1,420 research outputs found

    Linear phase cosine modulated maximally decimated filter banks with perfect reconstruction

    Get PDF
    We propose a novel way to design maximally decimated FIR cosine modulated filter banks, in which each analysis and synthesis filter has a linear phase. The system can be designed to have either the approximate reconstruction property (pseudo-QMF system) or perfect reconstruction property (PR system). In the PR case, the system is a paraunitary filter bank. As in earlier work on cosine modulated systems, all the analysis filters come from an FIR prototype filter. However, unlike in any of the previous designs, all but two of the analysis filters have a total bandwidth of 2π/M rather than π/M (where 2M is the number of channels in our notation). A simple interpretation is possible in terms of the complex (hypothetical) analytic signal corresponding to each bandpass subband. The coding gain of the new system is comparable with that of a traditional M-channel system (rather than a 2M-channel system). This is primarily because there are typically two bandpass filters with the same passband support. Correspondingly, the cost of the system (in terms of complexity of implementation) is also comparable with that of an M-channel system. We also demonstrate that very good attenuation characteristics can be obtained with the new system

    Optimal cosine modulated nonuniform linear phase FIR filter bank design via stretching and shifting frequency response of prototype filter

    Get PDF
    This paper proposes an optimal cosine modulated nonuniform linear phase finite impulse response (FIR) filter bank design. The frequency responses of all the analysis filters and the synthesis filters of the filter bank are derived based on both stretching and shifting the frequency response of the prototype filter. The total aliasing error of the filter bank is minimized subject to a specification on the maximum amplitude distortion of the filter bank as well as specifications on both the maximum passband ripple magnitude and the maximum stopband ripple magnitude of the prototype filter. This filter bank design problem is actually a functional inequality constrained optimization problem. Our recently developed integration approach is employed for solving the problem. Computer numerical simulation results show that our proposed design method outperforms existing design methods

    Alias-free, real coefficient m-band QMF banks for arbitrary m

    Get PDF
    Based on a generalized framework for alias free QMF banks, a theory is developed for the design of uniform QMF banks with real-coefficient analysis filters, such that aliasing can be completely canceled by appropriate choice of real-coefficient synthesis filters. These results are then applied for the derivation of closed-form expressions for the synthesis filters (both FIR and IIR), that ensure cancelation of aliasing for a given set of analysis filters. The results do not involve the inversion of the alias-component (AC) matrix

    A Spectral Factorization Approach to Pseudo-QMF Design

    Get PDF
    A new approach to the design of M-channel pseudoquadrature-mirror-filter (QMF) banks is presented. In this approach, the prototype filter is obtained as a spectral factor of a 2Mth band filter. This completely eliminates the need for optimization whereas in conventional pseudo-QMF designs, the main computational effort is in optimization of the prototype. As in the conventional approach, the aliasing cancellation (AC) constraint ensures that all the significant aliasing terms are canceled. The overall transfer function T(z) of the analysis/synthesis system has a linear phase and an approximately “flat” magnitude response in the frequency region ε ≤ ω ≤ (π - ε), where ε depends on the transition bandwidth of the prototype and 0 < ε < (π/2M). Three design examples are included

    A Kaiser window approach for the design of prototype filters of cosine modulated filterbanks

    Get PDF
    The traditional designs for the prototype filters of cosine modulated filterbanks usually involve nonlinear optimizations. We propose limiting the search of the prototype filters to the class of filters obtained using Kaiser windows. The design process is reduced to the optimization of a single parameter. An example is given to show that very good designs can be obtained in spite of the limit of search

    Design of near-perfect-reconstructed transmultiplexer using different modulation techniques: A comparative study

    Get PDF
    AbstractIn this paper, an efficient iterative method for design of near-perfect reconstructed transmultiplexer (NPR TMUX) is proposed for the prescribed roll-off factor (RF) and stop band attenuation (As). In this method, windowing technique has been used for the design of prototype filter, and different modulation techniques have been exploited for designing multi-channel transmultiplexer (TMUX). In this method, inter-channel interference (ICI) is iteratively minimized so that it approximately reduces to ideal value zero. Design example is given to illustrate the superiority of the proposed method over earlier reported work. A comparative study of the performance of different modulation techniques for designing TMUX is also presented
    corecore