1,796 research outputs found

    Control Regularization for Reduced Variance Reinforcement Learning

    Get PDF
    Dealing with high variance is a significant challenge in model-free reinforcement learning (RL). Existing methods are unreliable, exhibiting high variance in performance from run to run using different initializations/seeds. Focusing on problems arising in continuous control, we propose a functional regularization approach to augmenting model-free RL. In particular, we regularize the behavior of the deep policy to be similar to a policy prior, i.e., we regularize in function space. We show that functional regularization yields a bias-variance trade-off, and propose an adaptive tuning strategy to optimize this trade-off. When the policy prior has control-theoretic stability guarantees, we further show that this regularization approximately preserves those stability guarantees throughout learning. We validate our approach empirically on a range of settings, and demonstrate significantly reduced variance, guaranteed dynamic stability, and more efficient learning than deep RL alone.Comment: Appearing in ICML 201

    Safety-guided deep reinforcement learning via online gaussian process estimation

    Full text link
    An important facet of reinforcement learning (RL) has to do with how the agent goes about exploring the environment. Traditional exploration strategies typically focus on efficiency and ignore safety. However, for practical applications, ensuring safety of the agent during exploration is crucial since performing an unsafe action or reaching an unsafe state could result in irreversible damage to the agent. The main challenge of safe exploration is that characterizing the unsafe states and actions is difficult for large continuous state or action spaces and unknown environments. In this paper, we propose a novel approach to incorporate estimations of safety to guide exploration and policy search in deep reinforcement learning. By using a cost function to capture trajectory-based safety, our key idea is to formulate the state-action value function of this safety cost as a candidate Lyapunov function and extend control-theoretic results to approximate its derivative using online Gaussian Process (GP) estimation. We show how to use these statistical models to guide the agent in unknown environments to obtain high-performance control policies with provable stability certificates.Accepted manuscrip

    Adding Neural Network Controllers to Behavior Trees without Destroying Performance Guarantees

    Full text link
    In this paper, we show how Behavior Trees that have performance guarantees, in terms of safety and goal convergence, can be extended with components that were designed using machine learning, without destroying those performance guarantees. Machine learning approaches such as reinforcement learning or learning from demonstration can be very appealing to AI designers that want efficient and realistic behaviors in their agents. However, those algorithms seldom provide guarantees for solving the given task in all different situations while keeping the agent safe. Instead, such guarantees are often easier to find for manually designed model based approaches. In this paper we exploit the modularity of Behavior trees to extend a given design with an efficient, but possibly unreliable, machine learning component in a way that preserves the guarantees. The approach is illustrated with an inverted pendulum example.Comment: Submitted to IEEE Transactions on Game
    • …
    corecore