stiffness, the geometric stiffness, the consistent mass, and the consistent load matrices for individual elements. The integrals required for the generation of these arrays are evaluated by using symbolic (or analytic) integration in conjunction with certain group-theoretic techniques. The analytic expressions for the integrals are exact and were developed using the symbolic and algebraic manipulation language

    Application of symbolic and algebraic manipulation software in solving applied mechanics problems

    Get PDF
    As its name implies, symbolic and algebraic manipulation is an operational tool which not only can retain symbols throughout computations but also can express results in terms of symbols. This report starts with a history of symbolic and algebraic manipulators and a review of the literatures. With the help of selected examples, the capabilities of symbolic and algebraic manipulators are demonstrated. These applications to problems of applied mechanics are then presented. They are the application of automatic formulation to applied mechanics problems, application to a materially nonlinear problem (rigid-plastic ring compression) by finite element method (FEM) and application to plate problems by FEM. The advantages and difficulties, contributions, education, and perspectives of symbolic and algebraic manipulation are discussed. It is well known that there exist some fundamental difficulties in symbolic and algebraic manipulation, such as internal swelling and mathematical limitation. A remedy for these difficulties is proposed, and the three applications mentioned are solved successfully. For example, the closed from solution of stiffness matrix of four-node isoparametrical quadrilateral element for 2-D elasticity problem was not available before. Due to the work presented, the automatic construction of it becomes feasible. In addition, a new advantage of the application of symbolic and algebraic manipulation found is believed to be crucial in improving the efficiency of program execution in the future. This will substantially shorten the response time of a system. It is very significant for certain systems, such as missile and high speed aircraft systems, in which time plays an important role

    Automating the design of packaging families using PackIT, the packager's inferencing tool

    Get PDF
    Thesis (M.S.V.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1987.MICROFICHE COPY AVAILABLE IN ARCHIVES AND ROTCH.Title as it appeared in M.I.T. Graduate List, June 1987: Automating the design of package families using PackIT, the packager's inferencing tool.Bibliography: leaves 127-130.by Thomas R. Amari.M.S.V.S

    A computerized algebraic utility for the construction of nonsingular satellite theories.

    Get PDF
    Thesis. 1978. M.S.--Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.Includes bibliographical references.M.S

    Advances in engineering science, volume 2

    Get PDF
    Papers are presented dealing with structural dynamics; structural synthesis; and the nonlinear analysis of structures, structural members, and composite structures and materials. Applications of mathematics and computer science are included

    MACSYMA - the fifth year

    No full text
    corecore