4,902 research outputs found

    Designing labeled graph classifiers by exploiting the R\'enyi entropy of the dissimilarity representation

    Full text link
    Representing patterns as labeled graphs is becoming increasingly common in the broad field of computational intelligence. Accordingly, a wide repertoire of pattern recognition tools, such as classifiers and knowledge discovery procedures, are nowadays available and tested for various datasets of labeled graphs. However, the design of effective learning procedures operating in the space of labeled graphs is still a challenging problem, especially from the computational complexity viewpoint. In this paper, we present a major improvement of a general-purpose classifier for graphs, which is conceived on an interplay between dissimilarity representation, clustering, information-theoretic techniques, and evolutionary optimization algorithms. The improvement focuses on a specific key subroutine devised to compress the input data. We prove different theorems which are fundamental to the setting of the parameters controlling such a compression operation. We demonstrate the effectiveness of the resulting classifier by benchmarking the developed variants on well-known datasets of labeled graphs, considering as distinct performance indicators the classification accuracy, computing time, and parsimony in terms of structural complexity of the synthesized classification models. The results show state-of-the-art standards in terms of test set accuracy and a considerable speed-up for what concerns the computing time.Comment: Revised versio

    Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera

    Get PDF
    Thermal errors are often quoted as being the largest contributor to CNC machine tool errors, but they can be effectively reduced using error compensation. The performance of a thermal error compensation system depends on the accuracy and robustness of the thermal error model and the quality of the inputs to the model. The location of temperature measurement must provide a representative measurement of the change in temperature that will affect the machine structure. The number of sensors and their locations are not always intuitive and the time required to identify the optimal locations is often prohibitive, resulting in compromise and poor results. In this paper, a new intelligent compensation system for reducing thermal errors of machine tools using data obtained from a thermal imaging camera is introduced. Different groups of key temperature points were identified from thermal images using a novel schema based on a Grey model GM (0, N) and Fuzzy c-means (FCM) clustering method. An Adaptive Neuro-Fuzzy Inference System with Fuzzy c-means clustering (FCM-ANFIS) was employed to design the thermal prediction model. In order to optimise the approach, a parametric study was carried out by changing the number of inputs and number of membership functions to the FCM-ANFIS model, and comparing the relative robustness of the designs. According to the results, the FCM-ANFIS model with four inputs and six membership functions achieves the best performance in terms of the accuracy of its predictive ability. The residual value of the model is smaller than ± 2 μm, which represents a 95% reduction in the thermally-induced error on the machine. Finally, the proposed method is shown to compare favourably against an Artificial Neural Network (ANN) model

    New data induced metric for density based clustering

    Full text link

    One-class classifiers based on entropic spanning graphs

    Get PDF
    One-class classifiers offer valuable tools to assess the presence of outliers in data. In this paper, we propose a design methodology for one-class classifiers based on entropic spanning graphs. Our approach takes into account the possibility to process also non-numeric data by means of an embedding procedure. The spanning graph is learned on the embedded input data and the outcoming partition of vertices defines the classifier. The final partition is derived by exploiting a criterion based on mutual information minimization. Here, we compute the mutual information by using a convenient formulation provided in terms of the α\alpha-Jensen difference. Once training is completed, in order to associate a confidence level with the classifier decision, a graph-based fuzzy model is constructed. The fuzzification process is based only on topological information of the vertices of the entropic spanning graph. As such, the proposed one-class classifier is suitable also for data characterized by complex geometric structures. We provide experiments on well-known benchmarks containing both feature vectors and labeled graphs. In addition, we apply the method to the protein solubility recognition problem by considering several representations for the input samples. Experimental results demonstrate the effectiveness and versatility of the proposed method with respect to other state-of-the-art approaches.Comment: Extended and revised version of the paper "One-Class Classification Through Mutual Information Minimization" presented at the 2016 IEEE IJCNN, Vancouver, Canad

    Optimal Fuzzy Aggregation of Networks

    Get PDF
    This paper is concerned with the problem of fuzzy aggregation of a network with non-negative weights on its edges into a small number of clusters. Specifically we want to optimally define a probability of affiliation of each of the n nodes of the network to each of m < n clusters or aggregates. We take a dynamical perspective on this problem by analyzing the discrete-time Markov chain associated with the network and mapping it onto a Markov chain describing transitions between the clusters. We show that every such aggregated Markov chain and affiliation function can be lifted again onto the full network to define the so-called lifted transition matrix between the nodes of the network. The optimal aggregated Markov chain and affiliation function can then be determined by minimizing some appropriately defined distance between the lifted transition matrix and the transition matrix of the original chain. In general, the resulting constrained nonlinear minimization problem comes out to have continuous level sets of minimizers. We exploit this fact to devise an algorithm for identification of the optimal cluster number by choosing specific minimizers from the level sets. Numerical minimization is performed by some appropriately adapted version of restricted line search using projected gradient descent. The resulting algorithmic scheme is shown to perform well on several test examples

    Robust fuzzyclustering for object recognition and classification of relational data

    Get PDF
    Prototype based fuzzy clustering algorithms have unique ability to partition the data while detecting multiple clusters simultaneously. However since real data is often contaminated with noise, the clustering methods need to be made robust to be useful in practice. This dissertation focuses on robust detection of multiple clusters from noisy range images for object recognition. Dave\u27s noise clustering (NC) method has been shown to make prototype-based fuzzy clustering techniques robust. In this work, NC is generalized and the new NC membership is shown to be a product of fuzzy c-means (FCM) membership and robust M-estimator weight (or possibilistic membership). Thus the generalized NC approach is shown to have the partitioning ability of FCM and robustness of M-estimators. Since the NC (or FCM) algorithms are based on fixed-point iteration technique, they suffer from the problem of initializations. To overcome this problem, the sampling based robust LMS algorithm is considered by extending it to fuzzy c-LMS algorithm for detecting multiple clusters. The concept of repeated evidence has been incorporated to increase the speed of the new approach. The main problem with the LMS approach is the need for ordering the distance data. To eliminate this problem, a novel sampling based robust algorithm is proposed following the NC principle, called the NLS method, that directly searches for clusters in the maximum density region of the range data without requiring the specification of number of clusters. The NC concept is also introduced to several fuzzy methods for robust classification of relational data for pattern recognition. This is also extended to non-Euclidean relational data. The resulting algorithms are used for object recognition from range images as well as for identification of bottleneck parts while creating desegregated cells of machine/ components in cellular manufacturing and group technology (GT) applications
    • …
    corecore